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Abstract:  mainly research done to date on software maintenance has been focused mainly on the evolution of legacy systems based on out of 
date technologies. However, the use of more recent yet evolving technologies, like component-based techniques, also raise various issues about 
software comprehension and evolution. In particular, current industrial-strength component models like COM are based on many technical 
aspects that make them difficult to understand and use. The evolution of large module based software products is thus an rising issue. This paper 
presents GSEE, a Generic Software Exploration Environment. GSEE is made of an object-oriented framework and a set of customizable tools.  
Only few lines are needed to produce graphical views from virtually any source of data. GSEE has been successfully applied to improve the 
understanding of different software artifacts including a multi millions LOC software.  Currently, two kinds of tools have been integrated in this 
environment: OMVT which is DASSAULT SYSTEMES specific, and GSEE which is a generic tool independent from the meta-model used. 
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I. INTRODUCTION 

Large software products have always been difficult to 
understand and evolve [10]. In the late 80’s this has leaded 
to the emergence of closely related techniques like 
reengineering, reverse-engineering and restructuring, 
collectively called RE3 technologies [26]. Traditionally, 
most research work in RE3 focused on the evolution of 
legacy software products based on obsolete technology. 
Many tools have been proposed to deal with old-fashioned 
programming languages such as Cobol, Fortran or C for 
instance. There is still a belief that the usage of RE3 
techniques are restricted to legacy systems. 

However, reverse engineering is defined as “the process  
of analyzing a subject system to: (I) identify the system’s 
components and their interrelationships and (2) create 
representations of the system in another form. This 
definition makes no mention about the level of maturity of 
the technology involved, nor the definitions of restructuring 
and reengineering do [ 1,6]. RE3 techniques have to follow 
the evolution of industrial software engineering practice. 
The wave model [21] is very valuable in this context, since 
it provides different. 

Historical views on software engineering evolution. 
industry. 

 
These waves of interest in forward engineering 

technology have an strong impact on RE3 evolution. For 
instance, in the mid go’s, the first restructuring tools focused 
on the shift from ad-hoc programming to structured 

programming by removing goto statements from 
unstructured programs [2]. The shift from structured 
programming to modular programming also led to clustering 
and (re)modularization tools, tools to recover software 
architecture, etc. [1,3,15,16,19,27].  

The increasing interest in object-oriented technology in 
the last decade, results today in the existence of large oo 
software products. However, every technology will show its 
limits when applied at large [4]. In particular, large software 
companies, pioneers in the 00-at-large approach, understood 
that the 00 paradigm is no silver bullet [7]. 

The existence of large 00 software products naturally 
give rise to significant research effort focusing on the 
intersection of 00 and RE3 (e.g. the Spool [16] and Famous 
projects [7]). Note that this last step in the evolution of RE3 
discipline marks a discontinuity: RE3 techniques are no 
longer restricted to the maintenance of legacy systems, they 
can be applied for the evolution of state-of-the-art software 
products. Many researchers now believe that RE3 
techniques must be smoothly integrated within the forward 
engineering process, leading for instance to the concept of 
round-trip engineering (a series of short forward and reverse 
engineering cycles).  

As Fowler pointed out [13], experienced 00 
programmers know that an object-oriented framework can 
not be right the first time - it must evolve as experience is 
gained with its use. So, software refactoring [13] (the term 
used in the 00 world for restructuring), should therefore be 
seen as a continuous restructuring effort integrated in the 
development and evolution of any 00 software product. 
Then, what will be the next step? We believe that 
component-based (CB) software development may be the 
one, at least this is what the experience reported in this 
paper suggests. Nowadays, there is a widely accepted belief 
that large software products should be built as the assembly 
of software components. Tough promising, this idea was not 
put into practice at a large scale until the emergence, in the 
last few years, of industrial-strength component models like 
Microsoft' COM [5,29], OMG' Corba and CCM [30,3], Sun' 
JavaBeans [9,12] or Sun' Enterprise Java Bean [3]. The 
availability of such powerful and innovative CB techniques 
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may constitute the basis of the next significant wave of 
interest in industry. Dassault Systems (DS), the world leader 
in CAD/CAM, is a pioneer in this domain. This large 
software company has developed a proprietary component 
model which has been successfully used for years in the 
development of CATIA [28]. However, like other 
companies such as Microsoft or Sun, DS faces difficulties in 
teaching his component model. Understanding large CB 
software is not an easy task. The existence of these issues 
should not be surprising since the CB approach is still in its 
infancy and is usually not formalized. 

