
Volume 2, No. 5, Sept-Oct 2011 

     International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved    59 

ISSN No. 0976-5697 

Performance Evaluation Of Spatial Indexing Techniques 
 

S Mahaboob Hussain* 
Dept. of CSE,  

UCEV, JNTUK  
Vizianagaram, A.P., India  

mahaboobhussain.smh@gmail.com  
 

Pullela S V V S R Kumar 
Associate Professor of CSE  

VS Lakshmi College of Engg for Women 
Kakinada, A.P., India 
pullelark@yahoo.com

Dr MHM Krishna Prasad  
Associate Professor & Head  

Dept. of IT,  
UCEV, JNTUK 

Vizianagaram, A.P., India 
krishnaprasad.mhm@gmail.com 

 
Abstract: Spatial databases store information related to objects positional locations e.g., various kinds of multidimensional objects represented by 
points, line segments, polygons and other kinds of geometric entities. These databases should support for efficient storage, indexing and querying of 
spatial data. Special purpose indexing structures are important for accessing the spatial data, and for processing spatial queries. To handle the spatial 
data efficiently, a database system needs an indexing mechanism that will help it to retrieve data items quickly according to their spatial locations 
instead of using GIS (Geospatial Information System). Hence, in this paper, authors evaluated R, R+ and R* dynamic indexing algorithms, on a 
variety of real time and synthetic datasets, to access the spatial data. From the experimental study, one can observe that the R* indexing technique 
performs well (than R and R+) for spatial databases. 
 
Keywords: Spatial Databases, Indexing, Querying, Splitting Algorithms, RTree, R*Tree, R+Tree 

I. INTRODUCTION  

In order to deal with multidimensional data, some spatial 
access methods (hereinafter, SAMs) are consider, these are 
desirable to design spatial data management systems to 
support and perform spatial operations fastly. Spatial 
databases contain multidimensional data with explicit 
knowledge about objects, their extent, and their position in 
space. Multidimensional data include which points, line 
segments, rectangles, polygons, regions, volumes, and 
polyhedral in 2D, 3D or higher. Several Multidimensional 
Access Methods, some general purpose and some application 
specific, that support search operations in spatial databases 
have been proposed and evolved for the last 30 years [1]. In 
this paper, some data tree structures (R, R*, R+) and are 
discussed and presented a possible high performance spatial 
access method for the two dimensional datasets. 

The discussion can be carried on at least two levels. At 
the implementation level anxiety may be over word extent, 
record types and file structures. R tree and its variants 
(R*Tree, R+Tree) are one of the prominent spatial access 
methods, where the objects stored in R tree are in the context 
of Minimum Bounding Rectangles (MBR). A rectangle, 
oriented to the x and y axis, which bounds a geographic 
feature or a geographic data set. It is specified by two 
coordinates: xmin,ymin and xmax,ymax [2]. R-tree in every node 
stores a set of rectangles. At the leaves there are stored 
pointers to representation of polygon’s boundaries and 
polygon’s MBRs. At the internal nodes each rectangle is 

associated with a pointer to a child and represents minimum 
bounding rectangle of all rectangles stored in the child. 

II. SPATIAL INDEXING/ACCESS METHODS 

A. The R-Tree: 
The R-tree [3] is the origin of all R-tree variants. These 

R-trees are hierarchical tree data structures, meant for 
efficient indexing of multidimensional objects with spatial 
extent. Similar to B-trees [4, 8], the R-trees are balanced and 
they ensure efficient storage utilization. R-trees are used to 
store, instead of the original space objects, their minimum 
boundary boxes (MBBs). The MBB of an n-dimensional 
object is defined to be the minimum n-dimensional rectangle 
that contains the original object. The R-trees manage MBBs 
and not real objects, thus they cannot fully answer a query, 
unless the objects in the database are equal to their MBBs. In 
general, they are used to efficiently solve the filter step of a 
query that is finding the database objects whose MBB 
intersects with the MBB of the query object. 
a. Adopted Structure of the R-Tree.: An R-tree is a 
height-balanced tree similar to a B-tree with index records in 
its leaf nodes containing pointers to data objects nodes 
correspond to disk pages. If the index is disk-resident, and 
the structure is designed so that a spatial search requires 
visiting only a small number of nodes. The index is 
completely dynamic inserts and deletes can be intermixed 
with searches and no periodic reorganization is required. 
The data structure splits space with hierarchically nested, 



