
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 80

ISSN No. 0976-5697

Generalized Representation of Advice Using Sequence Trace Diagram

Shruti Dubey*
School of Computer Science and IT

DAVV, Indore, India
shruti.rose09@gmail.com

Neha Rahatekar
School of Computer Science and IT

DAVV, Indore, India
neha85944@gmail.com

Ugrasen Suman

School of Computer Science and IT
DAVV, Indore, India

ugrasen123@yahoo.com

Abstract: Aspect-oriented programming is built on the concept of separating concerns. While separation of concerns reduces textual scattering and
tangling by encapsulating concerns within a localized module, the behavior of an aspect-oriented program becomes scattered. Capturing the
sequential behavior of an aspect-oriented program is essential for the validation of the program’s run-time semantics. With AspectJ, a suitable aspect-
oriented programming language is at hand, no feasible systematic pictorial notation is available that supports the design of AspectJ programs. In this
paper, a generalized design representation for AspectJ programs is presented in the form of sequence diagram. It provides representations for
language construct called advice, of different types in AspectJ and specifies its runtime execution.

Keywords: AOP; Aspect; advice; circular relationship; sequence trace diagram.

I. INTRODUCTION

Aspect-oriented programming (AOP) is a new software
development paradigm that aims to increase
comprehensibility, adaptability, and reusability by introducing
a modular unit, called "aspect", for the specification of
crosscutting concerns [1] [2]. AspectJ is a programming
language that supports the aspect oriented programming
paradigm by providing new language constructs to implement
crosscutting code [1]. Cross-cutting concerns are the
functionality of a program which affects other concerns. These
concerns often cannot be clearly distinguished from the rest of
the system in both the design and implementation, and can
result in either scattering (code duplication), tangling
(significant dependencies between systems), or both [6] [7].

Aspect-oriented programming is accomplished by
implementing a series of primary concerns in a specified
language. These crosscutting concerns are added to the system
through an aspect-oriented language. The primary concern and
crosscutting concern are weaved using weaver. AspectJ is an
implementation of aspect-oriented programming for Java [10].
It adds several program elements to Java that defines modular
units of crosscutting code. AspectJ provides the concept of
join points and pointcuts to enable dynamic crosscutting of
program behavior [1]. A join point is a well-defined location
within the primary code, where a concern will crosscut the
application. Join points can be method calls, constructor
invocations, exception handlers, or other points in the
execution of a program. Pointcuts are sets of join points.

Pointcuts are used to specify at which join points
crosscutting behavior is to be executed. Pointcuts are defined

in terms of pointcut designators. Some of those pointcut
designators (such as call, execution, args etc) select join points
based on the dynamic context they come to pass in.

Advice defines code to be executed, whenever a join point
of a particular set of join points is reached. It is part of the
advice declaration to specify the set of join points, where it is
to be executed. Introductions are used to crosscut the static
type structure of the classes. With introductions, additional
class members like constructors, methods, and fields may be
inserted into classes as if they were declared in the classes
themselves. Aspects are used to implement the crosscutting
concerns. Aspects are additional unit of modularity and can be
reused. It serves as containers for pointcuts, pieces of advice,
introductions, and ordinary Java members. Aspects in AspectJ
are instantiated by an extraordinary instantiation mechanism.

A. Advice:
Advice is an action that is being executed when an

application reaches the join point [1] [3]. It is always defined
relative to a pointcut. The pointcut selects the join points at
which the advice executes. As the control passes through each
join point twice (once, when join point is invoked and once,
when join point completes its execution) the designer needs to
specify at what point in time relative to the execution of join
point the advice is to be executed. The body of the advice
seems to be a body of method in a function call.

 The types of advice are distinguished by when they run
relative to the join points they affect:
a. Before advice runs before each affected join point.
b. After advice runs after the join point and comes in three

flavors, i.e., unqualified after advice, after returning
advice, and after throwing advice. Unqualified after

Shruti Dubey et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,80-84

© 2010, IJARCS All Rights Reserved 81

advice runs no matter what the outcome of the join point.
After returning advice runs only if the join point returned
normally (and it can perform additional matching based
on the type of the value returned). After throwing advice
executes if the join point ended by throwing an exception
(and it can perform additional matching based on type of
the exception thrown).

c. Around advice is the most intrusive. It runs instead of the
join point and has the ability to invoke the join point (if it
chooses) using the special proceed () syntax [3].

