
Volume 2, No. 5, Sept-Oct 2011 

International Journal of Advanced Research in Computer Science 

REVIEW ARTICLE 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved    23 

ISSN No. 0976-5697 

Face Detection and Tracking Techniques: A Review 

Alankrita Aggarwal 
Senior Assistant Professor 

Department of Computer Science and Engineering 
Haryana College of Technology and Management 

Kaithal, India 
alankrita.agg@gmail.com 

Nandita Sethi* 
M.Tech (CSE) 

Department of Computer Science and Engineering 
Haryana College of Technology and Management 

Kaithal, India 
nandita.sethi21@yahoo.com

Abstract: Face Detection and robustly tracking in a video is a difficult yet important challenge to meet. There are various techniques exits in 
literature for face detection and tracking. Various face detection methods available in literature like, knowledge based detection, template based 
detection, feature based and appearance based methods. Out of these, appearance based methods are prominently used. In this paper we are 
putting light on viola and jones method for face detection. Further for tracking various methods like motion based, predictive learning based 
methods exits in literature. In this paper we are providing light on optical flow based (motion based) technique. Further these techniques can be 
merged for robust and real time face detection and face tracking method.   
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I. INTRODUCTION 

Human face detection and tracking is an active area of 
research covering several disciplines such as image 
processing, pattern recognition and computer vision. The 
human face poses even more problems than other objects 
since the human face is a dynamic object that comes in 
many forms and colors. However, facial detection and 
tracking provides many benefits. Facial recognition is not 
possible if the face is not isolated from the background.  

Human Computer Interaction could greatly be improved 
by using emotion, pose, and gesture recognition, all of 
which require face and facial feature detection and tracking. 
Facial Features tracking is a fundamental problem in 
computer vision due to its wide range of applications in 
psychological facial expression analysis and human 
computer interfaces. Recent advances in face video 
processing and compression have made face-to face 
communication be practical in real world applications. And 
after decades, robust and realistic real time face tracking still 
poses a big challenge. The difficulty lies in a number of 
issues including the real time face feature tracking under a 
variety of imaging conditions (e.g., skin color, pose change, 
self-occlusion and multiple non-rigid features deformation).  

There are various techniques exits in literature for facial 
feature detection and tracking. In this paper a face detector 
based on the Haar-like features [9] is studied. This face 
detector is fast and robust to any illumination condition.  
Further, in this paper we are providing light on optical flow 
based (motion based) technique. One of the famous optical 
flow algorithm is the Lucas Kanade algorithm. Pyramidal 
Lucas Kanade algorithm [8] is the powerful optical flow 
algorithm used in feature tracking. It tracks starting from 
highest level of an image pyramid and working down to 
lower levels. Tracking over image pyramids allows large 
motions to be caught by local windows. Also Shi and 
Thomasi algorithm [4] can be used to extract facial feature 
points.  

 

II. FACE DETECTION 

For face detection, Viola & Jones’s face detector based 
on the Haar-like features [9] can be used. In [9], Paul Viola 
and Michael Jones, describes a visual object detection 
framework that is capable of processing images extremely 
rapidly while achieving high detection rates. There are three 
key contributions. The first contribution is a new a 
technique for computing a rich set of image features using 
the integral image. The second is a learning algorithm, based 
on AdaBoost, which selects a small number of critical visual 
features and yields extremely efficient classifiers [5]. The 
third contribution is a method for combining classifiers in a 
“cascade” which allows background regions of the image to 
be quickly discarded while spending more computation on 
promising object-like regions.  

A. Features Selection: 
The main purpose of using features rather than the 

pixels directly is that features can act to encode ad-hoc 
domain knowledge that is difficult to learn using a finite 
quantity of training data. Also the feature-based system 
operates much faster than a pixel-based system (Viola and 
Jones method), [9]. The simple features used are reminiscent 
of Haar basis functions which have been used by 
Papageorgiou et al. [6] Examples of the features used can be 
seen in Fig. 1. The features consist of a number of rectangles 
that are equal in size and horizontally or vertically adjacent.  

