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Abstract: The Subsequence Secondary Structures are a set of regular patterns (common motif) frequently occurring in the amino acid sequence 
of proteins [9]. These motifs are seen to be conserved among species, thus, forming a group of functionally related sequences, sharing a specific 
biological function. Determination of compact groups of these common patterns is a prerequisite to ably simulate a protein structure prediction 
algorithm (PSP). In this work, a novel parallel recombinative simulated annealing technique is proposed for an efficient prediction of minimum 
energy structure on a HP lattice model. The implementation comprising of hybrid heuristics, combines the population based evolutionary 
Genetic Algorithm and the cooling scheme of Simulated Annealing amid provision of protein subsequence secondary fold lock. A GUI 
implementation is done for user based parameter testing with 5 lock options={α1,α2,β,loop,core} derived from [5] [7].  The empirical results are 
compared with the existing EMC method [5] on similar datasets. It is found that the PRSA technique outperforms its ancestor with drastic 
improvement in computational speed to reach the minimum energy protein structure. 
 
Keywords: Protein Secondary Structure, Parallel Recombinative Simulated Annealing, Protein Fold Lock Model, Genetic Algorithm, Simulated 
Annealing. 
 

I. INTRODUCTION 

 Denatured proteins automatically refolds from their 
random disordered state into a well-defined unique 
structure, where its biological activity is completely 
restored. Thereby, protein sequences fold into a unique 
native state within seconds. As pointed out by Levinthal [8] 
and Wetlauer [16], the number of possible structures of a 
polypeptide chain is too large to involve an exhaustive 
search because proteins folds too fast, by at least tens of 
orders of magnitude. This apparent contradiction leads to the 
Levinthal paradox: How can a protein find a globally 
optimal state without a global exhaustive search? 
Consequently, the protein folding problem is a question of 
what is the physical basis of cooperativity by which proteins 
avoid exhaustive searching of structural space [3].  So, the 
protein folds to its native state according to a relatively 
small number of pathways, which means that it folds by a 
specific sequence of molecular events from the unfolded 
random coil to a uniquely folded metastable state [8], [4].  
 To understand the mechanisms of protein folding, it is 
crucial to characterize the structures of folding 
intermediates. The intermediate protein fold cooperativity is 
mainly driven by two types of interactions: First, the 
secondary structure, e.g. the helix, is found by local 
interaction by which each individual tetrapeptide in the 
sequence finds a hydrogen-bonded helical structure, and 
second, the non-local interactions by which a compact 
hydrophobic core is formed [5]. However, there is 
controversy, whether the secondary structure of a protein 
forms before the growth of the hydrophobic core, as was 
postulated by the framework model [6] or whether or the 
hydrophobic residues collapse to form a compact unfolded 
state or a molten globule, on which the secondary structure  

 
grows, as was postulated by the hydrophobic collapse model 
[3]. In either case, the conserved secondary structures forms 
the basis of the protein folding pathways. Convinced with 
these observations of cooperativity, Liang and Wong, 2001 
[5], employed secondary structures in exploring the 
structural space of a protein to speed up their simulation 
algorithm. The idea was further developed by Bui and 
Sundarraj, 2005 [7], in their Secondary Structure Genetic 
Algorithm (SSGA), being tested and evaluated by many 
others since then [1][9][10][12][13][19][20].  
 Motivated with the extensive literature and work done on 
computational algorithms employing secondary structures, 
this work introduces a Hybrid Genetic Algorithm called as 
the Parallel Recombinative Simulated Annealing, with a 
new protein fold lock concept where, a given length of the 
sequence can be locked to maintain a particular secondary 
structure throughout the execution procedure. This specific 
length position (the subsequence secondary structure) is the 
conserved domain of DNA translation process. Following 
steps are used to in order to speed up the simulations of 
protein folding:  
(i) Identify the subsequences which will possibly fold 

to secondary structures in the native state of a 
given protein sequence;  

(ii) Use a hybrid heuristics with integrative advantage 
of the combined techniques, in order to resolve 
complexity issues with speedy executions. 

(iii) Perform sampling on the constrained structural 
space where some subsequences are subject to 
possible secondary structures.  

