
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 572

ISSN No. 0976-5697

Comparative Analysis Of BNP Scheduling Algortihms

Ravreet Kaur
Department of Computer Sci. & Engg.

Guru Nanak Dev University

Amritsar, Punjab, India

ravreet@yahoo.com

Abstract: Parallel Computing is the procedure of creating an environment where requirement of the job is equated with the available resources in

system. Multiprocessor task scheduling is most important and very crucial issue in design of homogeneous parallel systems. This paper covers

the study of scheduling algorithms related to Bounded Number of Processors (BNP) class of multiprocessor scheduling algorithm represented by

a Directed Acyclic graph (DAG). An attempt has been made to evaluate their performance on basis of Processor Utilization, SpeedUp and

Scheduled Length Ratio (SLR). Analysis of the performance has proved Dynamic Level Scheduling (DLS) as a better algorithm in

homogeneous environment.

Keywords: Directed Acyclic Graph (DAG), Dynamic Level Scheduling (DLS), Homogeneous Environment, Multiprocessor Scheduling

algorithm, Parallel Computing, Multiprocessor task scheduling, Processor Utilization, Scheduled Length Ratio (SLR), SpeedUp.

I. INTRODUCTION

The field of parallel task scheduling is one of the most

advanced and rapidly evolving fields in computer sciences.

Parallel computing is expected to bring a break-through in

the increase of computing speed and efficiency. This calls

for appropriate scheduling strategies controlling access to

such resources as well as scheduling strategies controlling

execution of the parallel application modules. The

scheduling problem deals with the optimal assignments of a

set of tasks onto parallel resources and orders their

execution to achieve optimal objective function.

This paper employs the generic DAG model and

discusses its variations and suitability to different situations.

Further the basic strategies of scheduling algorithms i.e.

APN, UNC, TDB and BNP algorithms are discussed. The

BNP class of algorithms are discussed in detail giving their

comparative analysis.

A. The DAG Model:

The DAG [1][2] is a generic model of a parallel program

consisting of a set of processes dependent on each other as

shown in Figure 1. Each process is an indivisible unit of

execution, expressed by a node. A node has one or more

inputs and can have one or more outputs to various nodes.

Node is triggered to execute once all its inputs are available,

resulting in its outputs. In this model, a set of n nodes {n1,

n2, n3…nn} are connected by a set of e directed edges, which

are represented by (ni, nj) where ni is called the Parent node

and nj is called the Child node. A node without parent is

called an Entry node and a node without child is called an

Exit node.

The weight of a node denoted by w (ni), represents the

process execution time of a process. Since each edge

corresponds to a message transfer from one process to

another, the weight of an edge, denoted by c(ni, nj) , is equal

to the message transmission time from node ni to nj. Thus,

c(ni, nj) becomes zero when ni and nj are scheduled to the

same processor because intraprocessor communication time

is negligible compared with the interprocessor

communication time. The node and edge weights are usually

obtained by estimations.

Figure 1. Directed Acyclic Graph

II. LITERATURE SURVEY

Ishfaq Ahmad, Yu-Kwong Kwok [1] evaluated and

compared algorithms for scheduling and clustering. These

algorithms allocate a parallel program represented by an

edge-weighted directed acyclic graph (DAG), to a set of

homogeneous processors, to minimize the completion time.

Yu-Kwong Kwok [2] [4] has categorized the algorithms

in various sets like UNP, BNP, APN, TDB and have used

various parameters like algorithm running time, the number

of processors used, comparison with each other, number of

best solutions attained etc. to evaluate the multiprocessor

task scheduling algorithms. Thomas G. Price [3] has done

an exact analysis of processor utilization using shortest-

remaining-processing-time scheduling for systems with two

jobs given and it is observed that the processor utilization is

independent of the form of the processing time distribution.