B. Advice Precedence:
Precedence affects both when advice executes and whether

it executes at all. AspectJ allows programmers to control the
precedence of advice because there’s no way for the weaver to
automatically know which advice should take precedence [2].

If two pieces of advice are defined in the same aspect, their
precedence is determined by their order and type. There are
two main situations. One of the pieces of advice is after
advice. In this case, the advice defined later in the file takes
the higher precedence. Neither advice is of the after type. In
this case, the advice defined earlier in the file takes
precedence.

The weaver reports some of the precedence relations as
errors. These precedence relations are called as circular
relationships. Circular precedence arises when the following
precedence declarations appear in the same weaving:

declare precedence: A, B;
declare precedence: B, C;
declare precedence: C, A;

C. Runtime Execution:
The order of advice execution is determined by

precedence. The advice with the highest precedence does not
always execute first [1].
a. After advice defers execution. Instead of running

immediately, after advice forwards control to the advice
with the next highest precedence. When that advice
finishes executing, the after advice runs its body if its
subtype matches the outcome of the join point. (In other
words, after throwing executes only if the next advice-or
the join point-throws an exception.)

b. Before advice executes its body. If the advice terminates
normally, it forwards control to advice with the next
highest precedence. If the before advice throws an
exception, it will prevent any advice of lower precedence
from running.

c. Around advice also executes its body. It has the option of
running the next advice by calling proceed(..). If it
throws an exception or otherwise terminates before
calling proceed (..), advice of lower precedence (and the
join point) will not run.

The sequence trace representation for the runtime
execution of AspectJ programs can be designed to ease the
development of AspectJ programs [5]. A diagrammatic
representation can help the developers to design and
comprehend AspectJ programs. Its application carries over the
advantages of aspect orientation to the design level and
facilitates adaptation and reuse of existing design constructs.
A sequence trace representation shows the flow of runtime
execution in two-dimensional chart. The vertical dimension is
the time axis, where time proceeds down the page. The

horizontal dimension shows the roles of interacting objects [4]
[9].

The order of introducing advice in aspect and their
respective run time precedence with their sequence of
execution is discussed in Section II. The Section III describes
the concluding remarks and the related future research work.

II. SEQUENCE TRACE OF ADVICE

In the following sequence trace representations, the
general roles are: main thread, object creation, aspect, before
advice, after advice, around advice, proceed(..), and join point
implementation. The control flow has been represented by
numbered horizontal arrows. In the sequence trace diagram,
program execution starts from main thread which creates the
class object and then the control passes to the join point [8]. At
the moment, aspect comes into picture and different types of
advices starts their execution on the basis of the precedence
order identified. Finally, control returns back to the main
thread. In any AspectJ program that includes advice, there can
be six different ways to introduce three different types of
advice in aspect. In all cases, the advice with the next
precedence includes the original join point if no further advice
affects the join point.

The six different cases and their advice precedence are
discussed in the following subsections specified by the figures
and followed by programming examples with their respective
outputs. All the cases will be illustrated with an example and
related aspect that provides the idea of runtime execution of
before, around and after advice. The Employee class has single
attribute and a method. A main() method is used to instantiate
an object of the class and calls to the setSalary() method. The
aspect called MoneyAspect provides code to specify pointcut
and the different advice. The code written for advice is in the
order as the case specifies.

A. Case 1: Before, Around, After
 Precedence Order: After, Before, Around

In this generalized case, after advice defers the execution
and forwards the control to before advice, which acquires the
next highest precedence. Before advice executes its body and
forwards control to around advice. Around advice also
executes its body. When around advice calls proceed(..) then
the control passes to the join point implementation and it gets
executed and returns the control back to around advice to
execute the remaining body. Finally, after advice executes its
body. The above case is represented in the form of sequence
trace diagram, which is shown in Fig.1.

Figure 1. Before, Around and After Case.