The value of a two-rectangle feature (A and B in Fig. 1 
is calculated as the difference between the sum of pixels 
within the two rectangular regions of the feature. In a three-
rectangle feature (C in Fig. 1) the sum of pixels in the two 
outside rectangles is subtracted from the sum of the pixels in 
the centre rectangle. In a four-rectangle feature (D in Fig. 1) 
the feature value is the difference in sum of pixels between 
diagonal pairs of rectangles.  
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Figure.1: Rectangle features shown relative to the enclosing detection 

window. 
The sum of the pixels which lie within the white 

rectangles are subtracted from the sum of pixels in the grey 
rectangles. Two-rectangle features are shown in (A) and (B) 
of Fig. 1. (C) in Fig. 1 shows a three-rectangle feature, and 
(D) in Fig. 1  a four-rectangle feature.  
a. Integral Image: Rectangular features can be computed 

very rapidly using an intermediate representation for the 
image called the integral image [9]. The integral image 
at location (x, y)  contains the sum of the pixels above 
and to the left of (x, y), inclusive: 

               
where i(x, y)  is the original image and ii(x, y) is the integral 
image. Using the following pair of recurrences: 
             s(x, y) =  s(x,y-1)+ i(x, y)                                     (1) 
            ii(x, y) = ii(x-1,y) +s(x, y)                                     (2) 
(where s(x, y) is the cumulative row sum, s (x, -1) = 0 and ii 
(-1, y) = 0 the integral image can be computed in one pass 
over the original image. 

Using the integral image any rectangular sum can be 
computed in four array references (Fig. 2). Clearly the 
difference between two rectangular sums can be computed 
in eight references. Since the two rectangle features defined 
above involve adjacent rectangular sums they can be 
computed in six array references, eight in the case of the 
three-rectangle features, and nine for four-rectangle features. 

 
Figure. 2: Sum of pixel values within “D”. 

The above Fig. 2 showing that the sum of the pixels 
within rectangle D can be computed with four array 
references. The value of the integral image at location 1 is 
the sum of the pixels in rectangle A. The value at location 2 
is A + B, at location 3 is A + C, and at location 4 is A + B + 
C + D. The sum within D can be computed as 4 + 1 - (2 + 
3).  

B. Learning Classification Functions: 
Given a feature set and a training set of positive and 

negative sample images, any number of machine learning 
approaches could be used to learn a classification function. 
A variant of AdaBoost is used both to select the features and 
to train the classifier [5]. In its original form, the AdaBoost 
learning algorithm is used to boost the classification 
performance of a simple (sometimes called weak) learning 
algorithm. Recall that there are over 117,000 rectangle 
features associated with each image 24×24 sub-window, a 

number far larger than the number of pixels. Even though 
each feature can be computed very efficiently, computing 
the complete set is prohibitively expensive. The main 
challenge is to find a very small number of these features 
that can be combined to form an effective classifier. In 
support of this goal, the weak learning algorithm is designed 
to select the single rectangle feature which best separates the 
positive and negative examples. 

C. Cascade of Classifiers: 
The overall form of the detection process is that of a 

degenerate decision tree, what we call a “cascade” [2] (see 
Fig. 3). A positive result from the first classifier triggers the 
evaluation of a second classifier which has also been 
adjusted to achieve very high detection rates. A positive 
result from the second classifier triggers a third classifier, 
and so on. A negative outcome at any point leads to the 
immediate rejection of the sub-window.                                          
 

                                                       
 

Figure. 3: Schematic depiction of a the detection cascade. 
A series of classifiers are applied to every sub-window. 

The initial classifier eliminates a large number of negative 
examples with very little processing. Subsequent layers 
eliminate additional negatives but require additional 
computation. After several stages of processing the numbers 
of sub-windows have been reduced radically. Further 
processing can take any form such as additional stages of 
the cascade or an alternative detection system.  

III. MOTION DETECTION AND TRACKING 

In the field of computer vision motion detection has a 
relevant importance. By using information contained in a 
stand image, we can obtain a lot of information about what 
we are observing, but there is no way to automatically infer 
what is going to happen in the immediate future. On the 
other hand a sequence of images provide information about 
movement of depicted objects. There's a plenty of 
techniques to recognize movement in a sequence, some 
based on feature and pattern recognition, some other based 
just on pixels, regardless what they mean for a human being. 
Examples are Block Matching analysis and Optical Flow 
estimation methods etc. 

A. Motion and Motion Field: 

 
Figure. 4: Velocity projection over image surface 
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When an object is moving in space in front of a camera 
there's a corresponding movement on the image surface. 
Give the point P0 and its projection Pi, by knowing its 
velocity V0, we can find out the vector Vi representing its 
movement in the image (Fig. 4). Given a moving rigid body 
we can build a motion field by computing all the Vi motion 
vectors. The motion field is a way to map the movement in a 
3D space, on a 2D image taken on camera: for this reason, 
since we loose a dimension, we cannot exactly compute 
motion field, but just approximate it.  

