
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 319

ISSN No. 0976-5697

Unremitting Monitoring of Spatial Queries in Wireless Network Environments
D. Raghu

Professor in Computer Science Department
Nova College of Engineering & Technology

Jangareddigudem, West Godavari District, A.P., India
raghuau@gmail.com

MD. Sajid Pasha*
Dept. of Computer Science

Nova College of Engineering & Technology,
Jangareddigudem, , West Godavari District, A.P., India,

sajnajsam@gmail.com

Ch. Raja Jacob
Associate Professor, Dept. of Computer Science,

Nova College of Engineering & Technology,
Jangareddigudem, West Godavari District, A.P., India

rchidipi@gmail.com

Abstract: Wireless data broadcast is a promising technique for information dissemination that leverages the computational capabilities of the
mobile devices in order to enhance the scalability of the system. Under this environment, the data are continuously broadcast by the server,
interleaved with some indexing information for query processing. Clients may then tune in the broadcast channel and process their queries
locally without contacting the server. Previous work on spatial query processing for wireless broadcast systems has only considered snapshot
queries over static data. In this paper, we propose an air indexing framework that

1) Outperforms the existing (i.e., snapshot) techniques in terms of energy consumption while achieving low access latency and
2) Constitutes the first method supporting efficient processing of continuous spatial queries over moving objects.

Key words: Spatial database, query processing, location based service, wireless data broadcast, air index

I. INTRODUCTION

Mobile devices with computational, storage, and
wireless communication capabilities (such as PDAs) are
becoming increasingly popular. At the same time, the
technology behind positioning systems is constantly
evolving, enabling the integration of low-cost GPS devices
in any portable unit. Consequently, new mobile computing
applications are expected to emerge, allowing users to issue
location-dependent queries in a ubiquitous manner.
Consider, for instance, a user (mobile client) in an
unfamiliar city, who would like to know the 10 closest
restaurants. This is an instance of a k nearest neighbor
(kNN) query, where the query point is the current location
of the client and the set of data objects contains the city
restaurants. Alternatively, the user may ask for all
restaurants located within a certain distance, i.e., within 200
meters. This is an instance of a range query. Spatial queries
have been studied extensively in the past and numerous
algorithms exist for processing snapshot queries on static
data indexed by a spatial access method. Subsequent
methods [22], [24], [30] focused on moving queries (clients)
and/or objects. The main idea is to return some additional
information eg. [10],[11],[21] more NNs, expiry time,
validity region that determines the lifespan of the result.

Thus, a moving client needs to issue another query only
after the current result expires. These methods focus on
single query processing, make certain assumptions about
object movement (e.g., static in [22], [30], linear in [24]),
and do not include mechanisms for maintenance of the
query results (i.e., when the result expires, a new query must
be issued).

Recent research considers continuous monitoring of
multiple queries over arbitrarily moving objects. In this
setting, there is a central server that monitors the locations

of both objects and queries. The task of the server is to
report and continuously update the query results as the
clients and the objects move.

In the aforementioned methods, the processing load at
the server side increases with the number of queries. In
applications involving numerous clients, the server may be
overwhelmed by their queries or take prohibitively long
time to answer them. To avoid this problem, Imielinski et al.
[14] propose wireless data broadcast, a promising technique
that leverages the computational capabilities of the clients’
mobile devices and pushes the query processing task
entirely to the client side. In this environment, the server
only monitors the locations of the data objects, but is
unaware of the clients and their queries. The data objects are
continuously broadcast by the server, interleaved with some
indexing information. The clients utilize the broadcast
index, called air index, to tune in the channel only during the
transmission of the relevant data and process their queries
locally. Thus, the server load is independent of the number
of clients. Previous work on location-dependent spatial
query processing for wireless broadcast systems has only
considered snapshot queries over static data.

