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Abstract: The multiple travelling salesmen problem (mTSP) is a generalization of the well-known travelling salesman problem (TSP), where 

more than one salesman is allowed to be used in the solution. More over, the characteristics of the mTSP seem more appropriate for real-life 

applications, and it is also possible to extend the problem to a wide variety of vehicle routing problems (VRPs) by incorporating some additional 

side constraints. Although there exists a wide body of the literature for the TSP and the VRP, the mTSP has not received the same amount of 

attention. In this paper we develop an efficient Lexi-Search method for solving the multiple travelling salesmen problem. Although Lexi-Search 

methods are among the most widely used techniques for solving hard problems, it is still a challenge to make these methods smarter. The 

motivation of the calculation of the lower bounds is based on ideas frequently used in solving problems. Computationally, the algorithm 

extended the size of the problem and find better solution 
Keywords: Multiple Travelling Salesmen Problem, Lexi-Search, Pattern Recognition, Tour, Alphabet Table, Search Table. 

 

I. INTRODUCTION  

A generalization of the well-known traveling salesman 
problem (TSP) is the multiple traveling salesmen problem 
(mTSP), which consists of determining a set of routes for m 
salesmen who all start from and turn back to a home city 
(depot).  Although the TSP has received a great deal of 
attention, the research on the mTSP is limited. In this paper 
we develop an efficient Lexi-Search method for solving the 
multiple travelling salesmen problem. Although Lexi-Search 
methods are among the most widely used techniques for 
solving hard problems, it is still a challenge to make these 
methods smarter. The motivation of the calculation of the 
lower bounds is based on ideas frequently used in solving 
problems. Computationally, the algorithm extended the size 
of the problem and find better solution. 

II. MATHEMATICAL FORMULATION 
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Where , the ith salesman visits the ni cities and   = 
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                                                        i = 1, 2. . . m 
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Constraint (2) represents that the ith salesman visits in 

his tour ni cities starting from headquarter {1}. Another 
constraint of the salesman is that each salesman in their Ni 
tours with ni cities make the tour  starting from {1} 

headquarter city visits the ni cities and returns to the 
headquarter city.                                                                                                        

 In the sequel we developed a Lexi-search algorithm 
based on the “Pattern Recognition Technique” to solve this 
problem which takes care of simple combinatorial structure 
of the problem and computational results are reported.  
�

III. PROPOSED ALGORITHM 

The name Lexicographic-search or Lexi-search 

method implies that the search is made for an optimal 

solution in a systematic way, just as one search for meaning 

of a word in a dictionary. When the process of feasibility 

checking of a partial word becomes difficult, though lower 

bound computation is easy, Pattern Recognition Technique 

(Sundara Murthy, 1979) can be used. Lexi-Search 

algorithms, in general, require less memory, due to the 

existence of Lexicographic order of partial words. If Pattern 

Recognition Technique is used, the dimension requirement 

of the problem can be reduced, since it reduces to the two-

dimensional cost array into a linear and the problem can be 

reduced to a linear form of finding an optimal word of 

length n (Sundara Murthy, 1979) and hence reduces 

computational work in getting an optimal solution. 

 

IV. CONCEPTS AND DEFINITIONS OF OUR 

ALGORITHM 

A.  Pattern 

 An indicator matrix X, associated with an 
appropriate assignment of tasks to the agents is defined as a 
Pattern. A Pattern is said to be feasible, if X is feasible. 
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Each pattern X can also be represented by the set of all 
ordered triples {(i, j, k)}, for which X (i, j, k) =1. In general, 
there will be m*n*k ordered pairs in a matrix X (m, n, k).  

B.  Alphabet – Table & Word 

Let SN = (1,2, . . . ,n3) be the set of indices, BD be an 

array of corresponding costs of the ordered pairs and DD be 

the array of cumulative sums of elements in BD. Let arrays 

R, C and T be respectively row, column and time/facility 

indices of the ordered triples. Let Lk = (a1,a2. . .ak). ai� SN be 

a ordered sequence of k indices from S. The pattern 

represented by the ordered triples indices are given by Lk is 

independent of the order of ai in the sequence. For 

uniqueness, the indices in Lk are arranged in increasing 

order, such that ai < ai+1, i = 1,2, . . .,k-1. The set S is defined 

as Alphabet-Table with alphabetic order as (1,2, . . .,n3) and 

the ordered sequence Lk is defined as a word of length k. A 

word Lk is said to be sensible word if ai < ai+1, i = 1, 2. . . k-1; 

non sensible otherwise. It is said to be feasible, if it 

represents a feasible pattern. Any of the letters in S can 

occupy the first place in a word Lk. Our interest is only in 

set of words of length atmost equal to n, since the words of 

length greater than n are necessarily infeasible, as any 

feasible pattern can have only n unit entries in it. If k < n, Lk 

is called a Partial word and if K = n, it is a full length word 

or simply a word. A partial word Lk represents a block of 

words with Lk as a leader i.e. as its first k letters. A leader is 

said to be feasible, if the block of words defined by it has at 

least one feasible word. 