The experimental results of proposed algorithm 
assuming constraint search space show the rapid iterative 
simulations and fast convergence to the global minimum 
(optimum solution). 
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II. MATERIALS AND METHODS 

Hardware used: Processor - Intel core 2 duo i3 380M 
Pentium µp, 2.53 GHz  ; RAM 4 GB ; Hard Disk 320 GB. 
Software Used :  Operating System –Windows XP. 
Implementation Platform: ANSI C (Initial software 
prototype) / MATLAB 7.0 (final test module).   

III. THE PROTEIN STRUCTURE PREDICTION 
PROBLEM (PSP) 

The    Protein  Structure  Prediction  Problem  (or  The 
Protein  Folding  Problem)  is  defined  as  the prediction of 
the three dimensional native (ground energy) structure of a  
given  protein  from  its  amino  acid  chain  (primary 
structure). It  is the study of the way in which a protein -  a  
sequence  of  amino acid  residues  -  will  ’fold’  into  its 
natural  state  hence  determining  the  fold  transitions.  The   
problem   is   simply   stated; however, solving is intractable 
[14], and is considered as a Grand Challenge problem [15].   

For simplicity, thus, it is widely studied under 2D HP 
lattice Model [2], where it can be viewed abstractly as the 
problem of optimization from a pool of probable structure 
orientations in the presence of constraints. The optimization 
sequence may be benchmarks, further extended to real 
proteins. Several  investigations  have  been  done  till date  
discussing  various  computing  algorithms  to   optimize the 
sequence in order to find its ground state, thus, identifying 
transition of the folding stages to  ascertain the  natural  
existing  structure  of  a protein [23][24].  Heuristic 
Algorithms, that  can  learn  and  exploit  the search  space  
regularities  in  the  form  of  probabilistic derivations  with  
a  comprehensive  decision making, gives an optimum 
choice to solve the NP hard PSP problem. Though being the 
best, the computational efficiency of heuristics in terms of 
space and time complexity still remains a big question. The 
use of subsequence secondary structures within the 
framework of hybrid heuristics can speed up simulations, 
hence increasing the computational efficiency for the same. 

IV. PERSISTENCE OF SUBSEQUENCE 
SECONDARY STRUCTURES IN PROTEINS 

Many  biological  sequences  which  belong  to  a  group  
of  functionally  related  genes  or  proteins, usually contain 
a number of biologically active sequence patterns shared 
among some (sometimes all) members of the functional 
group. While  it  is  not  clear  yet,  exactly how  these active 
functional  DNA  motifs, ( such  as transcription factor 
binding sites), have evolved in complex organisms, 
evolutionary algorithms with their heuristic nature provide 
relatively simple paradigms that could be close to some 
possible ways of evolution in linking the species. These 
functional DNA motifs are the part of a protein sequence - 
the sub-sequence patterns, which forms the secondary 
structure namely, α helix and β sheet.  It is found that such 
sub - sequence patterns are conserved among species giving 
rise to some similar biological processes (cell activities) in 
all [25]. An example is that of a gene called “Eyeless” 
found in fruit fly - Drosophila Melanogaster. The absence 
of this gene results in non development of eyes in the fly.  

Another gene called as “Aniridia” , (responsible for eye 
formation) is found in humans. Now if Aniridia is inserted 
in place of absent Eyeless gene, it results in development of 

eyes in the fly. Hence its concluded that there exists a 
function similarity between the genes having similar 
sequence and is found to be conserved during course of 
evolution of organisms. Persuaded with the fact, it can be 
said that the sub sequence forming secondary structures 
persists among the evolutionary linked species, giving rise 
to the conserved domains among proteins.  

Hence these set conserved patterns need not be 
optimized since they remain fixed throughtout procedure of 
achieving a lowest energy stable protein structure. As such, 
avoiding the search for conserved sub-sequences, makes the 
total length of complete protein sequence smaller. This 
significantly reduces the optimization stages, which are 
otherwise un-necessarily scanned wasting time and 
computational evaluations.  

While  it is not  implied  that  conserved sub-sequence 
structures exactly follows the same pattern always, the 
algorithm is developed to exploit the idea with abstraction of 
most probable recurrent motif groups (sub-sequence ranges) 
which may prove efficient in finding the optimum solution 
in a reduced computational time. 