This paper results from the collaboration between an 
Academic institution, the LSR laboratory, and one of the 
largest software company in Europe Dassault Systems (DS), 
in an attempt to deal with problems related to the evolution 
of large component-based software products. In particular, 
this paper shows how a reverse engineering approach can 
substantially improve the understanding of a CB software 
product, taking CATIA as a case study. The rest of this 
paper is organized as follows. Section 2 briefly presents the 
main features of the DS component model in an informal 
way. Section 3 describes how a meta model can be used to 
formalize the concept of component. 

Section 4 shows how this Meta model can be converted 
into useful reverse engineer tools. Sections 5  The GSEE 
Customizable Tools. Section 6 concludes the paper.  

II. THE DS COMPONENT MODEL 

In the mid 90s, when DS initiated the development of 
CATIA V5 [28], it was rapidly discovered that 00 
technology has serious limitations and in particular that C++ 
did not satisfy all of the requirements. The two most 
important aspects were the following: Concurrent 
engineering. C++ entities are too closely related: even a 
minor change may produce a dramatic number of 
recompilations. For large products and high concurrent 
engineering constraints, this is a major issue. Extension 
capabilities. The CATIA major customers and development 
partners have a need to be able to extend DS components 
with their own code, even without the availability of the 
source code [8]. To solve these (and other) issues, DS 
developed, on top of C++, a component model borrowing 
ideas from COM, Corba and Java. Here follows a very short 
and informal description of the "Object Modeler" (OM). 
Despite its name the OM is best viewed as a component 
model. This section first presents the main OM concepts, 
and then provides some information about its realization.  

A. Conceptual Level: 
Object Modeler components are pieces of code that can 

be manipulated through the use of interfaces. Interfaces can 
be seen as abstract proxies for real objects that receive client 
requests and forward them to the component implementing 
the interface. The interface concept helps in addressing the 
concurrent engineering issue, since it isolates interface 
clients from modification of the component implementation. 

To be more precise, a component is made of set of 
elementary pieces of code, called implementations (an 
implementation is realized by a C++ class). One of these 
implementations is called the base (of the component). 
Other implementations, called extensions, can be attached 
later to the base in order to extend the component. A 
fundamental feature is that extensions refer to the base, but 

the base ignores that it is being extended. This allows a new 
extension to be added at a later time, without any need to  
recompile the base nor any of the other extensions.  

The Object Modeler also provides several other 
mechanisms not described in this paper. For instance it 
supports the concept of delegation or conditional 
implementation. 

B. Realization Level: 
All concepts provided by the Object Modeler, are 

implemented in terms of C++ entities. For instance, 
interfaces and implementations are both represented by C++ 
classes. In fact, the realization level is much more complex 
since the mapping is not one to one: the realization of a 
single Object Modeler entity can produce many C++ 
entities. Moreover, for a given conceptual entity there are 
many realization choices: to improve performance and 
address other non-functional requirements, DS has designed 
and tested a wide range of realization techniques. All these 
techniques allow to build efficient components, but at the 
same time developing and maintaining these components is 
quite a complex task. To keep the control on the resulting 
software, Object Modeler concepts are translated into C++ 
code using patterns and naming conventions. This approach 
is very similar to those taken by other component models 
(e.g. [22]). In the case of Object Modeler, additional 
information is also inserted into the source code through the 
use of macros. This alleviates the burden of writing 
repetitive pieces of code. Some pieces of code are also 
automatically generated. Extra information is also provided 
in separate text files called dictionaries, containing tuples 
“component - interface - dll”. These files permit, at run time, 
to locate and load only the necessary DLLs required during 
an execution and therefore to increase performances. 

