
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 23

ISSN No. 0976-5697

Face Detection and Tracking Techniques: A Review

Alankrita Aggarwal
Senior Assistant Professor

Department of Computer Science and Engineering
Haryana College of Technology and Management

Kaithal, India
alankrita.agg@gmail.com

Nandita Sethi*
M.Tech (CSE)

Department of Computer Science and Engineering
Haryana College of Technology and Management

Kaithal, India
nandita.sethi21@yahoo.com

Abstract: Face Detection and robustly tracking in a video is a difficult yet important challenge to meet. There are various techniques exits in
literature for face detection and tracking. Various face detection methods available in literature like, knowledge based detection, template based
detection, feature based and appearance based methods. Out of these, appearance based methods are prominently used. In this paper we are
putting light on viola and jones method for face detection. Further for tracking various methods like motion based, predictive learning based
methods exits in literature. In this paper we are providing light on optical flow based (motion based) technique. Further these techniques can be
merged for robust and real time face detection and face tracking method.

Key Words: Face detection, face tracking, optical flow method, Pyramidal lucas kanade algorithm.

I. INTRODUCTION

Human face detection and tracking is an active area of
research covering several disciplines such as image
processing, pattern recognition and computer vision. The
human face poses even more problems than other objects
since the human face is a dynamic object that comes in
many forms and colors. However, facial detection and
tracking provides many benefits. Facial recognition is not
possible if the face is not isolated from the background.

Human Computer Interaction could greatly be improved
by using emotion, pose, and gesture recognition, all of
which require face and facial feature detection and tracking.
Facial Features tracking is a fundamental problem in
computer vision due to its wide range of applications in
psychological facial expression analysis and human
computer interfaces. Recent advances in face video
processing and compression have made face-to face
communication be practical in real world applications. And
after decades, robust and realistic real time face tracking still
poses a big challenge. The difficulty lies in a number of
issues including the real time face feature tracking under a
variety of imaging conditions (e.g., skin color, pose change,
self-occlusion and multiple non-rigid features deformation).

There are various techniques exits in literature for facial
feature detection and tracking. In this paper a face detector
based on the Haar-like features [9] is studied. This face
detector is fast and robust to any illumination condition.
Further, in this paper we are providing light on optical flow
based (motion based) technique. One of the famous optical
flow algorithm is the Lucas Kanade algorithm. Pyramidal
Lucas Kanade algorithm [8] is the powerful optical flow
algorithm used in feature tracking. It tracks starting from
highest level of an image pyramid and working down to
lower levels. Tracking over image pyramids allows large
motions to be caught by local windows. Also Shi and
Thomasi algorithm [4] can be used to extract facial feature
points.

II. FACE DETECTION

For face detection, Viola & Jones’s face detector based
on the Haar-like features [9] can be used. In [9], Paul Viola
and Michael Jones, describes a visual object detection
framework that is capable of processing images extremely
rapidly while achieving high detection rates. There are three
key contributions. The first contribution is a new a
technique for computing a rich set of image features using
the integral image. The second is a learning algorithm, based
on AdaBoost, which selects a small number of critical visual
features and yields extremely efficient classifiers [5]. The
third contribution is a method for combining classifiers in a
“cascade” which allows background regions of the image to
be quickly discarded while spending more computation on
promising object-like regions.

A. Features Selection:
The main purpose of using features rather than the

pixels directly is that features can act to encode ad-hoc
domain knowledge that is difficult to learn using a finite
quantity of training data. Also the feature-based system
operates much faster than a pixel-based system (Viola and
Jones method), [9]. The simple features used are reminiscent
of Haar basis functions which have been used by
Papageorgiou et al. [6] Examples of the features used can be
seen in Fig. 1. The features consist of a number of rectangles
that are equal in size and horizontally or vertically adjacent.

The value of a two-rectangle feature (A and B in Fig. 1
is calculated as the difference between the sum of pixels
within the two rectangular regions of the feature. In a three-
rectangle feature (C in Fig. 1) the sum of pixels in the two
outside rectangles is subtracted from the sum of the pixels in
the centre rectangle. In a four-rectangle feature (D in Fig. 1)
the feature value is the difference in sum of pixels between
diagonal pairs of rectangles.

