
��������	�
����	�
�������������

������������������������������������ ����!����"��������
�������

�#
#��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved 169

ISSN No. 0976-5697

A Lexi-Search Approach for Variant Mutiple Travelling Salesmen Problem

K.Sobhan Babu
*

Department of Mathematics

University College of Engineering, Jntuk, Kakinada

Andhra Pradesh, India

sobhanjntu@gmail.com

Chandra Kala.K
Assistant System Engineer

Tata Consultancy Services, Hyderabad

Andhra Pradesh, India

chandrakala.kuruba@tcs.com

B. Naganna
Associate Professor, Department of Mathematics

Vardhaman College of Engineering, Shamshabad,

Hyderabad, Andhra Pradesh, India

naganna.bandi@gmail.com

Sundara Murthy. M
Senior Professor, Department of Mathematics

Sri Venkateswara University, Tirupati, Chittor (Dt)

Andhra Pradesh, India

profmurthy@gmail.com

Abstract: The multiple travelling salesmen problem (mTSP) is a generalization of the well-known travelling salesman problem (TSP), where

more than one salesman is allowed to be used in the solution. More over, the characteristics of the mTSP seem more appropriate for real-life

applications, and it is also possible to extend the problem to a wide variety of vehicle routing problems (VRPs) by incorporating some additional

side constraints. Although there exists a wide body of the literature for the TSP and the VRP, the mTSP has not received the same amount of

attention. In this paper we develop an efficient Lexi-Search method for solving the multiple travelling salesmen problem. Although Lexi-Search

methods are among the most widely used techniques for solving hard problems, it is still a challenge to make these methods smarter. The

motivation of the calculation of the lower bounds is based on ideas frequently used in solving problems. Computationally, the algorithm

extended the size of the problem and find better solution
Keywords: Multiple Travelling Salesmen Problem, Lexi-Search, Pattern Recognition, Tour, Alphabet Table, Search Table.

I. INTRODUCTION

A generalization of the well-known traveling salesman
problem (TSP) is the multiple traveling salesmen problem
(mTSP), which consists of determining a set of routes for m
salesmen who all start from and turn back to a home city
(depot). Although the TSP has received a great deal of
attention, the research on the mTSP is limited. In this paper
we develop an efficient Lexi-Search method for solving the
multiple travelling salesmen problem. Although Lexi-Search
methods are among the most widely used techniques for
solving hard problems, it is still a challenge to make these
methods smarter. The motivation of the calculation of the
lower bounds is based on ideas frequently used in solving
problems. Computationally, the algorithm extended the size
of the problem and find better solution.

II. MATHEMATICAL FORMULATION

��������������
Where , the ith salesman visits the ni cities and =

,
 ����������������

 i = 1, 2. . . m
 ��������������

�
Constraint (2) represents that the ith salesman visits in

his tour ni cities starting from headquarter {1}. Another
constraint of the salesman is that each salesman in their Ni
tours with ni cities make the tour starting from {1}

headquarter city visits the ni cities and returns to the
headquarter city.

 In the sequel we developed a Lexi-search algorithm
based on the “Pattern Recognition Technique” to solve this
problem which takes care of simple combinatorial structure
of the problem and computational results are reported.
�

III. PROPOSED ALGORITHM

The name Lexicographic-search or Lexi-search

method implies that the search is made for an optimal

solution in a systematic way, just as one search for meaning

of a word in a dictionary. When the process of feasibility

checking of a partial word becomes difficult, though lower

bound computation is easy, Pattern Recognition Technique

(Sundara Murthy, 1979) can be used. Lexi-Search

algorithms, in general, require less memory, due to the

existence of Lexicographic order of partial words. If Pattern

Recognition Technique is used, the dimension requirement

of the problem can be reduced, since it reduces to the two-

dimensional cost array into a linear and the problem can be

reduced to a linear form of finding an optimal word of

length n (Sundara Murthy, 1979) and hence reduces

computational work in getting an optimal solution.

IV. CONCEPTS AND DEFINITIONS OF OUR

ALGORITHM

A. Pattern

 An indicator matrix X, associated with an
appropriate assignment of tasks to the agents is defined as a
Pattern. A Pattern is said to be feasible, if X is feasible.