T. Hagras, J. Janeček [5] gave an idea of efficient task

scheduling algorithms in homogenous environments, and

also provided with an efficient scheduling techniques using

list scheduling techniques in static and dynamic

environment. J.K. Lenstra, A.H.G Rainnooy Kan [6]

surveyed all the recent algorithms for multiprocessor

scheduling, presented the basic models of scheduling and

6
3

2 4

2

20

3

5

4

5

1

10

Ravreet Kaur, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,572-577

© 2010, IJARCS All Rights Reserved 573

provided with the framework for presenting the results of

these algorithms. Min-You Wu [7] showed that most of the

parallel tasks which are represented by DAG are sequential.

Two efficient static task scheduling algorithms were

discussed and their performance is evaluated on Intel

Paragon machine. Arezou Mohammadi and Selim G. Akl

[11] studied the characteristics and constraints of real-time

tasks which should be scheduled to be executed. Analysis

methods and the concept of optimality criteria, which leads

to the design of appropriate scheduling algorithms, was also

addressed. Also both the preemptive and non-preemptive

static-priority based algorithms are also discussed. Guolong

Lin, Rajmohan Rajaraman [13] studied multiprocessor

scheduling in scenarios where there is uncertainty in the

successful execution of jobs when assigned to processors.

They considered the problem of multiprocessor

scheduling under uncertainty, in which there are given n

unit-time jobs and m machines, a directed acyclic graph C

giving the dependencies among the jobs, and for every job j

and machine i, the probability Pij of the successful

completion of job j when scheduled on machine i in any

given particular step. They found a schedule that minimizes

the expected makespan, that is, the expected completion

time of all the jobs. Bernard Chauvi`ere, Dominique

Geniet, Ren´e Schott [14] proposed various algorithmic

improvements for the multiprocessor scheduling problem.

Their simulation results showed that their methods

produce solutions closer to optimality when the number of

processors and/or the number of precedence constraints

increases. Igor Grudenić [15] presented all the aspects of

scheduler design such as system architectures, workload

types, metrics, simulator tools and benchmarks. Overview of

the existing scheduling techniques was also compared. S.V.

Sudha and K. Thanushkodi [16] presented the supple

scheduling algorithm and fully implemented. Its results were

compared with other scheduling algorithms like First Come

First Serve, Gang Scheduling, Flexible Co Scheduling.

Thomas L. Casavant [18] presented taxonomy of

approaches to the resource management problem in an

attempt to provide a common terminology and classification

mechanism necessary in addressing the problem. The

resource management problem is defined as usage of

general-purpose distributed computing system’s ability to

provide a level of performance commensurate to the degree

of multiplicity of resources present in the system. The

taxonomy, while presented and discussed in terms of

distributed scheduling, is also applicable to most types of

resource management.

III. BASIC CLASSES OF PARALLEL SCHEDULING

Various parallel scheduling algorithms found in

literature are presented below:

A. BNP Scheduling Algorithms:

BNP stands for Bounded Number of Processors [1] [2]

[4]. These algorithms schedule the DAG to a bounded

number of processors directly. The processors are assumed

to be fully connected. Most BNP scheduling algorithms are

based on the list scheduling technique.

B. APN Scheduling Algorithms:

The algorithms in this class take into account specific

architectural features such as the number of processors as

well as their interconnection topology. These algorithms can

schedule tasks on the processors and messages on the

network communication links. Scheduling of messages may

be dependent on the routing strategy used by the underlying

network [1][2][4].

C. UNC Scheduling Algorithms:

UNC stands for Unbounded Number of Clusters [1] [2]

[4]. These algorithms schedule the DAG to an unbounded

number of clusters. The processors are assumed to be fully

connected. The basic technique employed by UNC

scheduling algorithms is called Clustering. At the beginning

of the scheduling process, each node is considered as a

cluster. In the subsequent steps, two clusters are merged if

the merging reduces the completion time. This merging

procedure continues until no cluster can be merged.

D. TDB Scheduling Algorithms:

The TDB stands for Task Duplication Based scheduling

algorithms. The principle behind the TDB algorithms is to

reduce the communication overhead by redundantly

allocating some tasks to multiple processors [4].