C. Related Issues: 
The Object Modeler has been successfully used to build 

very large software products (hundreds of applications made 
of thousands of components, developed by hundreds of 
software engineers). Several issues have been raised: Need 
for a conceptual view. Software engineers describe 
components using low-level mechanisms at the realization 
level (naming conventions, macro, etc.). Object Modeler 
conceptual entities are mixed with huge amount of C++ 
code. Need for a centralized description, Information about 
a single Object Modeler entity is often spread among many 
different files, including source code and dictionaries. Need 
of formalization. The Object Modeler component model is 
informally defined by means of a huge documentation. 
While very valuable, this documentation is often imprecise 
and many realization constraints are poorly documented. 
Moreover, since the realization techniques tend to evolve 
over time to ensure continuous improvement, the most 
accurate information is available from experienced software 
engineers. 

Need of specialized tools. Software engineers develop 
and maintain components using traditional C++ tools. While 
sufficient to complete most of the tasks, those tools are 
inadequate for instance to understand the behavior of the 
software at the conceptual level. DS also developed different 
tools to cope with specific problems but they are limited in 
scope. Indeed, the Object Modeler model, just like other 
component models (COM, CCM, etc.), is difficult to teach 
and to understand. Experienced software engineers learn 
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how to build components, but they often find it difficult to 
know what went wrong when the software they have 
developed does not show the expected behavior. What is 
missing is a clear picture of the overall component structure 
at a conceptual level. The realization level is available, but it 
contains too many technical details. Reverse engineering 
provides thus a logical approach to these problems, since its 
goal is to “create representations of the system in another 
form or at a higher level of Abstraction” [6]. However, 
while most reverse  engineering techniques deal with 
traditional and well-defined concepts, the problem here is to 
deal with the reverse engineering of component-based 
software systems, which is a rather new issue in the RE3 
domain. Before trying to develop a reverse engineering tool, 
the first step is to give a rigorous definition of what a 
component is. This is what is done in the next section. 

III. BUILDING A META MODEL 

Defining the Meta model for the Object Modeler was the 
first step of our approach’. The key idea is to describe each 
concept of the Object Modeler model as an object-oriented 
item described using the UML notation [21]. The production 
of the Meta model has been a long process since the model 
is quite complex and is still slightly evolving. Describing the 
full Meta model is out of the scope of the paper; we rather 
emphasize the method and the main properties of this Meta 
model. One of the main interests of using a Meta model is 
that it makes it possible to define different views on it. This 
paper concentrates on a small but central part of the Meta 
model: how the components are built from bases and 
extensions. Here the Object Modeler is described only at the 
conceptual level, without giving any detail on the realization 
level. Furthermore, a few simplifications have been made to 
keep things simple. 

A. Describing Components As Black Boxes: 
While the OM model is quite sophisticated, from an 

external point of view, the OM is only based on two main 
concepts: components and interfaces. Clients of a 
component don’t have to know how this component is built. 
This idea is described in the UML class diagram presented 
in Figure 2 on the middle of the next page. Components and 
interfaces are linked together by a single association: a 
component can implement many interfaces (this is indicated 
through the * symbol near to the name of the role all 
Interfaces). Conversely, an interface may be implemented 
by any number of components.  