II. RELATED WORK

The transmission schedule in a wireless broadcast
system consists of a series of broadcast cycles. Within each
cycle the data are organized into a number of index and data
buckets. A bucket (which has a constant size) corresponds to
the smallest logical unit of information, similar to the page
concept in conventional storage systems. A single bucket
may be carried into multiple network packets (i.e., the basic
unit of information that is transmitted over the air).
However, they are typically assumed to be of the same size
(i.e., one bucket equals one packet). The most common data
organization method is the (1,m) interleaving scheme [14],

MD. Sajid Pasha et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,319-322

© 2010, IJARCS All Rights Reserved 320

as shown in the below figure. The data objects are divided
into m distinct segments and each data segment in the
transmission schedule is preceded by a complete version of
the index. In this way, the access latency for a client is
minimized, since it may access the index.

Figure 1

A. The (1, m) interleaving scheme:
The main motivation behind air indexes is to minimize

the power consumption at the mobile client. Although in a
broadcast environment, the uplink transmissions are
avoided, receiving all the downlink packets from the server
is not energy efficient. For instance, the Cabletron 802.11
network card (wireless LAN) was found to consume 1,400
mW in the transmit, 1,000 mW in the receive, and 130 mW
in the sleep mode [5]. Therefore, it is imperative that the
client switches to the sleep mode (i.e., turns off the receiver)
whenever the transmitted packets do not contain any useful
information. Based on the data organization technique in
Fig. 2, the query processing at the mobile client is
performed as follows: 1) the client tunes in the broadcast
channel when the query is issued and goes to sleep until the
next index segment arrives, 2) the client traverses the index
and determines when the data objects satisfying its query
will be broadcast, and 3) the client goes to sleep and returns
to the receive mode only to retrieve the corresponding data
objects.

Most relevant to our work are the techniques related to
kNN search on the air. Zheng et al. [31] propose an
approximate kNN query processing algorithm that is not
guaranteed to always return k objects. The idea is to use an
estimate r of the radius that is expected to contain at least k
points. Using this estimate, the search space can be pruned
efficiently at the beginning of the search process.

III. SNAPSHOT KNN QUERIES

In snapshot kNN queries we use the following indexes;
i. Air index structure

ii. Query processing

A. Air index structure:
BGI indexes the data objects with a regular grid, i.e., a

partitioning of the data space into square cells of equal size
with side-length _ (a system parameter). Each cell stores the
object coordinates falling inside and maintains their total
number. Consider Fig. 5a, where the data objects in the
system are p1 to p20, and is set as shown. In the example,
cell c0;0 contains the coordinates of objects p1 and p2 and δ
has cardinality 2. Given an object with coordinates x and y,
its covering cell is ci;j, where I=[x/δ] and j=[y/δ]. Similarly,
given a cell ci;j, its corresponding region is [i. δ, i. δ+δ] x [j.
δ,j.+ δ]. The grid information is placed into packets to form
the index segment of BGI. Note that the index segment
contains only1 the object coordinates to keep its size small.
Following the ð1;mÞ scheme, the full object information is

broken into m data segments, each preceded by a copy of
the index segment. The value of m is determined using the
analysis of [14].

B. Query Processing:
The kNN computation runs completely at the client side.

Let q be the client location. Given a cell c; maxdist(c) is the
maximum possible distance between any point in c and q. If
the cardinality of c is c.card, then at least c.card objects lie
within distance maxdist(c) from q. Similarly, mindist(c) is
the minimum possible distance between any point in c and q
. If there are at least k objects within distance dmax from q,
then a cell c (or bucket) does not have to be considered if
mindist(c) dmax, since it cannot contain any better neighbor.
Based on the above observations, the NN computation
algorithm consists of two steps. During the first step, the
client receives (some) upper level buckets. According to the
cardinalities and the maxdist of the contained cells, it
computes a conservative upper bound dmax of the radius
around q that contains at least k objects. During the second
step, the client listens to the contents of cells c (in the lower
level) that have mindist(c) < dmax; cells (and buckets) with
mindist above dmax are skipped. After the second step, the
client already knows the coordinates and the packets
containing the full information of its kNNs. An important
remark is that during each step, the bound dmax keeps
decreasing, excluding more unnecessary packets from
consideration.