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 169-172

© 2010, IJARCS All Rights Reserved 170

Each pattern X can also be represented by the set of all
ordered triples {(i, j, k)}, for which X (i, j, k) =1. In general,
there will be m*n*k ordered pairs in a matrix X (m, n, k).

B. Alphabet – Table & Word

Let SN = (1,2, . . . ,n3) be the set of indices, BD be an

array of corresponding costs of the ordered pairs and DD be

the array of cumulative sums of elements in BD. Let arrays

R, C and T be respectively row, column and time/facility

indices of the ordered triples. Let Lk = (a1,a2. . .ak). ai� SN be

a ordered sequence of k indices from S. The pattern

represented by the ordered triples indices are given by Lk is

independent of the order of ai in the sequence. For

uniqueness, the indices in Lk are arranged in increasing

order, such that ai < ai+1, i = 1,2, . . .,k-1. The set S is defined

as Alphabet-Table with alphabetic order as (1,2, . . .,n3) and

the ordered sequence Lk is defined as a word of length k. A

word Lk is said to be sensible word if ai < ai+1, i = 1, 2. . . k-1;

non sensible otherwise. It is said to be feasible, if it

represents a feasible pattern. Any of the letters in S can

occupy the first place in a word Lk. Our interest is only in

set of words of length atmost equal to n, since the words of

length greater than n are necessarily infeasible, as any

feasible pattern can have only n unit entries in it. If k < n, Lk

is called a Partial word and if K = n, it is a full length word

or simply a word. A partial word Lk represents a block of

words with Lk as a leader i.e. as its first k letters. A leader is

said to be feasible, if the block of words defined by it has at

least one feasible word.

C. Value of the Word

 The value of the (partial) word Lk, V(Lk) is
recursively defined as V(Lk) = V(Lk-1) + BD (ak) with V(L0)
=0, where BD is the cost array arranged such that, BD(ak) <
BD(ak+1). V (Lk) and the value of the pattern X, will be the
same, since X is the (partial) pattern represented by Lk.

D. Feasibility Criterion of a Partial Word

A recursive algorithm is developed for checking the
feasibility of a partial word Lk+1 = (a1, a2… ak, ak+1) given
that Lk is a feasible partial word. We will introduce some
more notations which will be useful in the sequel. (The
feasible checking algorithm is written for m=2 and it can be
easily be generalized for ‘m’).
IR be an array where IR (i) =1, i N represents that

the salesman is visiting some city from city i,
otherwise zero.

IC be an array where IC (i) =1, i N represents that
the salesman is coming to city from some city i,
otherwise zero.

IT be an array where IT (i), i P represents that the
salesman visits a pair of cities at some time.

LW be an array where LW (i) is the letter in the ith
position of a word.

SWI be an array where SWI (i) is the city the salesman
is visiting from city i at some time, otherwise SWI
(i) = 0.

S be an array where S (i) indicates that the ith
salesman
Then for a given partial word Lk = (a1, a2. . . ak) the

values of the arrays IR, IC, IT, S, LW, SWI are as follows:
IR(R(ai))=1, i= 1,2,3, …k and IR(j)=0 for other elements of
j.
IC(C (ai) =1, i= 1, 2, 3 ….k otherwise IC (j) =0
SW(R (ai)) =C (ai), i=1, 2, 3….k otherwise SW (j) =0

LW (i) =ai, i=1,2,….k otherwise LW(i)=0
SWT(R (ai)) =T (ai), i=1,2,…k otherwise SWT (j)=0
SWI (C (ai)) =R (ai), i=1,2,…k otherwise SWI (j)=0

ALGORITHM 1

STEP 0: IS IX=0 IF YES GOTO 1
 IF NO GOTO 11
STEP 1: IS (IR (RA) =1) IF YES GOTO 11
 IF NO GOTO 2
STEP 2: IS (IR (CA) =1) IF YES GOTO 11
 IF NO GOTO 3
STEP 3: I = I + 1 IF YES GOTO 11
 IS (I > M) IF NO GOTO 4
STEP 4: MS (I) = S (I)
 S (I) = N (I) GOTO 5
STEP 5: CAX = IC (CA) + 1 IF YES GOTO 6
RAX = IR (RA) +1 IF NO GOTO 3
IS [(RAX � N(I)) & (CAX � N(I))]
STEP 6: WI = CA GOTO 7
STEP 7: IF (SWI (WI)) = 0 GOTO 9
 ELSE GOTO 8
STEP 8: IF (WI = RA) GOTO 10
 ELSE WI = SW (WI)
 GOTO 7
STEP 9: IX =1 GOTO 10
STEP 10:IF K = NI GOTO 9
 ELSE GOTO 11
STEP 11: STOP & END