B. Describing Component Items Separately: 
As it was said before, actually components are made of 

elementary pieces of software produced separately by 
software engineers. The concrete representation of these 
items in terms of C++ entities or other low level 
mechanisms like macros is not relevant from a conceptual 
point of view. So, instead of giving the many technical 
details required to describe those items, Figure 3 introduces 
four abstract languages. The first three represent abstraction 
of information contained in the source code, while the last 
one is the abstraction of “dictionaries”.   

Each abstract language summarizes all the information 
required by the OM at the conceptual level. Note that, 
within the UML diagrams, arrows indicate unidirectional 
associations. For instance, an interface refers to its super 

interface but not to its sub-interfaces. Similarly, an 
extension refers to the bases it extends, but not the other 
way around. Cardinality information also brings useful 
precision. For instance, from the Figure 3 we can learn that 
both interfaces and bases support single inheritance (roles 
named super). 

Thanks to the Object Constraint Language (OCL) [25] 
provided with UML, it is also possible to: (1) define derived 
information, (2) describe additional constraints. As we will 
see in the Section 4, this is very important in practice. 
Consider for instance, the following OCL expression.  

 
Figure: 2 

Line 1 and 2 defines for each interface the all super role 
(not depicted in the figure), as being the set of all super 
interfaces for a given interface. This recursive definition 
provides an example of derived information. Line 3 uses this 
derived information to describe an additional constraint: the 
inheritance hierarchy between interfaces contains no cycle. 

C. Linking Component Items Together: 
Even if software engineers describe component items 

separately (that is required for concurrent engineering), one 
of the important aspects of the OM is how components are 
built from these items. Figure 4 shows a class diagram 
gathering the 4 languages described previously (these 
associations are drawn in black in the figure) and add 
derived information (in grey and prefixed by a ”/” symbol). 
Putting together component items must be done with an 
extreme care, not all combinations will work. Describing 
assembly constraint is therefore of fundamental importance. 
Indeed, this process leads to a great number of constraints 
that each assembly must satisfy to be considered as 
consistent. In the context of this paper, only two of these 
constraints will be described in Section 3.4 to illustrate the 
approach, but we first need to introduce the necessary 
derived information upon which the constraint are based.  

This is what is done in Figure 5. The OCL expressions 
explain how components are made from implementations 
and define inheritance on components. Line 2 indicates that 
component inheritance (super) is in fact directly derived 
from base inheritance (base. Super). Lines 3 indicate that the 
extensions of a component (extensions) are all extensions 
attached to its base. Line 4 defines the direct implementation 
of a component (implementations). Line 5 recursively 
defines the set of all implementations (all implementations) 
of a component considering component inheritance. Line 6 
defines the direct interfaces of a component. Finally line 7 
defines the set of all interfaces (all interfaces) that can be 
reached from the component following either the interface 
inheritance relationship or the component inheritance 
relationship.  

 
 
 

D. Discovering Potential Inconsistencies: 
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Gathering the four abstract languages (Figure 3) into a 
single diagram (Figure 4) helps to discover possible 
inconsistencies between the information they describe. 

Indeed, the global view provided by a Meta model is one of 
the main benefits of the approach. 

 

 
Figure 3. specification of component separately by means of four abstract languages 

 
For instance, in our context, one should wonder what is 

the relationship between the derived  roles declared 
interfaces and the explicit role all interfaces. After asking 
for more precision from OM designers, we learned that 
software engineers must explicitly declare all interfaces in 
the component language (i.e. in the dictionaries). So the next 
invariant is expected to hold. 

 

 
Figure 4 . Component as Black Boxes 

In practice ensuring this kind of constraint proved to be 
difficult, since the whole graph of entities is developed 
concurrently by hundreds of software engineers working in 
different sites, without a conceptual or global view. So, the 
meta model has to deal with inconsistencies. rather than 
ensure strict consistency. Therefore we comment out this 
constraint, so this is not an invariant of the meta model. This 
approach permits to represent "invalid" data. Next section 
will show how to locate these constraint violations in 
practice. While the constraint above can be discovered 
through the examination of the structure of the meta-model 
many other constraints require a better knowledge of the 
component model. For instance, one important requirement 
in the OM, is that the behavior associated by a component to 
an interface must be Unique; this means that, within a given 
component, an interface must always be associated to a 
single implementation.  