Nandita Sethi et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,23-27

© 2010, IJARCS All Rights Reserved 24

Figure.1: Rectangle features shown relative to the enclosing detection

window.
The sum of the pixels which lie within the white

rectangles are subtracted from the sum of pixels in the grey
rectangles. Two-rectangle features are shown in (A) and (B)
of Fig. 1. (C) in Fig. 1 shows a three-rectangle feature, and
(D) in Fig. 1 a four-rectangle feature.
a. Integral Image: Rectangular features can be computed

very rapidly using an intermediate representation for the
image called the integral image [9]. The integral image
at location (x, y) contains the sum of the pixels above
and to the left of (x, y), inclusive:

where i(x, y) is the original image and ii(x, y) is the integral
image. Using the following pair of recurrences:
 s(x, y) = s(x,y-1)+ i(x, y) (1)
 ii(x, y) = ii(x-1,y) +s(x, y) (2)
(where s(x, y) is the cumulative row sum, s (x, -1) = 0 and ii
(-1, y) = 0 the integral image can be computed in one pass
over the original image.

Using the integral image any rectangular sum can be
computed in four array references (Fig. 2). Clearly the
difference between two rectangular sums can be computed
in eight references. Since the two rectangle features defined
above involve adjacent rectangular sums they can be
computed in six array references, eight in the case of the
three-rectangle features, and nine for four-rectangle features.

Figure. 2: Sum of pixel values within “D”.

The above Fig. 2 showing that the sum of the pixels
within rectangle D can be computed with four array
references. The value of the integral image at location 1 is
the sum of the pixels in rectangle A. The value at location 2
is A + B, at location 3 is A + C, and at location 4 is A + B +
C + D. The sum within D can be computed as 4 + 1 - (2 +
3).

B. Learning Classification Functions:
Given a feature set and a training set of positive and

negative sample images, any number of machine learning
approaches could be used to learn a classification function.
A variant of AdaBoost is used both to select the features and
to train the classifier [5]. In its original form, the AdaBoost
learning algorithm is used to boost the classification
performance of a simple (sometimes called weak) learning
algorithm. Recall that there are over 117,000 rectangle
features associated with each image 24×24 sub-window, a

number far larger than the number of pixels. Even though
each feature can be computed very efficiently, computing
the complete set is prohibitively expensive. The main
challenge is to find a very small number of these features
that can be combined to form an effective classifier. In
support of this goal, the weak learning algorithm is designed
to select the single rectangle feature which best separates the
positive and negative examples.

C. Cascade of Classifiers:
The overall form of the detection process is that of a

degenerate decision tree, what we call a “cascade” [2] (see
Fig. 3). A positive result from the first classifier triggers the
evaluation of a second classifier which has also been
adjusted to achieve very high detection rates. A positive
result from the second classifier triggers a third classifier,
and so on. A negative outcome at any point leads to the
immediate rejection of the sub-window.

Figure. 3: Schematic depiction of a the detection cascade.
A series of classifiers are applied to every sub-window.

The initial classifier eliminates a large number of negative
examples with very little processing. Subsequent layers
eliminate additional negatives but require additional
computation. After several stages of processing the numbers
of sub-windows have been reduced radically. Further
processing can take any form such as additional stages of
the cascade or an alternative detection system.

III. MOTION DETECTION AND TRACKING

In the field of computer vision motion detection has a
relevant importance. By using information contained in a
stand image, we can obtain a lot of information about what
we are observing, but there is no way to automatically infer
what is going to happen in the immediate future. On the
other hand a sequence of images provide information about
movement of depicted objects. There's a plenty of
techniques to recognize movement in a sequence, some
based on feature and pattern recognition, some other based
just on pixels, regardless what they mean for a human being.
Examples are Block Matching analysis and Optical Flow
estimation methods etc.

