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Abstract:  This paper proposes a web cache replacement policy  based on semantic content of the pages cached at the client side. Two models namely  

Clustered Model(CM) and Relational Model(RM)  are proposed that focus  on  the  Dynamicity which refers the dynamic nature of the content and 

the Semantic content which exhibits the relation of  information available  among  cached web pages and hence the name DynaSem. The proposed 

policy marks the page for eviction prioritized by Eviction Index (EI) in CM and Relation Index (RI) in RM.  CM uses an interface   with a web 

browser incorporated into it. The Trie   data structure that enables the searching process to be  more efficient has been  framed  to store the well-

known categories of cached content as clusters. Pages  with highest EI are marked for eviction.  RM employs   a  technique  to reveal the relation 

among cached documents. It evicts documents that are less related(minimum RI) to an incoming document which needs to be stored in the cache to 

ensure  that only related documents are cached; hence the contents of the cache represent the documents of interest to the user and those which are of 

more static in nature. The proposed policy has been developed to incorporate two algorithms- one to find the dynamic count of the given web page 'P' 

and the other to the find semantic relation between the pages cached. Both the models(CM and RM) are used to establish the semantic relation.  The 

policy has been simulated under model driven simulation with the help of an input set consisting of a few web pages. The parameters pertinent to 

cache replacement algorithms are computed and the result shows there is a factual   improvement compared to the original semantic based policies. 
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I. INTRODUCTION   

Web caching is the process of storing the frequently 
accessed web pages or documents. The increasing demand 
for web services insisted the need for web caching that can 
indubitably reduce the Internet traffic, download time, 
network bandwidth usage, server load, and perceived lag. 
Cache being a limited resource in terms of size, becomes 
saturated quite frequently and hence eviction has to be made 
often. Especially in wireless network, size of the client cache 
at mobile terminal is very small that demands frequent 
replacement. The state of art dictates multitude policies based 
on recency, frequency, size, and combination of the above 
parameters as some function. A cache server stores web 
objects (e.g., HTML pages, images,   and files) locally for the 
use of future requests to those objects. As cache size is finite, 
a cache replacement policy is needed to manage cache 
content. If a cache is full when an   object needs to be stored, 
the policy will determine which object is to be evicted to 
make room for the new object. However, in practical 
implementation, a replacement policy usually takes place 
before the cache is really full.  

The cache uses two water marks, high and low, to guide 
the replacement process. If the size of total cached objects 
exceeds the high watermark, the policy will evict objects 
until the low watermark is reached.  The advantage of doing 
this is reducing the overhead of invoking the policy on 
demand. The goal of the replacement policy is to make the 
best use of available resources, including disk space, 
processing power, server load, and network bandwidth. The 
increasing use of the internet and its emerging applications  

 
tend to saturate the internet resources. Caching mechanism 
helps to reduce the network and server load by avoiding the 
transmission of web pages and documents that are already 
requested. There are few key performance metrics used to 
evaluate the performance of replacement policy. There is no 
policy studied so far that can be optimal for all the metrics. 
The metric to be considered depends on the environment in 
which the policy is applied. Following are the definitions of 
some of the key metrics normally considered and the targeted 
environments.  
A. Hit Rate ( HR) is defined as the  % of requests that can 

be satisfied by the cache. It is of interests to system 
with small cache size. (HR are similar when cache is 
very large). 

B. Byte Hit Rate (BHR) is defined as the number of bytes 
satisfied by the cache as a function of total bytes 
requested by client. It is of particular interest to systems 
with limited external network bandwidth. Larger 
popular object leads to higher BHR and smaller popular 
objects leads to higher HR.  

C. CPU Utilization analyses the time complexity of the 
replacement policy. This parameter can be ignored if 
CPU is not going to be the performance bottleneck. It is 
of particular interest to busy cache servers with limited 
processing ability. 

D. Latency Reduction (LR) is defined as the percentage of 
the object download latency that can be reduced. The 
object that consumes highest latency can be cached to 
increase the latency reduction. It is of particular interest 
to the users who want to minimize retrieval time. 
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II. RELATED WORK   

It is well known that that there are already sufficient 
number of good replacement policies available for usage 
[1,2,3,4,5]. Hence research on new policies is less important. 
Indeed, most of the policies in various proposals provide 
evidence that they perform better than others for some  

 

specific applications. This leads to a state of confusion as 
to which policy should be used. Actually, there is no single 
policy that performs best in all environments. This is because 
different policies have different design rationale and are 
designed to optimize different resources.  