V. PSP USING CONSERVED SECONDARY 
STRUCTURES 

The most crucial aspects of computer implementation of 
a protein structure prediction (PSP) algorithm includes the 
representation of protein sequence vector [9], the model 
constructs with parameter setting, and the locking rules, for 
computation of sequence with conserved set of motifs in 
order to determine the native (ground energy) structure[13]. 
The subsections below describes the protocols for model 
construction followed by pseudocode steps of the 
implemented algorithm and the briefs of the designed 
graphical user interface. 

A. A Novel Protein Fold Lock Model : 
Secondary structures are mainly formed through 

hydrogen bonds between backbone atoms. There are three 
types of backbone structures:  α-helices, β -sheets and loops. 
The α-helices and β -sheets are preferably located at the core 
of the protein, whereas loops are rather found in outer 
regions. To simulate these frequent conserved DNA α / β 
motifs, this experiment presumes the following assumptions 
- 
(i) The implementation model is a two dimensional 

hydrophobic - hydrophilic (polar) lattice grid model [2]. 
This model, though being simple, has a potential to 
reveal several computational aspects of search 
algorithms without involving complex data structures 
for its implementation. Thus, one can concentrate on 
testing the algorithm performance rather than on 
programming language constructs[21]. 

(ii) The length and number of secondary sub-sequences are 
user-driven. Unlike Liang-Wong [5] and Bui-Sundaraj 
[7], where a secondary structure is a conformation of a 
sub-sequence consisting only of hydrophobic H-H 
residues, there is neither a restriction on what kind of 
amino acid sub-sequence (hydrophobic or polar) to 
choose nor its position within the complete amino acid 
sequence.  Hence, the implementation should allow to 
observe the development of a general constrained 
structures across the generations. The Figure 1 shows 
the five possible formations that can be selected as sub-
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sequences for a certain range of arbitrarily combined 
polar and hydrophobic amino acids, namely α helix 
with direction 1/2, Extended β -sheet, loop and compact 
core structure The assumption falls close to the Liang 
and Wong [5] secondary sub-structures of H-H α, H-H 
β and Bui Sundarraj’s longest H-H sequence. The work 
of Bui-Sundarraj [7] introduced a secondary structure 
library for the longest subsequence of hydrophobic 
residues.  Due to the number of possible secondary 
structures even for a small subsequence of hydrophobic 
residues, they used a genetic algorithm to systematically 
evolve the secondary structures which are then used as 
building blocks to evolve the best structure for the 
given input sequence. Additionally, they put two 
constraints on the structures: The secondary structures 
of the hydrophobic sub-sequences are required to be 
symmetric to either one of the two lattice axes,and end 
lattice sites should have at least one unoccupied lattice 

neighbour. We employed a contrary scheme with more 
flexible lock options. 

(iii) The selected ranges of secondary sub sequence 
structures once locked in the initial phase, remains fixed 
throughout the run of the algorithm. 

(iv) The Mutation Operator : When the point of mutation is 
randomly selected and this point happens to be in a 
locked range, another point is randomly chosen until it 
falls outside the locked sub-sequences.  

(v) The Crossover Operator: Since all individuals, 
including the two selected parents, are locked at the 
same points, two structures can still be recombined 
even if the cutpoint happens to be within a locked 
subsequence. However, in this case the second part is 
not turned to ensure that the newly created individual 
contains the respective sub-formation. 

(vi) The Cooling Factor : Cooling is done slowly according 
to the Boltzman distribution, with acceptance 
probability as  1 /  {1+exp[ΔE /T] }, where, T=ΔT/K 

 
Figure 1 : Secondary structures that can be chosen as locked sub-sequences for an arbitrary range of amino acids: (a) α helix with direction 1 (b) α helix with 

direction 2 (c) Extended β -sheet (d) a single fold - loop (e) compact core structure. 
 
In this experiment, in contrast with Liang-Wong EMC and 
Bui-Sundarraj SSGA, several ranges can be chosen, 
whereby also the different kinds of sub-structures can be 
combined. The size or position of the ranges is irrelevant as 
long as the different ranges do not overlap. Thus, though not 
quite meaningful, it is theoretically possible to select the 
complete sequence and assigned a certain structure to it. All 
individuals of the population are initialized with these sub-
sequences. The selected ranges are then locked

B. The PRSA Technique : 

 which means 
that they will keep this form for the course of the algorithm. 