A. Motion and Motion Field:

Figure. 4: Velocity projection over image surface

Nandita Sethi et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,23-27

© 2010, IJARCS All Rights Reserved 25

When an object is moving in space in front of a camera
there's a corresponding movement on the image surface.
Give the point P0 and its projection Pi, by knowing its
velocity V0, we can find out the vector Vi representing its
movement in the image (Fig. 4). Given a moving rigid body
we can build a motion field by computing all the Vi motion
vectors. The motion field is a way to map the movement in a
3D space, on a 2D image taken on camera: for this reason,
since we loose a dimension, we cannot exactly compute
motion field, but just approximate it.

Figure 5: Example of motion flow

B. Optical Flow:
Optical flow is a phenomenon we deal with every day.

It is the apparently visual motion of standing objects as we
move through the world. When we are moving the entire
world around us seems to move in the opposite way: the
faster we move, the faster it does. This motion can also tell
us how close we are to the different object we see. The
closer they are, the faster their movement will appear. There
is also a relationship between the magnitude of their motion
and the angle between the direction of our movement and
their relative position to us: if we are moving toward an
object, it will appear to stand still, but it will become larger
as we get closer (this phenomena is also called FOE, focus
of expansion); rather, if the object we are looking at is
beside us, it will appear moving faster. In computer vision
there are a lot of optical flow estimation techniques applied
in fields as behaviour recognition or video surveillance;
though they are "blinder" than pattern recognition based
methods, there are fast enough implementations that allow
us to build soft real time applications.

IV. OPTICAL FLOW TRACKING

Optical flow is the apparent motion of image
brightness. Let I(x,y,t) be the image brightness that changes
in time to provide an image sequence. Two main
assumptions can be made [12]:

i. Brightness I(x,y, t) smoothly depends on coordinates x,
y in greater part of the image.

ii. Brightness of every point of a moving or static object
does not change in time.
Let some object in the image, or some point of an

object, move and after time dt the object displacement is
(dx,dy). Using Taylor series for brightness I (x,y,t), gives
the following:

where “…” are higher order terms.
Then, according to assumption 2,

and

Divide by dt and denote
 Ixu + Iyv + It = 0

The above equation is called optical flow constraint
equation where

are components of optical flow field in x and y
coordinates and the derivatives of I are denoted by
subscripts.

The optical flow constraint equation can be rewritten as

We have one equation but two variables, that means we
need some other constraints. For this reason optical flow
sometimes doesn't correspond to the motion field. This is the
so called aperture problem and we can understand it better
by watching at Fig. 6, since the cylinder is rotating, if we
consider just the black bars, it would be impossible to
determine whether they're moving horizontally (as they do),
or vertically, as detected by optical flow. It is impossible to
determine the real movement unless the end of the bars
become visible.

Figure 6: An example when optical flow is different from motion field

A. Aperture Problem:
One problem we do have to worry about, however, is

that we are only able to measure the component of optical
flow that is in the direction of the intensity gradient. We are
unable to measure the component tangential to the intensity
gradient. This problem is illustrated in Fig. 7, and further
developed below.

Figure. 7: The aperture problem. We can only measure the component b.
Since,
 Ixu + Iyv + It = 0,

This optical flow constraint equation (which expresses a
constraint on the components u and v of the optical flow)
can be rewritten as

Thus, the component of the image velocity in the
direction of the image intensity gradient at the image of a
scene point is

tyx IvIuI −=+

dt
dxu =

dt
dyv =

Nandita Sethi et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,23-27

© 2010, IJARCS All Rights Reserved 26

We cannot, however, determine the component of the
optical flow at right angles to this direction. This ambiguity
is known as the aperture problem.

B. Optical Flow Methods:
There are different methods that add some constraint to

the problem, in order to estimate the optical flow. Some of
them are:
a. Block-Based Methods: minimizing sum of squared

differences or sum of absolute differences, or
maximizing normalized cross-correlation

b. Discrete Optimization Methods: the whole space is
quantized, and every pixel is labelled, such that the
corresponding deformation minimizes the distance
between the source and the target image. The optimal
solution is often computed through min-cut max-flow
algorithms or linear programming.

c. Differential Methods: The differential methods of
optical flow estimation, based on partial spatial and
temporal derivatives of the image signal, as following:-

d. Lucas-Kanade Method: dividing image into patches and
computing a single optical flow on each of them

e. Horn-Schunck Method: optimizing a functional based
on residuals from the brightness constancy constraint,
and a particular regularization term expressing the
expected smoothness of the flow field.

f. Buxton-Buxton Method: based on a model recovered
from the motion of edges in image sequences General
variational methods - a range of
modifications/extensions of Horn-Schunck, using other
data terms and other smoothness terms.