 

Table I.     Summary of Different Replacement Policies 

Policy Parameter Criteria for retaining the  pages Context 

LRU (Recency 
Based) 

Time 
 

Last access time, average retrieval time, 
recently referenced page, expiry time, last 
modified time 

When users are interested in same type 
of web pages at the same instance 

LFU(Frequenc
y based) 

Number of previous 
accesses 

Popularity in terms of  frequency For accessing stable and popular web 
pages 

Size Size Small sized pages retained Small sized pages retained 

Function Utility value Time, frequency, size, etc., When swapping process leads to extra 
overhead 

Random Random seed NIL When the resources are limited and the 
process is less complex 

 
 
 

Figure.1. Classification of cache replacement policies. 

Although Web cache replacement policies have been 
summarized in previous work, from small overviews [2,3] to 
more comprehensive surveys[4,5], many of them focus on 
discussing the operations of common policies and comparing 
their performance by running trace-driven simulations[6]. As a 
matter of fact, recently proposed solutions provide only slight 
improvement. Some policies[7] favor one resource at the 
expense of another. Among the proposed replacement policies 
the literature reports contradictory results. For example  results 
in [7] reports LRU outperforms size interms of HR for few  
cache sizes, [8] show that the size based policy performs well 
and can achieve higher HR than LRU. Among LRU and LFU, 
[9] claims LRU is superior to LFU in terms of HR, whereas 
[10] shows LFU performs better than LRU in most cases. From 
the literature, it is understood that the performance of any 
policy depends highly on workload characteristics. One 
workload set may make a policy perform well and another may 
degrade the performance. Most of the existing replacement 
algorithms are listed in Table.1. It summarizes the kind of 
parameters that decide the replacement strategy, the criteria 
that decides the retention of cached pages, and the suitable 
application that can make use of the policy efficiently. 

Apart from the above tabulated replacement policies, very 
few policies work on the semantic content of the web 
page[11,12,13,14]. All these policies assume that for a given 
time slot, the users' surfing pattern possesses a close semantic 
relation. Semantic relations between cached documents are 
considered for evicting the document for replacement [15]. 
Some attempts to create semantic caching mechanisms for 
database and query systems for well structured data are 
reported in [15]. They all claim that semantic based approach 
for replacement can perform better than traditional policies. 
The research work reported in [16] combines physical locality 
information with semantics which can produce good result in 
the field of wireless environment. A comprehensive list of the 
most relevant cache replacement policies based on the physical 
properties of objects is listed below:  

A. Recency Based  Policies : 

a. LRU (Least Recently Used):  This policy removes the 

page that is least recently used by clients and  is 

identified by the timestamps [17].  

b. RUMIN : This policy tends to keep in cache objects of 

smaller size to minimize the number of replacements. If 

a new object of size S has to be brought into the cache 

and if the cache is full then, among  the objects with 

size at least S,  the least recently used one is removed. 

Otherwise objects with size at least S/2 or S/4 and so 

on are removed until the required room is created [17]  

c. Pitkow/Recker : This policy removes the LRU, but if 

all the documents are accessed with same recency, then 

the largest one is removed.   

B.   Frequency based Policies: 

This policy elects the page that is least frequently used by 
the clients and is implemented with many variations:  

a. In-Cache LFU:  In this version, the access counter for 

an object is zeroed every time the object enters the 

cache.  
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b. Perfect LFU:  In this version, the access counter for an 

object is zeroed only for the first time the object enters 

the cache. If the object that has been previously 

removed comes back to cache, it access the counter 

with the previous value used before removal.  

c. Hyper-G:  This  is also a variation of LFU with last 

access time and size considerations.   

C. Size Based Policies : 

a. Size Adjustment LRU (SLRU):  This is like an 

Knapsack problem. It sorts the objects based on cost 

and size and the largest index is evicted from the cache 

when a replacement is required[17]. 

b. Segmented Cache:  This policy splits the cache into 

partitions based on the size of the objects and chooses 

the one for replacement that has high variability 

noticed in WWW [18].  

c. Pyramidal Selection Scheme with Award:   In this, the 

objects are classified based on the size using a log 

function combined with frequency access rate [19]. 