 
Figure: 5 

This expression translates the fact that two 
implementations of a component must not implement the 
same interface. The next section will give some examples 
showing how to locate and identify entities 
Leading to such a constraint violation called multi-adhesion 

IV. BUILDING REVERSE ENGINEERING 
TOOLS 

Building a meta model not only improves the 
understanding of the component model. It also provides a 
very good basis to build a reverse engineering platform on 
which a large set of tools can be built, ranging from simple 
visualization tools, to complex analysis or restructuring 
tools. This includes for instance, tools that detect constraint 
violation. Developing all these tools from scratch is 
certainly not cost effective. Fortunately, a common platform 
can be derived from the meta model.  

A. A Reverse Engineering Platform: 
Figure 6 shows a simplified view of the overall 

architecture of the reverse engineering platform we have 
built. This traditional architecture for a reverse engineering 
environment [1,6] is made of the following parts. Extractors. 
The first step is to extract information from concrete 
software artifacts. In our case, source code and dictionaries 
are parsed and analyzed. Repository. The repository plays a 
central role in the environment. One important feature of our 
approach is that the structure of this repository is directly 
derived from the meta model. Tools. The tools generate 
different views on the repository. While some tools generate 
specific views, generic tools take as input a specification of 
the view to be generated. As we will see, the meta model 
can be directly used to express the  information to be 
displayed.  
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Figure 6. The reverse engineering platform 

As an illustration, the’ next section shows how the Meta 
model was used to build views displaying components using 
different visualization techniques. It then shows how 
inconsistencies can be found and located through the use of 
specific views. The realization level is far more complex. In 
this particular case, there were 49821 C++ classes involved 
in the concrete representation of these components. 

B. Example Of Visualization Tools: 
Displaying components was the first application of our 

reverse engineering platform. This was a very interesting 
experiment because components are built in a blind way 
(through the use of macros and other low level mechanisms 
spread out over many files), software engineers had never 
actually "seen" these components While the interfaces and 
implementations described above deal with the sources of 
data, visualization constitutes another important part of the 
GSEE framework. Indeed the interfaces required by 
visualization components are also expressed in terms of 
abstract structures based on the set theory: sequence, graph, 
tree, etc. In other words all data displayed by visualization is 
expressed in terms of type constructors that can in turn be 
expressed in terms of set and functions. This uniform 
treatment of components greatly helps the connection 
between source components and visualization components.  

From a concrete point of view, GSEE includes a large set 
of visualization components. GSEE is based on the Java 
Bean component model [29] and makes an extensive use of 
the Swing framework provided with the java environment. 
In particular this framework provided valuable components 
to visualize a rich set of structures including sequences, 
tables, trees, hyper texts, etc. To complete the spectrum of 
visualization techniques, GSEE also integrates wrappers to 
various other visualization components, such as Grappa, the 
java version of the dot graph visualization tool [11]. We also 
have developed from scratch different visualization 
components such as tree maps and line sequences inspired 
from [6]. All visualization techniques currently available in 
GSEE have been selected for their ability to display very 
large sets of data. Tough a wide range of components are 
included with GSEE, it is still possible to add to the 
environment new visualization components dynamically, 
just like source components. This makes it possible to 
include specific components. 

An interesting aspect of GSEE is that each visualization 
component described above has been encapsulated to 
support a uniform interface. All views are described in the 
same format: (1) a model specifies the software artifacts to 
visualize, and (2) a renderer indicates how these artifacts are 

mapped to graphical entities. This approach followed by 
most modern visualization frameworks, is further improved 
in GSEE: both the model and the renderer can be expressed 
in terms of one or more successors, making it very easy to 
produce a new view. 