S Mahaboob Hussain et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,59-64 

© 2010, IJARCS All Rights Reserved           60 

and possibly overlapping, minimum bounding rectangles 
(MBRs, otherwise known as bounding boxes, i.e. 
"rectangle", what the "R" in R-tree stands for). The Fig. 1, 
shows the structure of an R-tree and illustrate the 
containment and overlapping relationships that exist 
between its rectangles. The height of an R-tree containing N 
index records is at most |logmN|-1, because the branching 
factor of each node is at least m. The maximum number of 
nodes is |N/M|+|N/M2|+1. Worst-case space utilization for 
all nodes except the root is m/M [3]. 

 
Figure 1: Adopted structure of the RTree 

 
Nodes will tend to have more than m entries, and this 

will decrease tree height and improve space utilization. If 
nodes have more than 3 or 4 entries the tree is very wide, 
and almost all the space is used for leaf nodes containing 
index records. The parameter m can be varied as part of 
performance turning, and different values are tested 
experimentally. In this paper, we adopted the algorithms 
proposed by [3] for constructing the tree, inserting and 
deleting the elements. 

B. The R+-Tree: 
A variation to Guttman’s R-trees (R+ trees) introduced by 

Sellis et al.,[5 ] as a way to overcome the problem of 
inefficient searching that arises when sibling nodes 
(overlapping rectangles) overlap in the R-tree. As a direct 
solution to these problems they use clipping, i.e. there is no 
overlap between intermediate nodes of the tree at the same 
level, and objects that intersect more than one MBB at a 
specific level are clipped and stored on several different 
pages. As a result, point queries on the R+ tree require 
traversing only one path of the tree, which is to be achieved 
by increase of storage requirement of the tree. 
a. Adopted Structure of the R+Tree: As mentioned 

above, R-trees are a direct extension of B-trees in k-
dimensions. The data structure is a height-balanced 
tree which consists of intermediate and leaf nodes. 
Data objects are stored in leaf nodes and intermediate 
nodes are built by grouping rectangles at the lower 
level. Each intermediate node is associated with some 
rectangle which completely encloses all rectangles that 
correspond to lower level nodes. In this paper, we 
adopted the algorithms proposed by [5] for 

constructing the tree, inserting and deleting the 
elements. Following Fig. 2 shows an example set of 
data rectangles. 

Figure 2: Adopted structure of the R+Tree 

C. The R*-Tree: 
To work on the improved version of the R-Tree we 

implemented its variant R* tree [6] and the insertion 
algorithms are adopted to overcome the weakness of the 
original R-tree. This version introduces a new insertion 
policy that crucially improves the performance of the tree. 
The main objective of this policy is to minimize the overlap 
region between sibling nodes in the tree. A straightforward 
advantage of this is the minimization of the tree paths that are 
traversed at an object search. In this paper, we adopted the 
algorithms proposed by [6] for constructing the tree, 
inserting and deleting the elements. 
a. Description: While traversing the insertion path, the 

insertion algorithm follows the nodes, whose MBB has 
the minimum increase of overlap. Thus, the search 
performance is improved [7]. Whenever a new entry 
has to be stored into a full node, the node is not 
necessarily split, but some entries are deleted, and re-
inserted to sibling nodes. The entries for re-insertion 
are chosen to be those with maximum distance from 
the centre of the node’s MBB. This feature increases 
storage requirement, and improves the quality of the 
partition by making it almost independent of the 
sequence of insertions. That results in a minimum 
overlap between the MBBs. 

The insertion algorithm stores the lower and the upper 
bounds of the MBR for each dimension to two arrays. It 
then sorts these two arrays d times, according to one 
dimension at a time, and finds the best axis according to 
which the split will occur, by finding the best possible split 
distribution. The criteria for the best split include the 
minimization of the margin, area, and overlap between the 
sibling nodes to be created. The function stores in 
distribution array the sorted indices of MBR’s and returns 
the index within dimension according to which the split 
should take place. The function returns in distribution (0) an 



S Mahaboob Hussain et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,59-64 

© 2010, IJARCS All Rights Reserved           61 

ordering of the MBR’s and in dist the index within this 
order, with respect to which the split will take place. 