Simulated Annealing and Genetic algorithms are 
naturally motivated, general purpose optimization 
procedures and possess many similarities. The main 
difference between the two, is that GA s are naturally 
parallel algorithms which search from a population of 
points, where as SA searches from a single point  and is not 
easily run on parallel processors. The advantage of SA over 
GA is that we can exercise extreme control over 
convergence in SA while GAs employ no such concept of 
cooling so its convergence is not easily forestalled or 
controlled. A better approach is where an effective 
combination of GA and SA is attempted. This is called 
Parallel Recombinative Simulated Annealing (PRSA)[17]. It 
retains the desirable asymptotic convergence properties of 
simulated annealing, while adding the populations approach 
and recombinative power of genetic algorithms. 

a. Genetic Algorithm - The GA Step : 
Genetic Algorithms (GAs) are adaptive heuristic search 

algorithm premised on the evolutionary ideas of natural  
selection  and  genetic transformation.  Genetic Algorithms  
are  designed  for  intelligent  exploitation  of  a random 
search within a defined search space to optimize a solution. 
In the present context, GA starts with a population of 

individual chromosomes - the probable variations of initial 
structure of the amino acid sequence. Three genetic 
operators select, recombine and mutate the individuals to 
generate a number of offsprings - the changed structures. An 
iterative loop evaluates the fitness (energy) of all, retaining 
the best parents/offsprings. A new generation is formed with 
improved fitness of the initial population. The algorithm 
proceeds repeating the process generation by generation, 
finally converging to the optimum (lowest energy) structure. 

b. Simulated Annealing - The SA Step : 
The idea for Simulated Annealing (SA) based 

optimization originally given by Kirkpatrick et.al. [11] relies 
on the principles of thermodynamics and resembles the 
process in which a solid material is first melted and then 
allowed to cool by slowly reducing temperature. This 
approach is very suitable for discrete combinatorial 
optimization problems, such as the protein structure 
prediction problem[12]. A description of the SA procedure 
is as follows - Assume that a search algorithm is looking for 
a configuration that minimizes a certain cost function E. The 
steps of SA can then be formulated as given below -  
Step 1 - Starting off at an initial configuration, a sequence of 
iterations is generated.  
Step  2 - Each iteration consists of the random selection of a 
configuration from the neighbourhood of the current 
configuration and the calculation of the corresponding 
change in cost function Δ E.  
Step  3 - The neighbourhood is defined by the choice of a 
generation mechanism, i.e. a ``prescription'' to generate a 
transition from one configuration into another by a small 
perturbation. 
Step  4 -  If change in cost function (ΔE) is negative, the 
transition is unconditionally accepted; 
If the cost function increases,  the transition is accepted with 
a probability based upon the Boltzmann distribution :          
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P (Δ E)~exp(--ΔE / kT), where k is a constant and the 
temperature T is a control parameter.  
Step 5 - This temperature T , is gradually lowered 
throughout the algorithm from a sufficiently high starting 
value (i.e. a temperature where almost every proposed 
transition, both positive and negative, is accepted) to a 
``freezing'' temperature, where no further changes occur.  
In practice, the temperature is decreased in stages, and at 
each stage the temperature is kept constant until thermal 
quasi-equilibrium is reached. The whole of parameters 
determining the temperature decrement (initial temperature, 
stop criterion, temperature decrement between successive 
stages, number of transitions for each temperature value) is 
called the 

i. the definition of configurations;  

cooling schedule.  
Consequently the four key ``ingredients'' for the 
implementation of simulated annealing are:  

ii. a generation mechanism, i.e. the definition of a 
neighborhood on the configuration space;  

iii. the choice of a cost-function;  
iv. a cooling schedule.  