To further simplify the production of renderers, the GSEE 
framework also provides a set of interfaces and 
Implementations dedicated to visualization. For instance the 
interface Colorizer is intended to map objects to colors. The 
EnumColorizer implementation maps a specified set of values 
to a specified set of colors (this is an example of function 
represented in extension since it is a set of pair (value, 
color)). Similarly RangeColorizer maps a range of values to a 
gradation of color, etc. Other implementations make it 
possible to combine these features. Some implementations 
are provided to edit the renderer properties interactively 
through the use of panels, color choosers, etc. and to save 
these renderers for further use. Since the renderers of each 
specific component are defined consistently it is easy to 
switch from a visualization technique to another. For 
instance, a hierarchical structure can be visualized using a 
Swing JTree, a graph displayed by a tree map, by just 
changing a parameter while keeping the same model. 

V. THE GSEE CUSTOMIZABLE TOOLS 

Usually one of the best ways to evaluate a software 
exploration tool is to see it at work. In the case of GSEE, it is 
important to keep in mind that the power of this 
environment is not directly visible since it resides first of all 
in the GSEE framework. However, in this section two 
demonstration tools included in the GSEE environment are 
briefly presented as an illustration of the approach: the GSEE 
Interpreter and the GSEE Viewer. Though simple, these tools 
proved to be usable on a very large scale, in the context of 
Dassault Système [10,26], on a software made of more than 
40 000 C++ classes. In the context of this paper, let us 
suppose that the goal is to explore the java standard library 
(more than 8000 java classes are delivered with the 
JDK1.3). The same tools can be used without any 
modification: instead of loading DS’repository at the 
beginning of the session a connection will be made to source 
components extracting information from java programs. 

A. Example 1: The GSEE Interpreter: 
The first demonstration tool is called the GSEE 

Interpreter (see Figure 1). Thanks to the  ramework, this tool 
is made of only 60 lines of java code! 
a. Features. This tool aims to give access to the GSEE 

language through a very rudimentary interface  (see 
Figure 1). Simply put, the GSEE language is a 
functional language giving access to the compositional 
operators supplied by the framework. 

Each step of interaction with the GSEE Interpreter 
consists in entering a new command. The command is 
immediately interpreted and the result displayed both in a 
textual and graphical form. In the Figure 1, the history of the 
session is displayed in textual form on the top. The result of 
the last command is displayed graphically on the bottom. 
There are basically three kinds of commands: (1) 
expressions (or queries), (2) definitions of new symbols (let 
x = …), (3) and directives controlling the behavior of the 
interpreter (e.g. loading a new source component). Like with 
any other interpreted language, these commands can be 
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saved to form a program for later use. In particular it is 
possible to create a specific tool from that program and 
make this tool available at large for novice explorers.  
b. Example of A Scenario: To illustrate the use of the 

GSEE Interpreter, let us assume that we want to study 
the relationship between the composition of packages 
and the inheritance relationship: for instance we want 
to know, for a given package P, which packages 
contain the super classes of the classes in P. In other 
words, we want to know if the inheritance relationship 
crosses package boundaries. We unlikely want to build 
from scratch a specific tool for that! Selecting adequate 
source components. So let us study the problem and 
see what we have at hand. Since building a java parser 
will be far too expensive let see which source 
components are available and how to extract the 
necessary information. Thanks to the java introspection 
library provided with the java environment, it is 
possible, for a given class to get its super class through 
the method getSuperclass. Unfortunately, this library 
does not provide enough support to deal with 
packages. For instance it is not possible for a given 
package to get the list of the classes it contains. Before 
starting to write a tedious piece of code, it is a good 
idea to check if there is on Internet some piece of code 
already providing this functionality. After a search 
among the many tools freely available (e.g. [1,3,15]), 