 
Figure 5: Example of motion flow 

B. Optical Flow: 
Optical flow is a phenomenon we deal with every day. 

It is the apparently visual motion of standing objects as we 
move through the world. When we are moving the entire 
world around us seems to move in the opposite way: the 
faster we move, the faster it does. This motion can also tell 
us how close we are to the different object we see. The 
closer they are, the faster their movement will appear. There 
is also a relationship between the magnitude of their motion 
and the angle between the direction of our movement and 
their relative position to us: if we are moving toward an 
object, it will appear to stand still, but it will become larger 
as we get closer (this phenomena is also called FOE, focus 
of expansion); rather, if the object we are looking at is 
beside us, it will appear moving faster. In computer vision 
there are a lot of optical flow estimation techniques applied 
in fields as behaviour recognition or video surveillance; 
though they are "blinder" than pattern recognition based 
methods, there are fast enough implementations that allow 
us to build soft real time applications. 

IV. OPTICAL FLOW TRACKING 

Optical flow is the apparent motion of image 
brightness. Let I(x,y,t) be the image brightness that changes 
in time to provide an image sequence. Two main 
assumptions can be made [12]: 

i. Brightness I(x,y, t) smoothly depends on coordinates x, 
y in greater part of the image. 

ii. Brightness of every point of a moving or static object 
does not change in time. 
Let some object in the image, or some point of an 

object, move and after time dt the object displacement is 
(dx,dy). Using Taylor series for brightness I (x,y,t), gives 
the following: 

 
where “…” are higher order terms.       
Then, according to assumption 2, 
              

and  

                
Divide by dt and denote 
                        Ixu + Iyv + It = 0 

The above equation is called optical flow constraint 
equation where 
                            
  

are components of optical flow field in x and y 
coordinates and the derivatives of I are denoted by 
subscripts. 

The optical flow constraint equation can be rewritten as 
 

We have one equation but two variables, that means we 
need some other constraints. For this reason optical flow 
sometimes doesn't correspond to the motion field. This is the 
so called aperture problem and we can understand it better 
by watching at Fig. 6, since the cylinder is rotating, if we 
consider just the black bars, it would be impossible to 
determine whether they're moving horizontally (as they do), 
or vertically, as detected by optical flow. It is impossible to 
determine the real movement unless the end of the bars 
become visible. 

 
Figure 6: An example when optical flow is different from motion field 

A. Aperture Problem: 
One problem we do have to worry about, however, is 

that we are only able to measure the component of optical 
flow that is in the direction of the intensity gradient. We are 
unable to measure the component tangential to the intensity 
gradient. This problem is illustrated in Fig. 7, and further 
developed below. 

 
 

Figure. 7: The aperture problem. We can only measure the component b. 
Since,  
                               Ixu + Iyv + It = 0, 

This optical flow constraint equation (which expresses a 
constraint on the components u and v of the optical flow) 
can be rewritten as 
           

Thus, the component of the image velocity in the 
direction of the image intensity gradient at the image of a 
scene point is 

tyx IvIuI −=+

dt
dxu =

dt
dyv =
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We cannot, however, determine the component of the 
optical flow at right angles to this direction. This ambiguity 
is known as the aperture problem. 

B. Optical Flow Methods: 
There are different methods that add some constraint to 

the problem, in order to estimate the optical flow. Some of 
them are: 
a. Block-Based Methods: minimizing sum of squared 

differences or sum of absolute differences, or 
maximizing normalized cross-correlation 

b. Discrete Optimization Methods: the whole space is 
quantized, and every pixel is labelled, such that the 
corresponding deformation minimizes the distance 
between the source and the target image. The optimal 
solution is often computed through min-cut max-flow 
algorithms or linear programming. 

c. Differential Methods: The differential methods of 
optical flow estimation, based on partial spatial and 
temporal derivatives of the image signal, as following:- 

d. Lucas-Kanade Method: dividing image into patches and 
computing a single optical flow on each of them 

e. Horn-Schunck Method: optimizing a functional based 
on residuals from the brightness constancy constraint, 
and a particular regularization term expressing the 
expected smoothness of the flow field. 

f. Buxton-Buxton Method: based on a model recovered 
from the motion of edges in image sequences General 
variational methods - a range of 
modifications/extensions of Horn-Schunck, using other 
data terms and other smoothness terms. 