IV. BNP SCEDULING ALGORITHMS

BNP stands for Bounded Number of Processors

[1][2][4]. These algorithms schedule the DAG to a bounded

number of processors directly. The processors are assumed

to be fully connected. Most BNP scheduling algorithms are

based on the list scheduling technique. List scheduling [9] is

a class of scheduling heuristics in which the nodes are

assigned priorities and placed in a list arranged in a

descending order of priority. The node with a higher priority

will be examined for scheduling before a node with a lower

priority. If more than one node has the same priority, ties are

broken using some method.

Two major attributes for assigning priority are the t-level

(top level) and b-level (bottom level). The t-level of a node

ni is the length of the longest path from an entry node to ni

node in the DAG excluding ni node. The length of a path is

the sum of all the node weights and edge weights along the

path. The t-level of ni is also known as ni’s Earliest start

time, denoted by T(ni), which is determined after ni is

scheduled to a processor.

The b-level of a node ni is the length of the longest path

from node ni, to an exit node. Only the weights of the nodes

are considered not the weights of the edges while measuring

the b-level. The b-level of a node is bounded by the length

of the critical path. A Critical Path (CP) of a DAG is a path

from an entry node to an exit node, whose length is the

maximum. The main examples of BNP algorithms are the

HLFET (Highest Level First with Estimated Times)

algorithm, the MCP (Modified Critical Path) algorithm, the

DLS (Dynamic Level Scheduling) algorithm and the ETF

(Earliest Task First) algorithm [1]. The summarized

functioning of different algorithms under BNP is described

in next sections.

A. HLFET Algorithm (Highest Level First with

Estimated Time):

a. Calculate the Static Level of all the nodes in the

DAG.

b. Insert all the nodes into a list according to

descending order of Static Level of the nodes.

Ravreet Kaur, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,572-577

© 2010, IJARCS All Rights Reserved 574

c. While not the end of the list do

i. Remove node ni from the list.

ii. Compute the earliest start execution time of ni

for all the processor present in the system.

iii. Map the node ni to the processor that has the

least earliest start execution time.

B. MCP Algorithm (Modified Critical Path):

a. Calculate the Latest Start Time (LST) of all the

nodes in the DAG.

b. Insert all the nodes into a list and sort the list

according to ascending order of Latest Start Time.

c. While not the end of the list do

i. Remove the node from the list.

ii. Compute the earliest start execution time of ni

for all the processors present in the system.

iii. Map the node ni to the processor that has the

least earliest start execution time.

C. ETF Algorithm (Earliest Task First):

a. Calculate the Static Level of each node in the DAG.

b. In the beginning the ready node list contains only

the entry node.

c. While the ready node list is not empty do

i. Compute the earliest start time of all the

nodes in the ready node list on each

processor.

ii. Select the node with earliest start time. If two

or more nodes have same earliest execution

start time values then the node with highest

Static Level is selected.

iii. Map the selected node to the processor.

iv. Add new ready nodes to the ready node list.

D. DLS Algorithm (Dynamic Level Scheduling):

a. Commute the Static Level of nodes in the DAG.

b. In the beginning the ready node list contains only

the entry node.

c. While the ready node list is not empty do

i. Calculate the earliest start time of every node in

the ready node list on each processor.

ii. Calculate the Dynamic Level of every node in

the list.

iii. Select the node with largest Dynamic Level.

iv. Schedule the node onto the processor.

v. Add new ready node in the ready node list.

V. PERFROMANCE EVALUATION AND

COMPARISON

In this section, performance comparison of the BNP

scheduling algorithms has been carried out. The size of the

graph was varied from 5 to 15 nodes with increments of 5.

The weight of each node was randomly selected from a

uniform distribution. The performance comparison is based

on the following factors:

a. Processor Utilization: Processor utilization measure the

percent of time for which the processor performed.

Processor Utilization(%) = (Total execution time of

scheduled tasks/Makespan) * 100

b. SpeedUp: Speed up is defined as the ratio of time taken

by serial algorithm to perform work to the time taken

by the parallel algorithm to perform the same work.

c. SLR: (Scheduled Length Ratio) It is defined as the

ratio of Makespan of the algorithm to the Critical Path

values of the DAG.