C. Lucas-Kanade Method:
The Lucas-Kanade algorithm [1], as originally proposed

in 1981, was an attempt to produce dense results. Yet
because the method is easily applied to a subset of the points
in the input image, it has become an important sparse
technique. The Lucas Kanade algorithm can be applied in a
sparse context because it relies only on local information
that is derived from some small window surrounding each of
the points of interest. The disadvantage of using small local
windows in Lucas-Kanade is that large motions can move
points outside of the local window and thus become
impossible for the algorithm to find. This problem led to
development of the “pyramidal” Lucas Kanade algorithm
[8], which tracks starting from highest level of an image
pyramid (lowest detail) and working down to lower levels
(finer detail). Tracking over image pyramids allows large
motions to be caught by local windows.

The basic idea of Lucas-Kanade algorithm rests on
three assumptions.
a. Brightness constancy: A pixel of an object in an image

does not change in appearance as it (possibly) moves
from frame to frame. For grayscale image, this means
we assume that the brightness of a pixel does not
change as is tracked from frame to frame.

b. Temporal Persistence or Small Movements: The image
motion of a surface patch changes slowly in time. In
practice, this means the temporal increments are fast
enough relative to the scale of motion in the image that
the object does not move much from frame to frame.

c. Spatial Coherence: Neighboring points in a scene
belong to the same surface, have similar motion, and
project to nearby points on the image plane.

D. Pyramidal Lucas-Kanade Feature Tracker:
Pyramidal Lucas Kanade algorithm is the powerful

optical flow algorithm used in feature tracking. It is a fast
algorithm and provides sufficient accuracy and robustness.
Consider an image point u = (ux, uy) on the first image I, the
goal of feature tracking is to find the location v = u + d in
next image J such as I(u) and J(v) are “similar".
Displacement vector d is the image velocity at x which also
known as optical flow at x [8]. Because of the aperture
problem, it is essential to define the notion of similarity in a
2D neighborhood sense. Let ωx and ωy are two integers.
then d the vector that minimizes the residual function
defined as follows:

Observe that following that definition, the similarity

function is measured on a image neighborhood of size (2ωx
+ 1) x (2ωy +1). This neighborhood will be also called
integration window. Typical values for ωx and ωy are
2,3,4,5,6,7 pixels.

i. Functional and Performance Requirements: The
pyramidal algorithm is designed to meet two important
requirements for a practical feature tracker:

a. The algorithm should be accurate: The object of a
tracking algorithm is to find the displacement of a
feature in two different images. An inaccurate algorithm
would defeat the purpose of the algorithm in the first
place.

b. The algorithm should be robust: It should be insensitive
to variables that are likely to change in real world
situations. Variables such as variation in lighting, the
speed of image motion and patches of the image
moving at different velocities. In addition to these
requirements, in practice, the algorithm should meet a
performance requirement:

c. The algorithm should be computationally inexpensive:
The purpose of tracking is to identify the motion of
features from frame to frame so the algorithm generally
will run at a frequency equal to the frame rate. Most
vision systems perform a series of processing functions
to meet specific goals and functions that are run at a
frequency equal to the frame rate of the source video
need to use a little of the system resources as possible.

V. FACIAL FEATURE EXTRACTION

One of the basic method to do object tracking is
selecting representative point features and track that features
using optical flow. This method is one of the most intuitive
methods in object tracking. The Shi and Tomasi method as
the representative of this method is a well known object
tracking method. Shi and Tomasi method [4] can be used for
facial feature points extraction. This method is based on the
general assumption that the luminance intensity does not
change for image acquisition.