III. EXPERIMENTAL EVALUATION 

This section presents the experimental observations 
obtained while evaluating the behavior of the spatial access 
methods: the R-tree, R+ Tree and R* Tree.  

A. Implementation Details and Experimental Platform:  
The experimental platform is a Intel Pentium IV (R) 

Core(TM)2 Duo CPU E7500@ 2.93GHz machine with 2GB 
main memory and a 256GB HDD, running on Microsoft 
Windows XP.  

In this phase of research, authors adopted the quadrant 
split algorithm [3] for comparing most popular R-Tree and 
its variants R+-Tree and R*- Tree. 

JDK based interface is developed to make simpler for the 
evaluating performance of these three SAM in a single shot. 
Below Fig. 3, shows the designed interface with the options 
to select the trees and datasets to insert into the trees and also 
shows the performance of the each tree. 

In this paper, authors experimented the above indexing 
techniques on the multi dimensional spatial datasets which is 
generated synthetically of different sizes varying from 10K to 
300K, where K=1000, instances.  

B. Performance Tests and Results: 
In general, there are four principal ways of comparing 

algorithms such as indexing techniques [9]: i.e., by direct 
argument, by mathematical modelling, by simulation, and by 
experiment. In this section, authors consider the experimental 
approach to evaluate the techniques.  

 

Figure 3. Design of the interface 

The earlier discussed R Tree, its variants R+ Tree and R* 
Tree  structures for accessing the spatial data structures, which 
are implemented with the efficient node splitting algorithms for 
inserting the geometrical data in the each of the tree structure 
with 2-dimensional spatial data. The performance of the insert 
algorithm in these tree structures are done by using the hash 
index file, which maintains each entries of the co-ordinate. It is 
a cache of the all objects and is updated with the new objects. 
For simplify, the following method will use the R-Tree, R+-
Tree and R*-Tree to index the data file’s page life, and the 
SAM leaf page’s PID and entry id in the current data file tuple.  

To analyze the performance for building up the different R-
tree variants and measured the performance for insert and store. 
Here, insert denotes the average number of disk accesses per 
insertion and store denotes the storage utilization after 
completely building up the files.  During the first part of each 
test run, the program read geometry data from files and 

constructed an index tree, beginning with an empty tree and 
calling insert with each new index record, then the insert 
performance was measured. 

While traversing the insertion path, the insertion algorithm 
follows the nodes which are having Minimum Bounding Box 
(MBB) and minimum increase of overlap. Thus, the search 
performance is improved. As the R*-Tree algorithm for 
splitting a node is totally different from its R-tree equivalent. 
First, the algorithm decides the axis with respect to which the 
split will take place. Then, the projections of the MBBs over 
the split-axis are sorted according to the value of their left end 
point. This sequence can be divided to two sub-sequences, in 
M-2m+1 ways. Among these splits, the algorithm chooses the 
best one. 

The results are given in tabular forms and graphs that 
show’s an overview of experiments depending on the different 
distributions (i.e., data files) for the trees. By taking the 



S Mahaboob Hussain et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,59-64 

© 2010, IJARCS All Rights Reserved           62 

different size of the data and inserting into the tree structure 
authors got different output values in milliseconds (ms) and 
calculated the searching for the range query in nanoseconds 
(ns). And authors compare the results for time taken for tree 
creation and total building time for all SAMs.  

C. Insertion/Creation Performance: 
In this paper, authors computed the insertion time for the 

given data files (Spatial data sets) and obtained the tree 
creation time is similar as the insertion time. The following 
table 1, shows the tree creation time for different SAMs. 

Table 1. Time(ms) variation for Tree creation. 

Instances/SAM R-Tree R+-Tree  R+-Tree 
1K 297 62 765 
5K 1859 203 11266 

10K 3984 375 43812 
20k 7063 672 176813 
30k 11734 1531 238781 
40k 15531 1906 333515 
50K 19656 1656 410547 
100k 40547 3765 659250 
200k 69906 6562 1144235 
300k 118375 11500 1460765 

 
Due to the variation of the node splitting algorithm and the 

insertion algorithm procedures in the three trees, one can 
observe the differences in the time variation for creating the 
tree structures for different size of spatial datasets. The 
following Fig. 4 shows the time taken for three SAMs for 
inserting the datasets of the size varying from 1K to 300K 
instances respectively. 