We start the algorithm with a very large value say
M=9999 as a trial value (VT). If the value of a feasible word
is known, we can start with the value as VT. During the
search value of VT is improved. At the end of search the
current value of VT gives the optimal feasible word. We
start with the partial word L1=(a1)=(1). Then two situations
arises one for branching and the other for continuing the
search.
1. LB(Lp) < VT. Then we check whether Lp is feasible
or not. If it is feasible we proceed to consider a partial word
of order (p+1) which represents a sub-block of the block of
words represented by Lp. If Lp is not feasible then consider
the next partial word of order (p-1).

2. LB(Lp) � VT. In this case we reject the block of
word with Lp as leader as not having optimum feasible
solution and also reject all partial words of order p that
succeeds Lp.

Now we are in a position to develop a Lexi-search algorithm
to find an optimal feasible word.

ALGORITHM 2: (LEXI-SEARCH ALGORITHM)

The following algorithm gives an exact solution for the
proposed problem.

STEP 1 : (INITILIZATION)
The arrays SN, D, DC, R, C, T, N, P and M are made
available. IR, IC, IT, SW, SWT, SWI, LW, V, LB
arrays are initialized to zero. The values I = 1, j=0, VT
= 9999.

STEP 2 :J = J + 1 GOTO 3
STEP 3 :L (I) = J
 JA = J + N – 1
 V (I) = V (I – 1) + D (J)
 LB (I) = V (I) + DC (JA) – DC (J)
STEP 4 :IS (LB (I) � VT) IF YES GOTO 12

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 169-172

© 2010, IJARCS All Rights Reserved 171

 IF NO GOTO 5

STEP 5 : RA = R (J)
 CA = C (J)
 TA = T (J)
 GOTO 6

STEP 6 : CHECK THE FEASIBILITY OF L (1)
(USING THE ALGORITHM 1)

 IS (IX = 0)
 IF YES GOTO 2

IF NO GOTO IS (IXA =1)
 IF YES GOTO 8

 IF NO GOTO 7

STEP 7 : IS (I = N)
 IF YES GOTO 11

 IF NO GOTO 9

STEP 8 : SW (RA) = CA
 PRINT (I, SW (I), I =1 TO N)
 GOTO 9

STEP 9 : L (I) = J
 IR (RA) = 1
 IC (CA) = 1
 IT (TA) = IT (TA) +1
 SW (RA) = CA
 SWT (RA) = TA
 SWI (CA) = RA
 GOTO 10

SETP 10 : I = I + 1 GOTO 2

STEP 11 : L (I) = J

L (I) is a full length of word and
is feasible

VT = V (I), RECORD L (I) and
VT GOTO 13

STEP 12 : IS (I =1)
 IF YES GOTO 14

STEP 13 : I = I -1
 J = L (I)
 RA = R (J)
 CA = C (J)
 TA = T (J)
 IR (RA) = 0
 IC (CA) = 0
 IT (TA) = IT (TA) -1
 SW (RA) = 0
 SWT (RA) = 0
 SWI (CA) = 0
 GOTO 2
STEP 14 : STOP

 The current value of VT at the end of the search is
the value of the optimal solution for a feasible word. At
the end if VT=9999 it indicates that there is no feasible
solution.

V. COMPUTATIONAL EXPERIENCE

The cost matrix was generated randomly in the

interval [0,100]. For each type of instance we considered

six trials. Our algorithms have been implemented in C.

The computational experiments were performed on a

personal computer with AMD Sempron™ Processor LE-

1200, 2.10 GHz, 896 RAM and OS Windows XP

Professional. In table-1 we have presented the

computational results for solving the problem using the

Lexi-Search algorithm based on the Pattern Recognition

Technique.