Nandita Sethi et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,23-27

© 2010, IJARCS All Rights Reserved 27

VI. CONCLUSION

To detect the face in the image, a face detector based on
the Haar-like features can be used. This face detector is fast
and robust to any illumination condition. For facial feature
point extraction, Shi and Tomasi Method can be used. In
this paper we are providing light on optical flow based
(motion based) technique. In order to track the facial feature
points, Pyramidal Lucas-Kanade Feature Tracker algorithm
can be used. Pyramidal Lucas Kanade algorithm is the
powerful optical flow algorithm used in feature tracking.
Further these techniques can be merged for robust and real
time face detection and face tracking method.

VII. REFERENCES

[i]. B. D. Lucas and T. Kanade, “An iterative image
registration technique with an application to stereo
vision,” Proceedings of the DARPA Imaging
Understanding Workshop, pp. 121–130, 1981.

[ii]. J. Quinlan, “Induction of decision trees,” Machine
Learning, Journal, vol. 1, no. 1, pp. 81-106, 1986.

[iii]. M. Lades, J.C. Vorbrüggen, J. Buhmann , J. Lange, C.
Malsburg, R. Würtz., and W. Konen, “Distortion
invariant object recognition in the dynamic link
architecture,” IEEE Trans. Computer, vol. 42, no. 3, pp.
300-310, 1993.

[iv]. J. Shi and C. Tomasi, “Good Features to Track,” IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 593-600, 1994.

[v]. Y. Freund and R.E. Schapire, “A decision-theoretic
generalization of on-line learning and an application to
boosting,” in European Conference on Computational
Learning Theory, pp. 23–37, 1995.

[vi]. C. Papageorgiou, M. Oren, and T. Poggio, “A general
framework for object detection,” In International
Conference on Computer Vision, vol. 21, pages 555–
562, 1998.

[vii]. K. Sung and T. Poggio, “Example-based learning for
view-based face detection,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, volume 20,
pp. 39–51, 1998.

[viii]. J.Y. Bouguet, “Pyramidal Implementation of the Lucas
Kanade Feature Tracker Description of the algorithm,”
Intel Corporation, Microprocessor Research Labs, pp. 1-
9, 2000.

[ix]. P. Viola and M. Jones, “Robust Real-time Object
Detection,” 2nd international workshop on statistical and
computational theories of vision - modeling, learning,
computing, and sampling, pp. 1-25, 2001.

[x]. E. Hjelmas and B.K. Low, “Face detection: a survey,”
Computer vision and image understanding, vol. 83, pp.
236-274, 2001.

[xi]. M. H Yang, “Detecting faces images, A survey,” IEEE
Transations on Pattern Analysis and Machine Inteligence
vol. 24, no. 1, pp. 34–58, 2002.

[xii]. Z. Vamossy, A. Toth, and P. Hirschberg, ”PAL Based
Localization Using Pyramidal Lucas-Kanade Feature
Tracker”, In 2nd Serbian-Hungarian Joint Symposium on
Intelligent Systems, Subotica, Serbia and Montenegro,
pp. 223-231, 2004.

[xiii]. K.S. Huang, and M.T. Trivedi , “Robust real-time
detection, tracking, and pose estimation of faces in video
streams,” Proceedings of the 17th International
Conference on Pattern Recognition, Vol. 3 pp. 965 - 968
, 2004.

[xiv]. L. Stan and Z. Zhang, “FloatBoost learning and
statistical face detection”, IEEE Trans. On Pattern
Analysis and Machine Intelligence. vol. 26, no. 9, pp.
1112-1123, 2004.

[xv]. P. Menezes, J. C. Barreto, and J. Dias, “face tracking
based on haar like features and eigen faces,” 5th IFAC
Symposium on Intelligent Autonomous Vehicles,
Lisbon, Portugal, pp. 1-6, July 5-7, 2004.

[xvi]. J. Barreto, P. Menezes and J. Dias, “Human-robot
interaction based on Haar-like features and eigenfaces,”
In International Conference on Robotics and Automation,
Vol. 2, pp. 1888 – 1893, 2004.