C. Lucas-Kanade Method: 
The Lucas-Kanade algorithm [1], as originally proposed 

in 1981, was an attempt to produce dense results. Yet 
because the method is easily applied to a subset of the points 
in the input image, it has become an important sparse 
technique. The Lucas Kanade algorithm can be applied in a 
sparse context because it relies only on local information 
that is derived from some small window surrounding each of 
the points of interest. The disadvantage of using small local 
windows in Lucas-Kanade is that large motions can move 
points outside of the local window and thus become 
impossible for the algorithm to find. This problem led to 
development of the “pyramidal” Lucas Kanade algorithm 
[8], which tracks starting from highest level of an image 
pyramid (lowest detail) and working down to lower levels 
(finer detail). Tracking over image pyramids allows large 
motions to be caught by local windows. 

The basic idea of Lucas-Kanade algorithm rests on 
three assumptions. 
a. Brightness constancy:  A pixel of an object in an image 

does not change in appearance as it (possibly) moves 
from frame to frame. For grayscale image, this means 
we assume that the brightness of a pixel does not 
change as is tracked from frame to frame. 

b. Temporal Persistence or Small Movements: The image 
motion of a surface patch changes slowly in time. In 
practice, this means the temporal increments are fast 
enough relative to the scale of motion in the image that 
the object does not move much from frame to frame. 

c. Spatial Coherence: Neighboring points in a scene 
belong to the same surface, have similar motion, and 
project to nearby points on the image plane. 

D.  Pyramidal Lucas-Kanade Feature Tracker: 
Pyramidal Lucas Kanade algorithm is the powerful 

optical flow algorithm used in feature tracking. It is a fast 
algorithm and provides sufficient accuracy and robustness. 
Consider an image point u = (ux, uy) on the first image I, the 
goal of feature tracking is to find the location v = u + d in 
next image J such as I(u) and J(v) are “similar". 
Displacement vector d is the image velocity at x which also 
known as optical flow at x [8]. Because of the aperture 
problem, it is essential to define the notion of similarity in a 
2D neighborhood sense. Let ωx and ωy are two integers. 
then d the vector that minimizes the residual function 
defined as follows:  

       
Observe that following that definition, the similarity 

function is measured on a image neighborhood of size (2ωx 
+ 1) x (2ωy +1). This neighborhood will be also called 
integration window. Typical values for ωx and ωy are 
2,3,4,5,6,7 pixels. 

i. Functional and Performance Requirements: The 
pyramidal algorithm is designed to meet two important 
requirements for a practical feature tracker:  

a. The algorithm should be accurate: The object of a 
tracking algorithm is to find the displacement of a 
feature in two different images. An inaccurate algorithm 
would defeat the purpose of the algorithm in the first 
place.  

b. The algorithm should be robust: It should be insensitive 
to variables that are likely to change in real world 
situations. Variables such as variation in lighting, the 
speed of image motion and patches of the image 
moving at different velocities. In addition to these 
requirements, in practice, the algorithm should meet a 
performance requirement:  

c. The algorithm should be computationally inexpensive: 
The purpose of tracking is to identify the motion of 
features from frame to frame so the algorithm generally 
will run at a frequency equal to the frame rate. Most 
vision systems perform a series of processing functions 
to meet specific goals and functions that are run at a 
frequency equal to the frame rate of the source video 
need to use a little of the system resources as possible. 

V. FACIAL FEATURE EXTRACTION 

One of the basic method to do object tracking is 
selecting representative point features and track that features 
using optical flow. This method is one of the most intuitive 
methods in object tracking. The Shi and Tomasi method as 
the representative of this method is a well known object 
tracking method. Shi and Tomasi method [4] can be used for 
facial feature points extraction. This method is based on the 
general assumption that the luminance intensity does not 
change for image acquisition. 
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VI. CONCLUSION 

To detect the face in the image, a face detector based on 
the Haar-like features can be used. This face detector is fast 
and robust to any illumination condition. For facial feature 
point extraction, Shi and Tomasi Method can be used. In 
this paper we are providing light on optical flow based 
(motion based) technique. In order to track the facial feature 
points, Pyramidal Lucas-Kanade Feature Tracker algorithm 
can be used. Pyramidal Lucas Kanade algorithm is the 
powerful optical flow algorithm used in feature tracking. 
Further these techniques can be merged for robust and real 
time face detection and face tracking method. 
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