A. Scenario 1: Results obtained when 5 task node

graphs was taken:

Figure 2. DAG for 5 nodes

Table I Priority table with attributes of 5 nodes

Nodes SL t-level b-level LST

1

2

3

4

5

45

35

20

30

15

0

12

14

18

36

53

41

22

32

15

0

12

31

21

38

Table II SLR, SpeedUp and Processor Utilization (P1, P2, and P3) of

algorithms with 5 tasks

Algorithm SLR SpeedUp Processor Utilization

P1 P2 P3

HLFET 1.275 1.27451 58.82% 58.82% 9.80%

MCP 1.275 1.27451 58.82% 58.82% 9.80%

ETF 1.275 1.27451 58.82% 9.80% 58.82%

DLS 1.275 1.27451 58.82% 58.82% 9.80%

Figure 3. SLR and Speed Up with 5 nodes

Figure 4. Processor Utilization (P1, P2 and P3) with 5 nodes

1

1.125

1.25

1.375

1.5

HLFET MCP ETF DLS

SLR

SpeedUp

ALGORITHMS

0

10

20

30

40

50

60

70

HLFET MCP ETF DLS

P1

P2

P3

ALGORITHM

U
T

IL
IZ

A
T

IO
N

(%
)

6 2

4

2

2 8

2

20
4

15

5

15

3

5

1

10

Ravreet Kaur, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,572-577

© 2010, IJARCS All Rights Reserved 575

B. Scenario 2: Results obtained when 10 task nodes

graph was taken.:

Figure 5. DAG for 10 nodes

Table III Priority table with attributes of 10 nodes

Nodes SL t-level b-level LST

1

2

3

4

5

6

7

8

9

10

60

50

45

30

35

25

30

25

15

10

0

12

14

12

16

18

40

30

30

62

72

60

49

42

43

33

32

29

21

10

0

12

23

30

29

39

40

43

51

62

Table IV SLR, SpeedUp and Processor Utilization (P1, P2 and P3) of

algorithms with 10 tasks

Algorithm

SLR

SpeedUp

Processor Utilization

P1 P2 P3

HLFET 1.8 1.904762 79.37% 63.49% 47.62%

MCP 1.742857 1.967213 98.36% 49.18% 49.18%

ETF 1.742857 1.967213 98.36% 49.18% 49.18%

DLS 1.742857 1.967213 98.36% 49.18% 49.18%

Figure 6. SLR and SpeedUp with 10 nodes

Figure 7. Processor Utilization (P1, P2 and P3) with 10 nodes

C. Scenario 3: Results obtained when 15 task nodes

graph was taken.:

Figure 8. DAG for 15 nodes

Table V Priority table with attributes of 15 nodes

Nodes SL t-level b-level LST

1 55 0 79 0

2 30 12 50 29

3 25 14 41 38

4 45 16 53 26

5 35 12 45 34

6 45 18 61 18

7 45 12 55 24

8 20 38 34 45

9 30 35 34 45

10 25 46 33 46

11 40 13 44 35

12 15 41 21 58

13 15 62 17 62

14 20 35 22 57

15 10 60 10 69

Table VI SLR, SpeedUp and Processor Utilization(P1, P2 and P3) of

algorithms with 15 tasks

Algorithm

SLR

SpeedUp

Processor Utilization

P1 P2 P3

HLFET 1.327273 2.123288 82.19% 54.79% 75.34%

MCP 1.345455 2.094595 87.84% 60.81% 60.81%

ETF 1.454545 1.9375 75.00% 50.00% 6.25%

DLS 1.236364 2.279412 80.88% 80.88% 66.18%

1.6

1.7

1.8

1.9

2

2.1

HLFET MCP ETF DLS

SLR

SpeedUp

ALGORITHMS

0

20

40

60

80

100

120

HLFET MCP ETF DLS

P1

P2

P3

ALGORITHM

U
T

IL
IZ

A
T

IO
N

(%
)