Shruti Dubey et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,80-84

© 2010, IJARCS All Rights Reserved 82

We have illustrated the case below with the help of
example: Employee.java and MoneyAspect.java programs.
The output for the example is shown in Fig. 2.

a. Employee.java:
public class Employee {
int salary;
public void setSalary(int salary) {
this.salary = salary;
}
public static void main(String[] args) {
Employee emp = new Employee();
System.out.println("Salary before ");
emp.setSalary(50000);
System.out.println("Salary: " + emp.salary);
}
}

b. MoneyAspect.java:
public aspect MoneyAspect {
pointcut employeePC(int salary) : call(*
Employee.setSalary(..)) && args(salary) ;
before(int salary) : employeePC(salary){
System.out.println("Before");
}
void around(int salary) : employeePC(salary) {
System.out.println("Around 1 before proceed()");
salary *= 2;
System.out.println("Around 2 before proceed()");
proceed(salary);
System.out.println("Around 3 after proceed()");
}
after(int salary) : employeePC(salary){
System.out.println("After");
}
}

Figure 2. Output for Case 1.

B. Case 2: Around, Before, After
 Precedence Order: After, Around, Before

In this case, after advice defers the execution and forwards
the control to around advice which acquires the next highest
precedence. Around advice also executes its body. When
around advice calls proceed (..) then the control passes to the
join point implementation and it gets executed and control
passes to before advice. Before advice executes its body and
passes the control back to around advice to executes its
remaining body. Finally, after advice executes its body. The
above case is represented in Fig.3 as sequence trace diagram.

Figure 3. Around, Before and After Case

We have illustrated the case below with the help of
example: Employee.java and MoneyAspect.java programs.
The output for the example is shown in Fig. 4.

a. Employee.java:
public class Employee {
int salary;
public void setSalary(int salary) {
this.salary = salary;
}
public static void main(String[] args) {
Employee emp = new Employee();
System.out.println("Salary before ");
emp.setSalary(50000);
System.out.println("Salary: " + emp.salary);
}
}

b. MoneyAspect.java:
public aspect MoneyAspect {
pointcut employeePC(int salary) : call(*
Employee.setSalary(..)) && args(salary) ;
void around(int salary) : employeePC(salary) {
System.out.println("Around 1 before proceed()");
salary *= 2;
System.out.println("Around 2 before proceed()");
proceed(salary);
System.out.println("Around 3 after proceed()");
}
before(int salary) : employeePC(salary){
System.out.println("Before");
}
after(int salary) : employeePC(salary){
System.out.println("After");
}
}

Figure 4. Output for Case 2.

Shruti Dubey et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,80-84

© 2010, IJARCS All Rights Reserved 83

C. Case 3: After, Before, Around
 Precedence Order: Before, Around, After

In this case, before advice with the highest precedence,
executes its body and forwards control to around advice with
the next highest precedence. Around advice also executes its
body. When it calls the proceed(..), the control passes to the
join point implementation and passes the control to after advice
having the lowest precedence and gets executed as there is no
advice with next highest precedence. Finally, control passes to
around advice to execute its remaining body. The above case is
represented in Fig.5 as sequence trace diagram.

Figure 5. After, Before and Around Case.

 The same case is illustrated below with the help of
example: Employee.java and MoneyAspect.java programs.
The output for the example is shown in Fig. 6.

a. Employee.java:
public class Employee {
int salary;
public void setSalary(int salary) {
this.salary = salary;
}
public static void main(String[] args) {
Employee emp = new Employee();
System.out.println("Salary before ");
emp.setSalary(50000);
System.out.println("Salary: " + emp.salary);
}
}

b. Money Aspect.java:
public aspect MoneyAspect {
pointcut employeePC(int salary) : call(*
Employee.setSalary(..)) && args(salary) ;
after(int salary) : employeePC(salary){
System.out.println("After");
}
before(int salary) : employeePC(salary){
System.out.println("Before");
}
void around(int salary) : employeePC(salary) {
System.out.println("Around 1 before proceed()");
salary *= 2;
System.out.println("Around 2 before proceed()");
proceed(salary);
System.out.println("Around 3 after proceed()");
}

}

Figure 6. Output for Case 3.

D. Case 4: After, Around Before
 Precedence Order: Around, Before, After

In this case, around advice with the highest precedence,
executes its body and calls the proceed (..), the control passes
to the join point implementation and goes to before advice with
the next highest precedence. Before advice executes its body
and passes the control to after advice with the next highest
precedence. After advice executes its body and passes the
control back to around advice to execute its remaining body.
The above case is represented in Fig.7 as sequence trace
diagram.