C.  Value of the Word 

 The value of the (partial) word Lk, V(Lk) is 
recursively defined as V(Lk) = V(Lk-1) + BD (ak) with V(L0) 
=0, where BD is the cost array arranged such that, BD(ak) < 
BD(ak+1). V (Lk) and the value of the pattern X, will be the 
same, since X is the (partial) pattern represented by Lk. 

D. Feasibility Criterion of a Partial Word 

A recursive algorithm is developed for checking the 
feasibility of a partial word Lk+1 = (a1, a2… ak, ak+1) given 
that Lk is a feasible partial word. We will introduce some 
more notations which will be useful in the sequel. (The 
feasible checking algorithm is written for m=2 and it can be 
easily be generalized for ‘m’). 
IR be an array where IR (i) =1, i  N represents that 

the salesman is visiting some city from    city i, 
otherwise zero. 

IC  be an array where IC (i) =1, i  N represents that 
the salesman is coming to city from some  city i, 
otherwise zero. 

IT be an array where IT (i), i  P represents that the 
salesman visits a pair of cities at some time. 

LW be an array where LW (i) is the letter in the ith 
position of a word. 

SWI be an array where SWI (i) is the city the salesman 
is visiting from city i at some time, otherwise SWI 
(i) = 0. 

S  be an array where S (i) indicates that the ith 
salesman  
Then for a given partial word Lk = (a1, a2. . . ak) the 

values of the arrays IR, IC, IT, S, LW,  SWI are as follows: 
IR(R(ai))=1, i= 1,2,3, …k and IR(j)=0 for other elements of 
j.  
IC(C (ai) =1, i= 1, 2, 3 ….k otherwise IC (j) =0 
SW(R (ai)) =C (ai), i=1, 2, 3….k otherwise SW (j) =0 

LW (i) =ai, i=1,2,….k otherwise LW(i)=0 
SWT(R (ai)) =T (ai), i=1,2,…k otherwise SWT (j)=0 
SWI (C (ai)) =R (ai), i=1,2,…k otherwise SWI (j)=0 
 
ALGORITHM 1 
 
STEP 0: IS IX=0   IF YES GOTO 1 
    IF NO GOTO 11 
STEP 1: IS (IR (RA) =1)  IF YES GOTO 11 
    IF NO GOTO 2 
STEP 2: IS (IR (CA) =1)  IF YES GOTO 11 
    IF NO GOTO 3 
STEP 3: I = I + 1   IF YES GOTO 11 
  IS (I > M) IF NO GOTO 4 
STEP 4: MS (I) = S (I)    
  S (I) = N (I) GOTO 5 
STEP 5: CAX = IC (CA) + 1 IF YES GOTO 6 
RAX = IR (RA) +1  IF NO GOTO 3 
IS [ (RAX � N(I)) & (CAX � N(I))] 
STEP 6: WI = CA  GOTO 7 
STEP 7: IF (SWI (WI)) = 0 GOTO 9 
   ELSE GOTO 8 
STEP 8: IF (WI = RA)  GOTO 10 
            ELSE WI = SW (WI) 
    GOTO 7 
STEP 9: IX =1    GOTO 10 
STEP 10:IF K = NI  GOTO 9 
   ELSE GOTO 11 
STEP 11: STOP & END 
 

We start the algorithm with a very large value say 
M=9999 as a trial value (VT). If the value of a feasible word 
is known, we can start with the value as VT. During the 
search value of VT is improved. At the end of search the 
current value of VT gives the optimal feasible word. We 
start with the partial word L1=(a1)=(1).  Then two situations 
arises one for branching and the other for continuing the 
search. 
1. LB(Lp) < VT. Then we check whether Lp is feasible 
or not. If it is feasible we proceed to consider a partial word 
of order (p+1) which represents a sub-block of the block of 
words represented by Lp. If Lp is not feasible then consider 
the next partial word of order (p-1). 

 
2. LB(Lp) � VT. In this case we reject the block of 
word with Lp as leader as not having optimum feasible 
solution and also reject all partial words of order p that 
succeeds Lp. 

Now we are in a position to develop a Lexi-search algorithm 
to find an optimal feasible word. 
 

ALGORITHM 2: (LEXI-SEARCH ALGORITHM) 
 
The following algorithm gives an exact solution for the 
proposed problem. 