D. Function Based Policies : 

 

Figure.2. DynaSem Policy 

These policies employ general functions for different 
factors such as last access, entry time of an object into the 
cache, transfer cost and time to live of an object [20]. 

a. Lowest Relative Value LRV :  This policy assigns a 

relative cost for each object in the cache based on their 

utility value. The object with the Lowest Utility 

Value(LUV) is marked for removal.  

b. Lowest Latency First:  This policy removes the object 

that has  lowest download latency first in order to 

minimize the object latency [20].  

 
c. Hybrid : This policy aims at reducing the total latency.  

It replaces  the objects which has the lowest value  

calculated using the function: where  s is a server, p is 

an object located in s, Cs is the time to connect to s, bs  

is the bandwidth of the server s, np is the number of 

times  p has been requested since it was brought into 

the cache, Zp  is the size (in bytes) p, and Wb and Wn 

are constants. 
Web pages have increased drastically in the recent past due 

to increased dynamic and flashy content. Hence it is imperative 
to have a cache which improves performance. Several 
researchers have done web analysis with respect to typical 
behavior using web histogram distribution. However, the 
results of these web analyses have not been incorporated by the 
existing replacement policies. As web access phenomenon is 
dynamic, dynamic access modeling approach can only provide 
a deep insight. But no attempt has been made so far in all the 

existing semantic based replacement policies to rate the 
dynamic level. In this paper an attempt has been made to 
devise an improved policy that integrates dynamism and 
semantic relation of the web pages. 

III. CONTRIBUTION OF THIS PAPER 

The primitive idea of the proposed approach is motivated 
by the observation that the web access patterns of the user are 
not random. They exhibit some minute relation from the user 
behavior and application programs. The present work focuses 
on designing a new semantic based replacement policy that 
also considers the influences of the dynamicity of the web 
pages, the rapid dynamic pages not being cached. In the 
proposed work, the semantic analysis and ranking of cached 
pages based on dynamic count have been implemented in Java 
platform. This puts this work in a unique position to exploit the 
nature and the updating pattern of web pages that helps in 
taking effective decision for web cache management. This 
combination of dynamism and semantic relations of cached 
pages has resulted in much improved performance. The 
simulation of the proposed policy has been carried out 
employing a model-driven approach. The synthetic workload 
generated in this work reflects the actual access log trace of the 
Bharathidasan University, referred from the records generated 
by the squid proxy server covering a week period. 

A.  Proposed Replacement Policy: 

The proposed policy consists of two logical models. The 
first one called  dynamic logic determines the dynamic count of 
the cached page and the second  module called semantic 
relation further consists of CM and RM to  establish the 
semantic relation among the cached pages. Fig.2 shows the 
arrangement of the modules in the proposed policy 

B. Dynamic Logic: 

This logic aims at rating the dynamic count based on the 
nature of the document. It is a very important heuristic 
parameter that can be used to prioritize the pages enjoying the 
same semantic relation marked for purging. Dynamic Count 
(DC) ranks the page into one of the following four categories: 

a. DC = 4 (More dynamic): This type of document is more 
susceptible for eviction. It holds the content that keeps 
changing in small time intervals. A typical example 
would be the web site hoisting the scores of a cricket 
match. 

b. DC = 3 (Dynamic): Content of such page changes with 
periodic frequency. A typical example is the site 
hoisting the newspaper. Contents of such pages need to 
be refreshed daily or every 24 hours. 

c. DC = 2 (Partially dynamic): Portion or subset of the 
web pages alone changes. For e.g. few pages of railway 
web site will contain static information and remaining 
pages like reservation chart will be kept updated  
frequently.  

d. DC = 1 (Static): These pages contain static information 
that will be updated at rare occasions. For e.g. in 
websites of educational institutions, syllabus will 
remain static at least for one academic year. 

The dynamicity of the requested web page is assigned by 
using the following algorithm. 

Algorithm: Dynamic (Requested URL:(P)) [Dynamic 
Count(DC): 4-Highly dynamic, 
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3-Dynamic,2-Partially dynamic,1-Static] 
Check `P' with the set of URLs identified as dynamic links 

stored with their respective DC.  
if any match is found   
set DC(P) = DC(i)   where i is the matching URL.  
return(DC(P))  
check the extensions of the files accessed  from P to decide 

the  dynamicity  
switch (file extension)  
case(pdf or mhtml or doc or txt) 
       DC = 1  
case(html or htm) 
       DC = 2 
case(xml or php or asp or aspx or wma or wav) 
     DC = 3  
end case.   
return(DC)  
check the important keywords of P with the built-in list.  
if any match is found 
    DC = 2.  
return(DC)   
if (time of day = expiry time(P)) 
   DC = 4.  
return(DC)  
count the number of web links available in P  
if (count > threshold) 
DC=3// threshold is a dynamic parameter  initialized in the 

text file  
if (response = ``yes'') //get user preference to cache the page 

or not 
    DC = 1  
else if(response = ``no'')  
    DC = 4  
return(DC)  
if(clearbrowsercache = 1) then 
 empty the cache. 