Figure 7. After, Around and Before Case.

 We have illustrated the case below with the help of
example: Employee.java and MoneyAspect.java programs.
The output for the example is shown in Fig. 8.

a. Employee.java:
public class Employee {
int salary;
public void setSalary(int salary) {
this.salary = salary;
}
public static void main(String[] args) {
Employee emp = new Employee();
System.out.println("Salary before ");
emp.setSalary(50000);
System.out.println("Salary: " + emp.salary);
}
}

b. Money Aspect.java:
public aspect MoneyAspect {

Shruti Dubey et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,80-84

© 2010, IJARCS All Rights Reserved 84

pointcut employeePC(int salary) : call(*
Employee.setSalary(..)) && args(salary) ;
after(int salary) : employeePC(salary){
System.out.println("After");
}
void around(int salary) : employeePC(salary) {
System.out.println("Around 1 before proceed()");
salary *= 2;
System.out.println("Around 2 before proceed()");
proceed(salary);
System.out.println("Around 3 after proceed()");
}
before(int salary) : employeePC(salary){
System.out.println("Before");
}
}

Figure 8. Output for Case 4.

E. Other Two Cases:
In the next two cases where the order of introducing

different advices in a program code, is either “before, after,
around” or “around, after, before”, the circular precedence
error arises in the runtime execution. Hence, the program
cannot be executed. Its output is shown in Fig. 9.

Figure 9. Output for other two cases.

III. CONCLUSION

To understand the behavior of a program it is essential to
validate its run-time semantics. With the introduction of new
abstraction techniques, such as AOP, the gap between the
textual representation of a program and its behavioral
semantics begin to widen. In AOP, aspects enable
programmers to encapsulate crosscutting concerns into a
module. While, encapsulation localizes a concern’s source
code in one location, the code can still affect multiple points
of execution.

In this research work, the visual representation of different
types of advice execution in program is presented via sequence
trace diagram. The sequence trace diagram has been validated
with the practical implementation of AspectJ programs. A
sequence diagram helps the designers to examine the behavior
of the system. It also benefits the developers to understand the
runtime environment and execution preferences more
efficiently. The goal of these diagrams is to reduce the gap
between code and documentation. The approach can be
extended to represent after throwing and after returning advice
in sequence trace diagram.

IV. REFERENCES

[1] Joseph D. Gradecki, Nicholas Lesiecki, “Mastering AspectJ
Aspect- Oriented Programming in Java,” Published by Wiley
Publishing, Inc., 2003.

[2] Ramnivas Laddad, “AspectJ in Action Practical Aspect-
Oriented Programming,” Manning Publication Co., 2003.

[3] Russell Miles, “AspectJ Cookbook,” O’Reilly Publications,
2005.

[4] James Rumbaugh, Ivar Jacobson, Grady Booch, “The Unified
Modeling Language Reference Manual,” Addison-Wesley
Publication,2nd edition.

[5] Steven She, “Retrieving Sequence Diagrams from Aspect-
Oriented Systems,” unpublished.

[6] Dominik Stein, “An Aspect-Oriented Design Model Based on
AspectJ and UML,” Master thesis submitted to Department of
Business Arts,Economics and Management Information
Systems, University of Essen, Germany.

[7] Dominik Stein, Stefan Hanenberg, Rainer Unland, “An UML-
based Aspect-Oriented Design Notation For AspectJ,” Institute
for Computer Science University of Essen, Germany.

[8] YAN Han, Gunter Kniesel, Armin B. Cremers, “Towards
Visual AspectJ by a Meta Model and Modeling Notation,”

[9] G. Booch, J. Rumbaugh, and I. Jacobson “The Unified Modeling
Language User Guide,” Addison-Wesley, Reading,
Massachusetts, USA,1st edition, 1999.

[10] www.eclipse.org/aspectj

	INTRODUCTION
	Advice:
	Advice Precedence:
	Runtime Execution:

	SEQUENCE TRACE OF ADVICE
	Case 1: Before, Around, After Precedence Order: After, Before, Around
	Case 2: Around, Before, After Precedence Order: After, Around, Before
	Case 3: After, Before, Around Precedence Order: Before, Around, After
	Case 4: After, Around Before Precedence Order: Around, Before, After
	Other Two Cases:

	CONCLUSION
	REFERENCES