STEP 1 : (INITILIZATION) 
The arrays SN, D, DC, R, C, T, N, P and M are made 
available. IR, IC, IT,  SW, SWT, SWI, LW, V, LB 
arrays are initialized to zero. The values I = 1, j=0, VT 
= 9999. 
 
STEP 2  :J = J + 1 GOTO 3 
STEP 3 :L (I) = J 
  JA = J + N – 1 
  V (I) = V (I – 1) + D (J) 
  LB (I) = V (I) + DC (JA) – DC (J) 
STEP 4 :IS (LB (I) � VT) IF YES GOTO 12 
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    IF NO GOTO 5 
 
STEP 5 : RA = R (J) 
   CA = C (J) 
   TA = T (J)  
   GOTO 6 
 
STEP 6 : CHECK THE FEASIBILITY OF L (1) 
(USING THE ALGORITHM 1) 
 
   IS (IX = 0)  
   IF YES GOTO 2 

IF NO GOTO IS (IXA =1)  
 IF YES GOTO 8 

   IF NO GOTO 7 
 
STEP 7 : IS (I = N)  
   IF YES GOTO 11 
      
   IF NO GOTO 9 
 
STEP 8  : SW (RA) = CA 
   PRINT (I, SW (I), I =1 TO N)
   GOTO 9 
 
STEP 9 : L (I) = J 
   IR (RA) = 1 
   IC (CA) = 1 
   IT (TA) = IT (TA) +1 
   SW (RA) = CA 
   SWT (RA) = TA 
   SWI (CA) = RA  
   GOTO 10 
 
SETP 10 : I = I + 1 GOTO 2 
 
STEP 11 : L (I) = J 

L (I) is a full length of word and 
is feasible 

VT = V (I), RECORD L (I) and 
VT  GOTO 13 

 
STEP 12  : IS (I =1)   
   IF YES GOTO 14 
 
STEP 13 : I = I -1 
   J = L (I) 
   RA = R (J) 
   CA = C (J) 
   TA = T (J) 
   IR (RA) = 0 
    IC (CA) = 0 
   IT (TA) = IT (TA) -1 
   SW (RA) = 0 
   SWT (RA) = 0 
   SWI (CA) = 0  
   GOTO 2 
STEP 14 : STOP 
 
 The current value of VT at the end of the search is 
the value of the optimal solution for a feasible word. At 
the end if VT=9999 it indicates that there is no feasible 
solution. 

V. COMPUTATIONAL EXPERIENCE 

The cost matrix was generated randomly in the 

interval [0,100]. For each type of instance we considered 

six trials. Our algorithms have been implemented in C. 

The computational experiments were performed on a 

personal computer with AMD Sempron™ Processor LE-

1200, 2.10 GHz, 896 RAM and OS Windows XP 

Professional. In table-1 we have presented the 

computational results for solving the problem using the 

Lexi-Search algorithm based on the Pattern Recognition 

Technique. 

  

Table I.  Time taken by the proposed algorithm 

Sr. No. n m  Alphabet Table  Total TimeTaken 

  m1, m2, m3 Min Max Avg Min Max Avg 

1 10 5, 4, 3 0.002 0.002 0.002 0.004 0.005 0.0045 

2 10 4, 5, 3 0.001 0.002 0.0015 0.001 0.001 0.001 

3 10 3, 5, 4 0.0023 0.0024 0.00235 0.0022 0.0024 0.0023 

4 20 6, 9, 7  0.04 0.04 0.04 0.03 0.04 0.035 

5 20 6, 7, 9 0.012 0.014 0.013 0.012 0.016 0.014 

6 20 9, 6, 7 0.040 0.048 0.044 0.048 0.060 0.045 

7 30 7, 10, 15 0.007 0.008 0.0075 0.0065 0.0089 0.0075 

8 30 10, 7, 15 0.03 0.03 0.03 0.039 0.031 0.035 

9 30 10, 10, 12 0.09 0.091 0.09 0.12 0.14 0.13 

 

VI. CONCLUSION 

The problems are solved by using the Lexi-Search algorithm based 
on the Pattern Recognition Technique.  In table-1,  the number of 
salesmen (m = 3) and m1 means the first salesman visits the number 
of cities, m2 means the second salesman visits the number of cities 
and m3 means that the third salesman visits the number of cities. The 
cost matrix was generated randomly in the interval [0,100]. For each 
type of instance we considered six trials. Our algorithms have been 
implemented in C. The computational experiments were performed 
on a personal computer with AMD Sempron™ Processor LE-1200, 
2.10 GHz, 896 RAM and OS Windows XP Professional. In table-1 

we have presented the computational results for solving the problem 
using the Lexi-Search algorithm based on the Pattern Recognition 
Technique. 
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