C.  Semantic Relation: 

Semantic relation among cached documents and the 
incoming document is  established through the following two 
different models of CM and RM with the  same objective of 
calculating the semantic distance/offset.  

a. Clustered Model: 

The simplest definition of clustering is grouping together of 
similar data items into clusters. The mathematical definition of  
clustering as stated in [21 is: let     X € R m*n       a set of data 
items representing a set of m points xi in Rn. The goal is to 
partition X   into K groups  Ck  such that each data belonging 
to the same group is  more "alike" than the data in different 
groups. Each of the k groups is called a cluster. The result of 

the algorithm is an injective mapping   X  C  of data items  
Xi  to clusters  Ck. 

The following definitions are assumed in the clustering 
algorithm: 

X € R m*n   denotes a set of data items representing a set of 
m points  xi  in  Rn.,  Ck  denotes the k -th cluster , K represents 
the number of clusters, C j k   denotes the k-th cluster center at 
the iteration j.  

 Non- parametric approach is adopted for this clustered 
model. Two good representative examples of this approach are 
the agglomerative and divisive algorithms, also called 

hierarchical algorithms that produce dendograms [22]. A 
dendogram is simply a tree that shows the group of  clusters 
that  were agglomerated in each step. It can be easily broken at 
selected links to obtain clusters or groups of desired cardinality 
or radius. Of course the major limitation of this dendogram is, 
its sensitivity to merging of  clusters that occurred in previous 
steps i.e, data are not permitted to change cluster membership 
once assignment has taken place. The key advantage of this 
method is that they no assumptions are made about the 
underlying data distribution. For implementing the clustering 
algorithm a matrix with pairwise similarities is required and it 
demands storage space of the order of  m 2  for m number of 
data points to be clustered. 

b. Hierarchical Clustering Algorithm: 

The algorithm adopted in CM model is the variation of 
Hierarchical Clustering Algorithm namely complete linkage 
clustering (Maximum or Furthest - Neighbor Method). The 
dissimilarity between two clusters i and j  is the minimum 
dissimilarity between member of the cluster i and member of 
the  cluster j. This method tends to produce a very tight clusters 
of similar cases. This method uses centroid as initial set of 
clusters that will select the starting cluster close to the mass 
centroid of data set. Each cluster center is calculated adding a 
small random perturbation to the centroid of the dataset. 

Algorithm: Let D(i,j) be the distance between clusters i, J 
and N(i) the nearest neighbor of  cluster i. 

Initialize 'N' clusters // N = No. of pages stored in cache. 
For each pair of clusters (i,j) computer D(i,j) 
For each cluster i compute N(i) 
Repeat until the desired number of clusters is obtained 
Determine i,j such that D(i,j) is maximized 
Agglomerate cluster i and j 
Update each D(i,j) and N(i) as necessary 
End of repeat 
Important keywords of the web page contents are identified 

and clusters are obtained in the form of trie like data  structure 
[23] and then the semantic offset is calculated. All the common 
categories are first listed out. Then word count is calculated for 
these keywords and based on the word count, the keywords are  
added to the corresponding category list for that page. Number 
of similar and dissimilar categories between the pages are 
counted. The page which has more number of dissimilar 
categories accumulated with respect to the other remaining 
pages is assigned a high eviction index EI.  

A web server is simulated and the document manager acts 
like a web server  that returns the document when queried, if it 
is found in the cache. If the requested document is not in the 
cache, it redirects the request to the appropriate server and 
fetches the requested page. The newly fetched page is then 
cached if it can be accommodated, else replacement has to be 
made for want of space. The page with the highest EI can be 
evicted for replacement. If more than one pages hold the same 
EI then the dynamic logic will prioritize   eviction process 
based on DC. The newly cached page has to be inserted into 
appropriate cluster and the keywords have to be arranged 
properly into the already established trie data structure that can 
be further processed to assign new EI.  

c. Relational Model: 