Java Assistant is found [4]. The main page describes 
shortly the functionality of the tool. In this page the 
following sentence is found “adavid.reflect.PackageFinder:  
finds all the packages on your system”. To get further 
information the tool is downloaded. Loading selected source 
components under GSEE. The JavaAssistant is a specific tool 
with a specific set of features. However, from the GSEE 
point of view JavaAssistant could be considered as a source 
component since it provides some way to extract 
information from java programs. So let’s start a session with 
the GSEE Interpreter, and load this java component (see step 
(1) in Figure 1). Exploring source components. Since we 
have just loaded a new component, we do not know much 
about it. Fortunately, we can use GSEE to explore the 
software model implemented by this component: after all 
this is just another piece of software. Actually GSEE 
supports the exploration of software models, that is, the 
exploration of meta information on software. This topic is 
an important feature of GSEE but is out the scope of this 
paper. This step has not been shown in the figure so the 
whole scenario can fit into the history window. What is 
important here, is that we learn that the method 
getPackageResources gives access to packages. 

Building new functions and getting the result. Before all, 
a short name is given for that method (2). The function is 
then tested on a package, for example java.lang.reflect (3). It 
seems to work, so we now define a successor use as being 
the function we need (4). The successor expression 
package;getClasses;getSuperclass ;getPackage;getName means 
that we want “the names of the packages that contain the 
super classes of the classes contained in a given package”. 
The main benefit of an interpreted language is that we can 
try it immediately (5). From the output, we learn that the 
java.lang.reflect package “uses” three packages, namely 
java.lang, java.security, and java.lang.reflect. To get a global 
view, a function returning a graph is defined (6) and tested 

(7). That's all we want. We have got the graph on the bottom 
of the window. As we can see, the core packages of java are 
strongly connected! 
 

 
Figure: 7 A session with the GSEE Interpreter 

Creating a new specific tool, we have just defined 
interactively a new function taking as parameter one or more 
package names and displaying the graph of inheritance over 
these packages. This function is  useful so we may want to 
save the program we have just built and made it available to 
the whole team. Since other software engineers do not know 
much about the GSEE language, we supply them a specific 
tool with a simplified interface: a text field to enter the name 
of package and a panel to display the graph. This tool can be 
standalone or integrated as a plug-in in a programming 
environment. Currently GSEE is able to create plug-ins for 
the Kawa programming environment [16]. The function can 
be called directly from Kawa menus. The integration is 
therefore entirely transparent to the novice explorer. He can 
use its favorite programming environment without even 
knowing that this is actually a GSEE plug-in. 

B. Discussion And Related Work: 
Our approach is based on two major steps: (1) building a meta 

model describing the component model, and (2) building a reverse 
engineering platform to explore and analyze software built using 
this model.  
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a. About The Meta Model: 
It is important to stress that this paper concentrates only 

on a small but central part of the OM meta model. The 
complete meta model is much more complex; it also 
describes the realization level (C++ classes, C++ 
inheritance, DLLs, etc.), larger grained entities like 
frameworks, products, etc. Describing precisely the 
constraints at these various levels proved to be difficult, 
mainly because the model evolved over time with the 
underlying technology and realization techniques. We also 
found that working only at the meta model level is 
insufficient, because it gives no information about actual 
instances. The first reverse engineering and exploration 
tools we have implemented provided us invaluable insights 
on the usage of the component model. For instance, we 
learned that some apparently important mechanisms are in 
fact almost not used at all. The reverse engineering tools 
also provided a great help in validating the meta model, 
through discussions with DS software architects and 
designers.    

b. About Reverse Engineering Tools: 
The platform is implemented in java, C++ parsers are 

developed by DS, and the repository is based on Object 
Store [30], a commercial Object Oriented Data Base. 
Various tools have been built around the platform. The 
OMVT tool, also implemented in java, represents a 
significant development effort, but it is clearly worth since it 
has been designed specifically to fit the needs of DS 
software engineers [23]. We also experimented with 
available RE3 generic tools, in particular with Rigi [19]. Our 
goal was to evaluate the current state of generic exploration 
tools and their capability to explore large component-based 
software products [20]. This experience show us (1) that it is 
easy to integrate new tool into our environment, (2) that 
getting first results with Rigi can take only few hours.  