2
4

6

2
4

8 2 8

8
6

2
4

2

1

10

2

20

3

15

4

5

5

10

10

10

8

15

9

5

6

10

7

20

Ravreet Kaur, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,572-577

© 2010, IJARCS All Rights Reserved 576

Figure 9. SLR and Speed Up with 15 nodes

Figure 10. Processor Utilization (P1, P2 and P3) with 15 nodes

Average Processor Utilization

Table VII Average processor Utilization comparison for BNP scheduling

algorithms

Algorithms 5 Tasks 10 Tasks 15 Tasks

HLFET 42.48% 63.49% 70.78%

MCP 42.48% 65.57% 69.82%

ETF 42.48% 65.57% 43.75%

DLS 42.48% 65.57% 75.98%

Figure 11. Graph for average processor utilization comparison

Scheduled Length Ratio

Table VIII Scheduled Length Ratio comparison for BNP scheduling

algorithms

Figure 12. Graph for scheduled length ratio comparison

Speed Up

Table IX SpeedUp comparison for BNP scheduling algorithms

Figure 13. Graph for speedup comparison

VI. CONCLUSION AND FUTURE WORK

With Comparative analysis following result was

attained:-

a. The Average Processor Utilization remained same for

all algorithms with 5 tasks. MCP, ETF and DLS utilized

processor efficiently than HLFET with 10 tasks.

b. With 15 tasks, DLS proved to be better than other

algorithms and ETF showed almost 20% drop in

utilization rate.

0

0.5

1

1.5

2

2.5

3

HLFET MCP ETF DLS

SLR

SpeedUp

ALGORITHMS

0

20

40

60

80

100

120

HLFET MCP ETF DLS

P1

P2

P3

ALGORITHM

U
T

IL
IZ

A
T

IO
N

(%
)

40

60

80

4 9 14

HLFET

MCP

ETF

DLS

U
T

IL
IZ

A
T

IO
N

(%
)

TASKS

1.1

1.4

1.7

2

4 9 14

HLFE

T

MCP

S
L

R

TASKS

1

1.4

1.8

2.2

2.6

3

4 9 14 19

HLFET

MCP

ETF

DLS

TASKS

S
P

E
E

D
U

P

Algorithms 5 Tasks 10 Tasks 15 Tasks

HLFET 1.275 1.8 1.327273

MCP 1.275 1.742857 1.345455

ETF 1.275 1.742857 1.454545

DLS 1.275 1.742857 1.236364

Algorithms 5 Tasks 10 Tasks 15 Tasks

HLFET 1.27451 1.904762 2.123288

MCP 1.27451 1.967213 2.094595

ETF 1.27451 1.967213 1.9375

DLS 1.27451 1.967213 2.279412

Ravreet Kaur, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,572-577

© 2010, IJARCS All Rights Reserved 577

c. The SLR remained almost the same with 5 and 10 tasks

within their respective tasks. With 15 tasks DLS was the

one with lesser SLR.

d. Same is the case with Speed Up. With 5 and 10 tasks

speed up of all algorithms was same within respective

tasks. Again here DLS was the algorithm with higher

Speed Up.

e. It can be concluded from the above results, that DLS is

one of the efficient algorithms, considering the data

gathered using the scenarios and the performance

calculated from them.

f. This paper has a lot of future scope. Lots of work can be

done considering more case scenarios:-

i. Heterogeneous environment can be considered, in

which multiple processors having different

configuration are used.

ii. Combination of both Homogenous and

Heterogeneous can be considered.

iii. The numbers of tasks can be changed to create test

case scenarios.

iv. More algorithms can be considered and their

performance with other can be estimated.

VII. REFERENCES

[1] Ishfaq Ahmad and Yu-Kwong Kwok, “Performance
Comparison of Algorithms for Static Scheduling of DAGs to
Multiprocessors” in Second Australasian Conference on
Parallel and Real-time Systems, pp. 185-192, 1995,
doi=10.1.1.42.8979.

[2] Yu-Kwong Kwok, “Benchmarking and Comparison of the
Task Graph Scheduling Algorithms” , Journal of Parallel and
Distributed Computing, Volume 59 Issue 3, Dec. 1999,
doi:10.1006/jpdc.1999.1578.