D. Query/Search Performance: 
Authors compare the performance of the R-tree variants for 

range and nearest-neighbour queries. In query performance 
R+Tree overcome the problem of inefficient searching that 
arises when sibling nodes overlap in the R-tree, whereas R Tree 
Searching is done in a similar way as in a B-tree, for both point 
and region queries, the paths where rectangle intersects with 
the query object are followed and it does not traverse one path 
of the tree is enough when searching for an objects in the B 
Tree, as the MBBs of entries in the same nodes may overlap 
one another. In the worst case, the search algorithm may have 
to visit all index pages, in order to answer a query. The 
following table 2 shows the time taken in nanoseconds for the 
query operation in the proposed spatial indexing structures. 

 
Figure 4. Time(ms) variation for Tree creation 

Table 2. Time (ns) Query/Search Performance 

Instances/SAM R-Tree R+-Tree  R+-Tree 
1k 1668.0909 3453.4903 5.6992 
5k 2247.3824 2963.1391 5.4913 
10k 2320.1571 3106.4919 5.8195 
20k 3015.3512 3178.0802 5.5875 
30k 2207.1128 3290.4794 55375 
40k 2173.3573 3946.8331 5.4041 
50k 2343.0449 4612.488 5.3628 

100k 2430.0082 3671.0606 9.8788 
200k 2584.709 2843.5181 10.1266 
300k 2846.8876 3640.0484 9.9973 

The figure 5, shows the experimental observations for 
various range querys. From figure 5, one can clearly observe 
that the R+Tree performance is better than the other two trees 
for Query performance.  

 
Figure 4. Time (ns) Query/search performance 

The main advantage of R+Tree compared to R-trees is the 
improved search performance, especially in the case of point 
queries and the main reason is, there is no overlap between 
intermediate nodes of the tree at the same level, and objects 
that intersect more than one MBB at a specific level are clipped 
and stored on several different pages. RTrees suffering the case 
of few, large data objects, which force a lot of "forking" during 



S Mahaboob Hussain et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,59-64 

© 2010, IJARCS All Rights Reserved           63 

the search [3]. R+-trees handle these cases easily, because they 
split these large data objects into smaller ones.  As a result, 
point queries on the R+Tree require traversing only one path of 
the tree. The price to pay is the increase of storage requirement 
of the tree. 

E. CPU/IO Cost Performance: 
In this paper, authors consider the total time taken for the 

tree to build as CPU/IO cost. In this evaluation the performance 
of the R*Tree is comparatively better than the other indexing 
techniques.  In table 3 authors shows the total building time for 
the each Tree data structure for different size of 2-dimensional 
spatial datasets.  

 
 

Table 3. CPU/IO Cost Performance 
Instances/SAM R-Tree R+-Tree  R+-Tree 

1K 375 297 734 
5K 2047 469 4132 

10K 3782 734 8906 
50K 20000 3078 38984 
100K 38859 5672 83719 
200k 66531 9891 169094 
300k 104531 15469 256453 
100K 38859 5672 83719 
200k 66531 9891 169094 
300k 104531 15469 256453 

Figure 6 shows the time taken for building the trees for 2-
dimensional dataset of size varying from 1K to 300k of 
instances. 

 
Figure 5. CPU/IO Cost Performance 

The R*-tree clearly out performs the R-tree variants in all 
experiments. But specifically for querying, R+ Tree performs 
well than R Tree and R*Tree, as per authors observation, it is 
due to the non-overlapping rectangles in the R+ Tree, makes 
R+ Tree efficient for searching.  

Finally, the following table 4 shows the overview of 
observation on 2-dimensional spatial data structures.  

The performance results are shown in the following table 4. 

Legend: “>” means “the performance is better than”. 