However, this tool also shows a number of limitations in 
our context [20]. We thus decided to develop GSEE, the 
Generic Software Exploration Environment [ 121. This 
environment has been used not only in the context of DS, 
but also to explore other software artifacts. Indeed, GSEE 
can be seen as a generalization of the approach presented in 
this paper. Roughly speaking, this environment is 
parameterized by the meta model and enables software 
engineers to build “any” view on virtually arbitrary set of 
data, by just specifying the view in terms of the meta model 
[12]. Scalability and performance were considered as 
important issues during the design and the implementation 
of all the tools we have built. It is interesting to notice that 
the use of java do not raises performance issues. Actually, 
extraction from source code is the bottleneck of the reverse 
engineering process: it takes several hours to parse the 
whole software developed at DS (4 millions LOC in C++). 
This step is done once a week, and is integrated in the whole 
development process of the company. 

C. Related Work: 
Describing industrial component models in a rigorous 

way is gaining an increasing attention in the academic 
community. For instance, the COM component model has 
been described using the Z notation [24]. We preferred to 
use UML [22] and OCL [25] since these languages are 
increasingly popular in industry. A similar approach has 
been taken recently in the definition of the Corba 

Component Model (CCM) [31]. In this case, the meta model 
is mostly seen as a documentation vehicle. Actually, the use 
of meta models has been widely recognized in software 
engineering, but most work aims at defining new models, or 
describing existing and stable models with well known 
properties (i.e. a programming language). This contrasts 
with our problem, since the OM component model is 
evolving and a very large amount of instances are already 
available. This last property naturally leads to RE3 
techniques. In particular meta models have been used at the 
intersection of 00 and RE3 (e.g. Famous [7] is based on 
Famed, Spool [21] is based on UML). However, these 
projects model 00 concepts, not components. In this paper 
we have gone one step further: we consider that 00 
programming languages correspond to the realization level, 
and components to the conceptual level. Finally, note that 
the Meta models we have built do not enforce strict 
consistency, but instead deal with inconsistencies. 

In parallel with component-based approach, a very large 
body of work have been done in the academic community to 
define Architecture Description Languages (ADLs) [14]. 
These languages introduce the concepts of connector and 
configuration in addition to the concept of component. 
Unfortunately the ADL approach have failed  so far to find 
its way to industry [ 17] in part because no support is 
provided to deal with existing software products. The lack 
of large industrial software products based on these concepts 
explain why most of research done in architecture recovery 
are usually based on traditional concepts like modules and 
dependency relationships (e.g. [15,16,19,27]). 

VI. CONCLUSION AND FUTURE WORK 

This paper represents a study of the intersection between 
reverse engineering and component-based software 
engineering. We believe that this topic will be of increasing 
importance as component technology will spread in 
industry. DS is pioneering in this domain. Tough this paper 
presents the platform as a reverse engineering platform, one 
of our goal is indeed to build a complete architectural 
environment to support the evolution of large software 
products [17,23]. This environment will also include 
forward engineering capabilities, and other RE3 techniques 
like impact analysis, restructuration, etc. All existing 
techniques need to be revisited to be applicable at the 
architectural level. We found that the use of the meta model 
is a very good basis to develop this kind of tool. Based on 
the understanding we have gained in this work, we are 
defining a new component model, along with the associated 
formalisms and tools. One way to validate this component 
model is to use it to develop our own platform and tools. 

Our current research seeks to show, on the one hand, 
how to apply component-based technology to build RE3 
environment like GSEE [12], and on the other hand, how 
RE3 can be applied to component-based technology. 
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