Table I. Time taken by the proposed algorithm

Sr. No. n m Alphabet Table Total TimeTaken

 m1, m2, m3 Min Max Avg Min Max Avg

1 10 5, 4, 3 0.002 0.002 0.002 0.004 0.005 0.0045

2 10 4, 5, 3 0.001 0.002 0.0015 0.001 0.001 0.001

3 10 3, 5, 4 0.0023 0.0024 0.00235 0.0022 0.0024 0.0023

4 20 6, 9, 7 0.04 0.04 0.04 0.03 0.04 0.035

5 20 6, 7, 9 0.012 0.014 0.013 0.012 0.016 0.014

6 20 9, 6, 7 0.040 0.048 0.044 0.048 0.060 0.045

7 30 7, 10, 15 0.007 0.008 0.0075 0.0065 0.0089 0.0075

8 30 10, 7, 15 0.03 0.03 0.03 0.039 0.031 0.035

9 30 10, 10, 12 0.09 0.091 0.09 0.12 0.14 0.13

VI. CONCLUSION

The problems are solved by using the Lexi-Search algorithm based
on the Pattern Recognition Technique. In table-1, the number of
salesmen (m = 3) and m1 means the first salesman visits the number
of cities, m2 means the second salesman visits the number of cities
and m3 means that the third salesman visits the number of cities. The
cost matrix was generated randomly in the interval [0,100]. For each
type of instance we considered six trials. Our algorithms have been
implemented in C. The computational experiments were performed
on a personal computer with AMD Sempron™ Processor LE-1200,
2.10 GHz, 896 RAM and OS Windows XP Professional. In table-1

we have presented the computational results for solving the problem
using the Lexi-Search algorithm based on the Pattern Recognition
Technique.

VII. ACKNOWLEDGMENT

The authors are very much thankful to the referees for their
suggestions & useful comments.

K.Sobhan Babu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 169-172

© 2010, IJARCS All Rights Reserved 172

VIII. REFERENCES

[1] A.E.carter and C.T.Ragsdale, (2006): A new

approach to solving the multiple traveling salesmen
problem using genetic algorithms, European Journal
of Operations Research, Vol.175 (1), PP.246-257.

[2] Laporte, G and Y. Nobert (1983) : A cutting planes
algorithms for the M-Salesmen Problem,
J.Opns. Res. Vol. 31, No. 11, P. 1107.

[3] Pandit, S.N.N., and Sundara Murthy, M., “Restriced
TSP through n sets of nodes”,paper presented at the
9th Annual Convention of ORSI, Calcutta, 1975.

[4] Pandit, S.N.N., “The Loading Problem”, Opns. Res.,
10, 1962, pp.639-646.

[5] Pandit, S.N.N., “Some observations on the Longest
Path Problems”, Opns. Res., Vol. 11., 1964, 361.

[6] Svestka, J.A (1976) : Response to - A Note on the
formulation of the M-TSP. Mgt. Sci., Vol. 22, P.704.

[7] Sundara Murthy, M (1979) : Combinatorial
Programming - A Pattern Recognition Approach,
Ph.D. Thesis, REC, Warangal, India.

[8] Sundara Murthy, M and Bhavani, V (2006):
Truncated M-TSP, Opsearch, Vol.43 No.2, pp. 152 –
177.

[9] Svestka, J.A and Huckfeldt, V.E. (1973):
Computational Experience with an M-TSP algorithm
Mgt. Sci., 19, No. 7, pp. 790 – 799.

[10] .Shiela Das and Borah P.C (1993): A Lexi Co graphic
Search Approach for the Constrained M-TSP, A
Paper Presented in the XXVI - Annual Convention of
ORSI, Bhubaneswar, Orissa, India.

[11] Rao, M.R. (1980): "A note on the M-TSP" Opens,
Res. Vol. 28, No.3.

AUTHORS

Mr.K.SOBHAN BABU is presently

working as a Assistant Professor in the

Department of Mathematics, University

College of Engineering, JNTUK,

KAKINADA, Andhra Pradesh, INDIA.

Mrs.K.CHANDRA KALA is presently

working as a Assistant System Engineer

in Tata Consultancy Services, Hyderabad,

Andhra Pradesh, INDIA.

Dr.B.Naganna is currently working as a

Associate Professor in the Department of

Mathematics, Sri Vardhaman College of

Engineering, Hyderabad. Andhra

Pradesh, INDIA.

Dr.M.SUNDARA MURTHY is a Senior

Professor in the Department of

Mathematics, Sri Venkateswara

University, Tirupati, Chittor (Dt) Andhra

Pradesh, India. Research Area is

Combinatorial Optimization & Algorithm

Design, etc.