Table 4. Performance and experimental results 

SL.NO CONDITIONS RESULTS/OBSERVATIONS 

1 Insertion time R*tree > RTree > R+Tree 

2 Creation time R*tree > RTree > R+Tree 

3 Deletion time R*tree > RTree > R+Tree 

4 CPU/IO time R*tree > RTree > R+Tree 

5 Query (Range) Time R+Tree > RTree > R*Tree 

IV. CONCLUSIONS & FUTURE WORK 

Spatial databases store information related to objects 
positional locations e.g., various kinds of multidimensional 
objects represented by points, line segments, polygons and 
other kinds of geometric entities. The performance of spatial 
queries depends mainly on the underlying index structure used 
to handle them. The main disadvantage of the R-tree is it 
suffers largely from high overlap and high coverage, resulting 
mainly from splitting the overflowed nodes. A database system 
organizes both for multidimensional points and spatial data as 
demonstrated. From the experimental observations, which is 
performed on rectangle data, the R* tree clearly outperforms 
and it is the most robust method, which is underlined by the 
fact that for every query file and every data file less number of 
disk accesses are required than R-Tree and R+Tree. Moreover, 
for spatial data the gain in performance of the R*Tree over the 
other variants is increased additionally.  

In this paper, authors worked on the rectangles for the given 
2-dimensional spatial data objects. Further work in this area 
should deal with more complex spatial objects such as 
polygons as, where only very few access methods are 
available. 

V. REFERENCES 

[1] H. Ahn and N. Mamoulis (2001), Ho Min Wong, A Survey on 
Multidimensional Access Methods, UU_CS_2001_14, May, 
2001. 

[2] MiMi.hu,"Minimum Bounding Rectangle," 
MiMi.hu,  http://en.mimi.hu/gis/minimum_bounding_rectangle.
html. 

[3] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial 
Searching,” Proc. ACM SIGMOD International Conference on 
Management of Data, 1984, pp. 47–57. ISBN 0-89791-128-8 

[4] Bayer and Rudolf (1971), “Binary B-Trees for Virtual 
Memory,” Proc. of ACM-SIGFIDET Workshop on Data 
Description, Access and Control, San Diego, California. 
November 11–12, 1971 

[5] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-Tree: A 
dynamic index for multi-dimensional objects,” Proc. of 13th 
International Conference on Very Large Data Bases, 1987, pp. 
507-518. 

[6] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger, “The 
R*-tree: An Efficient and Robust Access Method for Points and 
Rectangles,” Proc. ACM SIGMOD International Conference on 
Management of Data, 1990, pp. 322-331. 



S Mahaboob Hussain et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,59-64 

© 2010, IJARCS All Rights Reserved           64 

[7] N. Roussopoulos and D. Leifker, “Direct Spatial Search on 
Pictorial Databases Using Packed RTrees,” Proc. ACM 
SIGMOD International Conference on Management of Data, 
1985, pp. 17-31. 

[8] D. Comer, “The Ubiquitous B-Tree,” Computing Surveys vol. 
11, pp. 121-138, June 1979. 

[9] J. Zobel, A. Moffat and K. Ramamohanarao, “Guidelines for 
Presentation and Comparison of Indexing Techniques,” Proc. 
ACM SIGMOD, 1996. 

 


	INTRODUCTION
	SPATIAL INDEXING/ACCESS METHODS
	The R-Tree:
	Adopted Structure of the R-Tree.: An R-tree is a height-balanced tree similar to a B-tree with index records in its leaf nodes containing pointers to data objects nodes correspond to disk pages. If the index is disk-resident, and the structure is desi...

	The R+-Tree:
	Adopted Structure of the R+Tree: As mentioned above, R-trees are a direct extension of B-trees in k-dimensions. The data structure is a height-balanced tree which consists of intermediate and leaf nodes. Data objects are stored in leaf nodes and inter...

	The R*-Tree:
	Description: While traversing the insertion path, the insertion algorithm follows the nodes, whose MBB has the minimum increase of overlap. Thus, the search performance is improved [7]. Whenever a new entry has to be stored into a full node, the node ...


	EXPERIMENTAL EVALUATION
	Implementation Details and Experimental Platform:
	Performance Tests and Results:
	Insertion/Creation Performance:
	Query/Search Performance:
	CPU/IO Cost Performance:

	CONCLUSIONS & FUTURE WORK
	REFERENCES