IV. ALOGRITHMS USED

Consider, for instance, a user (mobile client) in an
unfamiliar city, who would like to know the 10 closest
restaurants. This is an instance of a k nearest neighbor
(kNN) query, where the query point is the current location
of the client and the set of data objects contains the city
restaurants. Alternatively, the user may ask for all
restaurants located within a certain distance, i.e., within 200
meters. This is an instance of a range query.

Most relevant to our work are the techniques related to
kNN search on the air. Zheng propose an approximate kNN
query-processing algorithm that is not guaranteed to always
return k objects. The idea is to use an estimate r of the radius
that is expected to contain at least k points. Using this
estimate, the search space can be pruned efficiently at the
beginning of the search process.

The authors also introduce a learning algorithm that
adaptively reconfigures the estimation algorithm to reflect
the distribution of the data. Regarding the query processing
phase, two different approaches are proposed:
A. The standard R- tree index enhanced with the

aforementioned pruning criterion and
A new-sorted list index that maintains a sorted list of the

objects on each spatial dimension.
The sorted list method is shown to be superior to the R-

tree only for small values of k. Gedik describe several
algorithms to improve kNN query processing in sequential-
access R-trees. They investigate the effect of different
broadcast organizations on the tuning time and also propose
the use of histograms to enhance the pruning capabilities of
the search algorithms. Park focus on reducing the access
latency of kNN search by accessing the data segment of the
broadcast cycle. In particular, they propose a method where
the data objects are sorted according to one spatial
coordinate. In this way, the client does not need to wait for

MD. Sajid Pasha et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,319-322

© 2010, IJARCS All Rights Reserved 321

the next index segment to arrive, but can start query
processing immediately by retrieving the actual data objects.

B. Knn alogrithm on static data:

a. kNN computation:
// Client at q goes online, and listens to the first index
segment

// Step 1: The upper level is broadcast
i. best_NN = ∅; dmax = ∞

ii. for each bucket B
iii. if minidist (B) < dmax // Prune upper level buckets
iv. for each cell c in B
v. for iter = 1 to c.card

vi. if maxidst (c) < dmax
vii. Delete the kth entry of best_NN
viii. Insert <c, maxdist(c) > to best_NN; Update dmax

// Step 2: The lower level is broadcast
ix. for each cell c with mindist(c) < dmax
x. Delete all entries of c from best_NN

xi. for each object p in c
xii. if dist(p) ≤ dmax

xiii. Delete the kth entry of best_NN
xiv. Insert < p, dist(p) > into best_NN; Update dmax
xv. return best_NN

C. Knn algorithm on moving data:
// Client at q has completed the kNN computation
// and maintains a list L of dirty grid cell cardinalities

i. Listen to the contents of the next dirty grid
ii. for each dirty grid cell c with its bit set

iii. Delete c from L
iv. if no dirty cell overlaps with circ(q) and q1 = q
v. return // result set has not changed

vi. else
vii. best_NN = ∅ ; dmax = ∞

viii. for each object p in the current result
ix. if p’s cell is not dirty
x. insert <p, dist(p,q1) > to best_NN

xi. for each cell c in L
xii. for iter = 1 to c.card

xiii. if maxdist(c) < dmax
xiv. Delete the kth entry of best_NN
xv. Insert <c, maxdist(c) > to best_NN; Update dmax

xvi. Invoke the kNN computation algorithm
xvii. using the current value of dmax

xviii. return

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the
proposed methods under various system parameters. We use
a real 4 spatial data set (REAL) containing the locations of
5,848 cities and villages in Greece (available at
www.rtreeportal. org). Additionally, in order to investigate
scalability, we generated five skewed data sets (SKEW),
where the object locations follow a Zipf distribution with
parameter 0.8.