C. Parallel Recombinative Simulated Annealing - 
The Prediction Algorithm : 

The working of Parallel Recombinative Simulated 
Annealing (PRSA) technique can be imagined as if several 
copies of SA Algorithm are running in Parallel, using 
population heuristics of GA with mutation as a 
neighborhood operator, and crossover to recombine 
independent solutions[18]. The new copies are accepted 
according to the Metropolis criterion. The disruption by 
crossover and mutation is not a problem in PRSA due to the 
non destructive nature of the algorithm. Convergence is 
strictly regulated by a cooling schedule. Because of its slow 
cooling and diversity maintaining operators , PRSA has little 
problem with genetic drift. 
//     Pseodocode : The PRSA Algorithm    // 
1. Set  :  Population with initial configuration Cpop 
               Temperature with initial value To , final value TN 
2. Repeat till Ti <= TN, 

Make random perturbation to system, changing to new 
population from current (Cpop  C* pop) 

2.1     Randomly pair all population elements 
2.2     For each such pair of parents 
           2.2.1  Generate 2 children using a recombination  
                      operator (crossover), followed by a   
                      neighborhood operator (mutation ) 
          2.2.2   Calculate energy  for parents and children 
          2.2.3   Apply metropolis algorithm to decide whether     
.                    or not to accept the change - 

- hold trials between child and parent  
- keep parent with the probability , 

1 /  {1+exp[( Eparent – Echild )/T] } 
     2.3    Increase counter  ,     i = i + 1   
     2.4    Lower temperature , Ti  = TO – i * (TO – TN) / N  
3.  End  

PRSA  starts with a very high temperature and generates 
a large number  of  random  structures  (initial  population).  
A small perturbation is made to form new population of 
structures. Crossover and mutation are applied. Individuals 
are retained as determined by Boltzmann trials. 
Subsequently, the temperature is lowered by a small 
amount, and creation of a new generation starts. If  the  
‘temperature cooling  schedule’  is  made  slower, it 
increases  probability  of  finding  the  optimum  solution - 
the global minima.  The cost, however, is a longer 
computation time. The SA step is thus, a bit subjective but, 
has a ability to escape local minima. Another advantage is 
its very simple implementation. SA is sometimes called a 
“biased random walk”. This due to the fact that iteration 
steps are  made  randomly  and  they  do  not  contain  an  
‘intelligent’  move  as  most  of  the  other  optimization 
techniques, so it does not require the knowledge of the 
search space[22]. A balance is made by the GA step which 
induces the parallelism with population of structure 
orientations and intelligent decision making for fast 
convergence[20]. On the whole PRSA inherits natural 
escape from local minima with temperature control of SA 
and generational improvement of fitness value with smart 
moves of GA. 

D. GUI Implementation on Standard Test and User       
Defined Amino Acid String Instances : 

With intent to provide an implementation that is suitable 
for user interactions, a graphical implementation is done 
with user options. The user is provided a number of 
benchmark sequences with the corresponding optimum 
energy.  Moreover, provision is given for an arbitrary 
sequence which can be defined by the user.  The program 
allows to determine sub-sequences to be locked, that means 
to maintain a certain structure, namely a α helix (dir 1 or 2), 
a β -sheet, a single fold and compact core. If no sub-
sequence is locked, the program is executed with the normal 
PRSA algorithm. In addition to the size of the population 
and the number of iterations to be performed, the user can 
also select how many individuals of a population should be 
displayed as graphical representation. Though this value can 
still be varied after running the algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
6.   Empirical Results and Discussion :  

 

Figure 2 : Ground energy structure (native state) of protein length  (a) L = 48   (b)  L = 60    (c) L = 85 found by the PRSA sampler with sub-sequence secondary fold 
lock constraints. 
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By sampling on the constrained sructural space, PRSA folds 
the L(48,64,85) sequence length rapidly to their putative 
ground energy states. The computational results are 
summarized in Table I. The putative ground states found by 
the constrained PRSA sampler for the 48, 64 and 85 
sequence length are shown in Figure 2

VI. CONCLUSION AND FUTURE PROSPECTS 

.  
 With constraint (a) and (c), the PRSA folds the sequence 
rapidly to native state with energy -23, as compared to EMC 
taking higher number of evaluations. With slightly stronger 
constraints (e),(f) and (g), EMC folds the sequence to many 
ground states in perturbed evaluations. With (g), EMC fails 
to reach the ground energy state, while PRSA is found as a 
stronger contender with continuous success and lower 
number of evaluations for similar constraints. For example, 
in one run with constraint (f), EMC scans 44,029 valid 
structures before ground energy state was found in contrast 
with PRSA which takes only 32,723 evaluations. Though in 
one case with lock constraint range (d), PRSA was not able 
to converge to ground E-42, the overall performance is more 
efficient than EMC in terms of computational time and 
speed of convergence. Two string instances are included in 
the table with a user defined lock range of a core, a helix 
and a loop for length 24 and 25. Comparison could not be 
done due to unavailability of similar data in [5]. 