[3] Thomas G.Price, “An analysis of Central Processor
Scheduling in Multi-programmed Computer Systems”
Publisher Stanford University Stanford, CA, USA, 1972.

[4] Ishfaq Ahmad and Yu-Kwong Kwok, “Analysis, Evaluation
and Comparison of Algorithms for Scheduling Task graphs on
Parallel Processors”, ISPAN '96 Proceedings of the 1996
International Symposium on Parallel Architectures,
Algorithms and Networks , ISBN:0-8186-7460-1

[5] T.Hagras and J.Janecek, “Static vs. Dynamic List-Scheduling
Performance Comparison”, Acta Polytechnica Vol. 43 No. 6,
2003.

[6] J.K. Lenstra and A.H.G. Rinnooy Kan, “An Introduction to
Multiprocessor Scheduling”, Technical report, CWI,
Amsterdam, 1988.

[7] Min You Wu, “On Parallelization of Static Scheduling
Algorithms”, IEEE transactions on software engineering, vol.
23, no. 8, august 1997.

[8] Shiyuan Jin, Guy Schiavone and Damla Turgut, “A
performance study of multiprocessor task scheduling
algorithms”, The Journal of Supercomputing, Volume 43
Issue 1, January 2008, doi: 10.1007/s11227-007-0139-z.

[9] Kai Hwang and Faye A. Briggs “Computer Architecture and
Parallel Processing”, McGraw-Hill Inc., US, November 1,
1984.

[10] Kaufinann and D.Moldovan “Parallel Processing: From
Applications to Systems”, Morgan Kaufmann Publishers Inc.
San Francisco, CA, USA, 1992, ISBN:1558602542.

[11] Arezou Mohammadi and Selim G.Akl, “Scheduling
Algorithms for Real-Time Systems”, Technical Report No.
2005-499, July 15, 2005.

[12] Jorge R.Ramos and Vernon Rego, “Efficient implementation
of multiprocessor scheduling algorithms on a simulation
testbed”, Software: Practice and Experience, Volume 35, Issue
1, pp. 27-50, Jan, 2005, doi: 10.1002/spe.625.

[13] Guolong Lin, Rajmohan Rajaraman, “Approximation
Algorithms for Multiprocessor Scheduling under
Uncertainty”, SPAA '07 Proceedings of the nineteenth annual
ACM symposium on Parallel algorithms and architectures,
2007, doi: 10.1145/1248377.1248383.

[14] Bernard Chauviere, Doninique Geniet and Rene Schott,
“Contributions to the Multiprocessor Scheduling Problem”, CI
'07 Proceedings of the Third IASTED International
Conference on Computational Intelligence, ISBN:78-0-88986-
672-0, 2007.

[15] Igor Grudenic, “Scheduling Algorithms and Support Tools
for Parallel Systems”, Faculty of Electrical Engineering and
Computing, Unska 3, Zagreb, 2008.

[16] S.V.Sudha and K.Thanushkodi, “An approach for Parallel Job
Scheduling Using Supple Algorithm”, Asian Journal of
Information Technology, 7: 403-407, 2008,
doi=ajit.2008.403.407.

[17] Jing-Chiou Liou and Michael A.Palis, “A Comparison of
General Approaches to Multiprocessor Scheduling”, IPPS '97
Proceedings of the 11th International Symposium on Parallel
Processing, IEEE Computer Society Washington, DC, USA,
1997.

[18] Thomas L.Casavant, “A taxonomy of Scheduling in General-
purpose Distributed Computing Systems”, IEEE Transactions
on Software Engineering, Volume 14 Issue 2, February 1988,
doi: 10.1109/32.4634.

http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1007/s11227-007-0139-z
http://www.cs.jhu.edu/%7Espaa/2007/
http://dx.doi.org/10.1145/1248377.1248383
http://medwelljournals.com/abstract/?doi=ajit.2008.403.407
http://dx.doi.org/10.1109/32.4634