Table I

Parameter Range
SKEW DB size 10K, 50K 100K, 150K, 200K
Packet size (bytes) 64, 128, 256, 512, 1024
Range query area (km2) 12.5, 25, 50, 100, 200, 400
Number of NNs (k) 1, 2, 4, 8, 16, 32

Object / query speed (km/h) 5, 25, 125
Object / query agility (%) 0, 10, 20, 30, 40, 50, 60, 70, 80,

90,100

All data sets are scaled to fit in a [0, 10,000]2

workspace. Assuming that the data objects are distributed on
a 50 km _ 50 km area, the average density of the objects
varies between 2.3 and 80 objects/km2. For static data, each
object corresponds to a point in the data set. For generating
moving data, we randomly select the initial position and the
destination of each object from the spatial data set. The
object then follows a linear trajectory (with constant
velocity) between the two points. Upon reaching the
endpoint, a new random destination is selected and the same
process is repeated. Distance is defined according to the
euclidean metric. To further control the object movement,
only a certain fraction (which we call agility) of the objects
moves during each time stamp. The same pattern is also
adopted for the moving queries.

VI. CONCLUSION

In this paper, we study spatial query processing in
wireless broadcast environments. A central server transmits
the data along with some indexing information. The clients
process their queries locally, by accessing the broadcast
channel. In this setting, our target is to reduce the power
consumption and access latency at the client side. We
propose an on-air indexing method that uses a regular grid
to store and transmit the data objects. We design algorithms
for snapshot and continuous queries, over static or dynamic
data. To the best of our knowledge, this is the first study on
air indexing that 1) addresses continuous queries and 2)
considers moving data objects. We demonstrate the
efficiency of our algorithm through an extensive
experimental comparison with the current state-of-the-art
frameworks for snapshot queries and with the naïve constant
recomputation technique for continuous queries. A
challenging problem is to devise cost models for continuous
monitoring of spatial queries in wireless broadcast
environments. Such models could reveal the best technique
given the problem settings, help fine-tune several system
parameters (e.g., grid size), and potentially lead to better
algorithms. Another interesting direction for future work is
to study different types of spatial queries, such as reverse
nearest neighbors, and to extend our framework to process
their snapshot and continuous versions.

VII. REFERENCES

[1] S. Acharya, R. Alonso, M.J. Franklin, and S.B. Zdonik,
“Broadcast Disks: Data Management for Asymmetric
Communications Environments,” Proc. ACM SIGMOD,
1995.

[2] S. Acharya, M.J. Franklin, and S.B. Zdonik, “Disseminating
Updates on Broadcast Disks,” Proc. Int’l Conf. Very Large
Data Bases (VLDB ’96), 1996.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger,
“The R_- Tree: An Efficient and Robust Access Method for
Points and Rectangles,” Proc. ACM SIGMOD, 1990.

[4] Y. Cai, K.A. Hua, and G. Cao, “Processing Range-
Monitoring Queries on Heterogeneous Mobile Objects,”
Proc. IEEE Int’l Conf. Mobile Data Management (MDM
’04), 2004.

MD. Sajid Pasha et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,319-322

© 2010, IJARCS All Rights Reserved 322

[5] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris,
“Span: An Energy-Efficient Coordination Algorithm for
Topology Maintenance in Ad Hoc Wireless Networks,”
Proc. ACM MobiCom, 2001.

[6] M.-S. Chen, P.S. Yu, and K.-L. Wu, “Indexed Sequential
Data Broadcasting in Wireless Mobile Computing,” Proc.
Int’l Conf. Distributed Computing Systems (ICDCS ’97),
1997.

[7] B. Gedik and L. Liu, “MobiEyes: Distributed Processing of
Continuously Moving Queries on Moving Objects in a
Mobile System,” Proc. Int’l Conf. Extending Database
Technology (EDBT ’04), 2004.

[8] B. Gedik, A. Singh, and L. Liu, “Energy Efficient Exact
kNN Search in Wireless Broadcast Environments,” Proc.
Ann. ACM Int’l Workshop Geographic Information
Systems (GIS ’04), 2004.

[9] S.E. Hambrusch, C.-M. Liu, W.G. Aref, and S. Prabhakar,
“Query Processing in Broadcasted Spatial Index Trees,”
Proc. Int’l Symp. Advances in Spatial and Temporal
Databases (SSTD ’01), 2001.

[10] Henrich, “A Distance Scan Algorithm for Spatial Access
Structures,” Proc. Second ACM Workshop Geographic
Information Systems (GIS ’94), 1994.