This idea is proposed based on the underlying assumption 
that the user access pattern is not random and is greatly 
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influenced by the behavior of the users and their invocation 
pattern of the application programs. If the user access pattern 
exhibits semantic relation among the cached pages, then the 
cache replacement policy could be enforced based on the 
semantic relation. Those pages that possess more dynamism by 
nature can be exempted from caching. The semantic relation in 
terms of semantic distance is evaluated between the incoming 
page and the cached pages. The page which has minimum 
Relation Index RI (less related) can be marked for eviction. If 
more than one pages hold the same minimum semantic 
distance then the dynamic logic will prioritize the pages based 
on the dynamicity for eviction. The relation between the files 
can be expressed in two categories namely: (i) Inter file 
relations and (ii) Intra file relations. 

An interfile relation exists between two files A and B, if B 
is the next file opened following A being closed. A is called B's 
precursor. A heuristic policy INTER is defined as quoted in 
[24] to show the relation of the file with its precursor. A 
heuristic parameter, INTER(i), is defined to represent the 
importance of a file i with respect to the interfile relations with 
its precursors. The stronger the relation, the less likely it will be 
replaced. Thus it is used to calculate RI. The following 
parameters are logged for each cached page p to calculate RI: 

   N p   
: number of time the page  p  is accessed 

   T p   : time since the last access is made to  p   
  T  j   : represents the time since the last access to file  j  

where  j  is a precursor of  p .  

   N j   : 
represents the number of times file  j  precedes file  p .  

INTER (p) calculates the semantic relation of the file with 
other files based on the recency, popularity and based on 
precursor relations. Another heuristic parameter, INTRA(p), is 
defined as quoted in [24] to represent the unimportance of a file 
p based on its intra file relations. This is opposite to the 
definition of the importance based on interfile relations 
explained above, in the sense that the bigger the value the less 
important is the file. Here rather than depending on precursors, 
INTRA(p) is defined based on the files that shared time. 

 Tp:  represents the time since the last access to file p 
Tj:  represents the time since the last access to file j where j 

is open before p is closed 
Sp,j:  represents the shared time of file p with respect to file j 

where p is closed before j  
St:  represents the total shared time with all files that are  

open before p is closed 

 

 

 
The INTRA (p) gives the unimportance of the file based on 

the shared time of the files.INTER(p)  and INTRA(p) are 
combined to be reflected as a single value as RI(p) which is 
given as  

 

 
The larger the value of RI(p), the less likely it is to be 

replaced. When the file p is to be replaced, calculate RI(p) with 
respect to the remaining file in the cache and select the victim 
file V which has a the lowest RI. If more than one file possess 
same RI then the dynamic counts of those pages are calculated 
and the one with maximum count is considered to be more 
dynamic and hence that file V is selected for replacement. 

where DC(i) is the Dynamic Count of page i then V = 
Max(DC(i)) for all i    that has same RI. 

 
Figs.3, 4 and Fig 5 show the graphs plotted for the key 

cache performance  metrics like PHR,BHR and number of 
evictions respectively for varying cache size from 1000 to 
20,000 KB. Simulation has been carried out without dynamic 
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logic(dynamicity_NIL) and with dynamic logic. Inclusion of  
dynamic logic is done by using both the models CM 
(dynamicity_CM) and RM (dynamicity_RM). EI obtained 
from CM marks the pages for purging. For the same test cases 
RI  obtained from RM marks the pages for purging.  

From the results observed and depicted, it is clearly 
understood that dynamicity_CM outperforms  dynamicity_RM 
and  dynamicity_NIL for all the  above mentioned parameters.   
Though both the models (CM and RM ) enjoy same time 
complexity, CM performs well. The only limiting factor of CM 
is the need for some extra space. It is consumed while framing 
the matrix   for grouping the clusters. As far as PHR is 
concerned there is a marginal improvement for dynamic logic 
as shown in Fig.3. The inclusion of dynamic logic gives better 
performance especially in terms of BHR from 8000KB 
onwards as shown in Fig. 4. As the cache size is increased 
keeping the requests as the same, the hit ratio grows steadily 
and finally attains a constant saturation value [Figs. 3 and 4] 
which turns out to be approximately 55 to 60%. Also after 
attaining a saturation value, there is not much variation in the 
hit ratio even if the cache size is increased further. It is 
imperative to choose a proper cache size. Too less is going to 
be less efficient and too high can be very expensive. Hence the 
size needs to be optimal. This implies that from all the above 
metrics, the optimal cache value can be freezed to 20,000 KB 
beyond which there is no reasonable improvement for the 
above requests made. Though it is obvious that number of 
evictions can be minimized if the cache size is more, from Fig. 
5 it can be perceived that it follows a straight line in the range 
15,000 KB to 20, 000 KB. Theoretically if the cache is large 
enough, communication between the client and server can be 
greatly reduced; however, practically large caches aren't 
feasible yet on resource constrained devices. 