For  PRSA,  two  points  needs  to  stress  are  its flexible 
structure and learning capability. The structure of PRSA is 
“flexible” in the sense that any efficient move developed for 
protein folding can be incorporated as a mutation operator or 
a crossover operator. The “learning” capability of PRSA 
refers to its ability to modify its behavioral tendency by 

experience. The use of population heuristics makes it 
possible for PRSA to learn from its historical samples and at 
the same time, controlled cooling schedule leads to 
appropriate folding pathways guiding towards the putative 
ground energy states. In the SA step of PRSA, the 
simulation at high temperatures can help the system make a 
much global exploration over the whole sample space. At 
high temperatures, random mutations are easily accepted, 
hence a high energy structure will, climb up the temperature 
ladder, consequently it will be eliminated from the 
population. While a low energy structure will climb down 
the temperature ladder.At low  temperatures, random 
mutations are difficult to accept and low energy structure 
will be stored there for a relatively long time period. The 
iterative process of the GA step with integrated genetic 
operators promotes low energy structures to have a 
maximum spread (number of offsrings one can produce) 
thus, improving the overall energy fitness vector of  
chromosomes. Hence the PRSA technique proceeds learning 
from its historical samples.  

 
We showed that the PRSA can be effectively applied to 

simulations of protein folding on lattice models using the 
sub sequence secondary fold locks. In all cases it did better 
than the Evolutionary Monte Carlo, in terms of both reduced 
computational time and number of valid structures scanned 
to reach the optimum. We also designed a graphical user 
interface with selection options. The numerical results 
showed that it is very successful in finding low energy 
states. Although we have considered only 2D HP models in 
this work, we stress that the extension to 3D HP and real 
protein models is straightforward. 

 
Table I - S.No. gives the reference for the constraint range set, (a) for (17-26) , (c) for (33-44) ... ; L is the length of the amino acid sequence, with derived ground 

energy Emin putative from Literature ; Lock constraints specify the ranges which is not considered in the optimization process presuming a fixed secondary 
structure ; EMC stands for Evolutionary Monte Carlo [5] compared to PRSA[ # proposed model ]; Number of structures are the valid states scanned by the 

algorithm before reaching the global minimal  energy state.    *   ground energy is not found /reported,    --~ data unavailable / not tested with EMC 

S. 
No. 

Length 
With 
Emin 

Lock Constraints 
(Sub Sequence range of secondary structures) 

EMC [5] 
Ground 
Energy 

EMC [5] 
no. of valid 
structures  

PRSA # 
Ground 
Energy 

PRSA# 
No. of valid 
structures  

(a)   L : 48, E:-23  (17 - 26 ) -23 53,263 -23 42,958 
(b)   L : 60, E:-36 Without lock constraints -35* --* -36 36,425 
(c)   L : 60, E:-36 ( 33 - 44 ) -36 40,334 -36 34,599 
(d)   L : 64, E:-42 ( 1 - 10 ) ,( 55 - 64 ) -42 77,287 -41* 65,864 
(e)   L : 85, E:-52  ( 09 - 20 )  ( 27 - 38 )     ( 42 - 53 )  ( 57 - 68 ) -52 17,794 -52 10,026 
(f)   L : 85, E:-52 ( 09 - 18 )  ( 27 - 36 )     ( 42 - 51 )  ( 57 - 66 ) -52 44,029 -52 32,723 
(g)   L : 85, E:-52 ( 11- 18 )   ( 29 - 36 )     ( 44 - 51 )  ( 59 - 66 ) -51* --* -52 35,642 
(h)   L : 24, E:-9 (11-20) core --~ --~ -9 7,564 
(i)   L : 25, E:-8 (1-8) helix, (18-25) loop --~ --~ -8 8,500 
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