[11] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2,
pp. 265-318, 1999.

[12] Q. Hu, W.-C. Lee, and D.L. Lee, “Power Conservative
Multi- Attribute Queries on Data Broadcast,” Proc. Int’l
Conf. Data Eng.(ICDE ’00), 2000.

[13] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Power
Efficient Filtering of Data an Air,” Proc. Int’l Conf.
Extending Database Technology (EDBT ’94), 1994.

[14] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data on
Air: Organization and Access,” IEEE Trans. Knowledge
and Data Eng., vol. 9, no. 3, pp. 353-372, May 1997.

[15] D.V. Kalashnikov, S. Prabhakar, and S.E. Hambrusch,
“Main Memory Evaluation of Monitoring Queries over
Moving Objects,” Distributed and Parallel Databases, vol.
15, no. 2, pp. 117-135, 2004.

[16] Kamel and C. Faloutsos, “On Packing R-Trees,” Proc. Conf.
Information and Knowledge Management (CIKM ’93),
1993.

[17] W.-C. Lee and B. Zheng, “DSI: A Fully Distributed Spatial
Index for Location-Based Wireless Broadcast Services,”

Proc. Int’l Conf. Distributed Computing Systems (ICDCS
’05), 2005.

[18] M.F. Mokbel, X. Xiong, and W.G. Aref, “SINA: Scalable
Incremental Processing of Continuous Queries in Spatio-
Temporal Databases,” Proc. ACM SIGMOD, 2004.

[19] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias,
“Conceptual Partitioning: An Efficient Method for
Continuous Nearest Neighbor Monitoring,” Proc. ACM
SIGMOD, 2005.

[20] K. Park, M. Song, and C.-S. Hwang, “An Efficient Data
Dissemination Schemes for Location Dependent
Information Services,” Proc. Int’l Conf. Distributed
Computing and Internet Technologies (ICDCIT ’04), 2004.

[21] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest
Neighbor Queries,” Proc. ACM SIGMOD, 1995.

[22] Z. Song and N. Roussopoulos, “K-Nearest Neighbor Search
for Moving Query Point,” Proc. Int’l Symp. Spatial and
Temporal Databases (SSTD ’01), 2001.

[23] Stojmenovic, Handbook of Wireless Networks and Mobile
Computing. John Wiley & Sons, 2002.

[24] Y. Tao and D. Papadias, “Spatial Queries in Dynamic
Environments,” ACM Trans. Database Systems, vol. 28, no.
2, pp. 101-139, 2003.

[25] Y. Tao, D. Papadias, and Q. Shen, “Continuous Nearest
Neighbor Search,” Proc. Conf. Very Large Data Base
(VLDB ’02), 2002.

[26] Xiong, M.F. Mokbel, and W.G. Aref, “SEA-CNN: Scalable
Processing of Continuous K-Nearest Neighbor Queries in
Spatio- Temporal Databases,” Proc. Int’l Conf. Data Eng.
(ICDE ’05), 2005.

[27] J. Xu, W.-C. Lee, and X. Tang, “Exponential Index: A
Parameterized Distributed Indexing Scheme for Data on
Air,” Proc. MobiSys, 2004.

[28] J. Xu, B. Zheng, W.-C. Lee, and D.L. Lee, “Energy
Efficient Index for Querying Location-Dependent Data in
Mobile Broadcast Environments,” Proc. Int’l Conf. Data
Eng. (ICDE ’03), 2003.

[29] X. Yu, K.Q. Pu, and N. Koudas, “Monitoring K-Nearest
Neighbor Queries over Moving Objects,” Proc. Int’l Conf.
Data Eng. (ICDE ’05), 2005.

[30] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D.L. Lee,
“Location- Based Spatial Queries,” Proc. ACM SIGMOD,
2003.

	INTRODUCTION
	RELATED WORK
	SNAPSHOT KNN QUERIES
	ALOGRITHMS USED
	EXPERIMENTAL EVALUATION
	CONCLUSION
	REFERENCES