 

 

 
Since dynamicity_ CM gives better performance as 

observed in Fig. 3,4 and Fig. 5, other two types namely 
dynamicity_RM and dynamicity_NIL are ignored for further 
experiments. The next set of simulations are carried out for 
related request set and unrelated request set with repspect to an 
individual user.  In has been proved that the efficiency of 
dynamicity_CM has not been degraded even if the user triggers 
unrelated request set, as shown in Figs.6,7 and Fig. 8. In both 
the cases for related request set, it is apparent that both  PHR 
and BHR increase sharply in the beginning and tend to settle 
around 50%  which is supposed to be a good hit rate i.e. one in 
two pages is found in the cache. For unrelated request set, on 
the other hand, the hit ratio tends to settle around 30%. Hence 
there is a remarkable improvement in using this policy for 
related request set. If the user requests for pages that are 
semantically related and within quick succession, then the hit 
ratio are increased by almost 20% from unrelated request set 
which contains random pages that are less related.  Fig. 8 
illustrates the improvement in the number of evictions made 
for related request set compared to unrelated for a large set of 
requests submitted. 

The behavior of this DynaSem policy ( dynamicity_CM)  is 
dependent on the nature of the requests being made and hence 
different sets of requests are generated and its performance is 
evaluated and compared against the standard LRU policy, 
SEMANTIC, SEMALRU in terms of PHR, BHR and number 
of evictions. SEMANTIC policy evicts pages only based on 
semantic relation, whereas SEMALRU combines semantic 
policy with LRU.  The results are shown in Figs. 9, 10 and Fig. 
11. 

Both the hit rates follow similar pattern for SEMALRU and 
DYNASEM and beyond 50000 KB, DYNASEM performs 
better than the remaining policies. The values initially rise to a 
certain limit and later attain saturation. In Certain systems the 
size of the cache might be a critical factor or a bottleneck. For 
such systems the optimal value of the size of the cache could 
be easily fixed from the above observation.  The above results 
have been noted only for related request set and DynaSem 
policy supersedes the other policies in all the above metrics.  
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IV. CONCLUSION AND FUTURE WORK  

 
This work aims at improvising the semantic based web 

cache replacement policy by considering the level of dynamism 
among the pages possessing the same relation. A modified 
policy termed `DynaSem' has been developed. A formal 
framework for the DynaSem policy has been designed that 
incorporates two logics - dynamic and semantic relations. 
Rating the document based on the dynamic count leads to 
conservative improvement in most of the performance metrics 
used to evaluate the cache replacement policy. The semantic 
relation has been established using clustered model and 

relational model. Both models aim at identifying the 
dependencies among the cached document and the new 
incoming document. The request set is generated by a 
simulation process and the clustered model can be chosen, if 
the user access pattern is going to explore all the possible sub 
links provided in a web site. Relational model can be preferred 
if the user switches between various web sites for related 
information. Though both models experience same time 
complexity, better results can be obtained in CM in spite of its 
increased space complexity. Using model driven simulation, 
the performance of DynaSem policy has been analyzed for 
related and unrelated request sets. Even if the user access 
pattern is not related, this policy has not deteriorated much 
from other policies namely LRU, SEMANTIC and 
SEMALRU. Ranking the documents based on their dynamism 
shows commendable results and hence it can be used as a vital 
parameter for tuning the performance of all prevalent 
replacement strategies that ignore file relations and 
communication overhead. An increasingly important technique 
to enhance the web caching performance is to prefetch web 
pages. Prefetching can happen in a predictive manner or in an 
interactive manner. For predictive prefetching, the proposed 
policy can be used to predict the reference probability of new 
requests after analyzing the user access pattern The 
experiments conducted in the proposed work are restricted to 
only isolated cache. A possible extension to this work could be 
to experiment with a grid of cooperating caches. This policy 
tackles single user interest and can be extended to satisfy group 
of users. Instead of trie structure used in CM, standard vector 
model that is widely employed in search engines for 
information retrieval can also be adopted. 
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