
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 637

ISSN No. 0976-5697

DYNASEM - An Improvised Dynamic and Semantic based Web Cache Replacement

Policy

Geetha K *
Department of Computer Science and Engineering,

National Institute of Technology

Tiruchirappalli-15, Tamilnadu, India

geethavalavan@yahoo.com

Ammasi Gounden N
Department of Electrical and Electronics Engineering

National Institute of Technology ,

Tiruchirappalli-15, Tamilnadu, India

ammas@nitt.edu

Abstract: This paper proposes a web cache replacement policy based on semantic content of the pages cached at the client side. Two models namely

Clustered Model(CM) and Relational Model(RM) are proposed that focus on the Dynamicity which refers the dynamic nature of the content and

the Semantic content which exhibits the relation of information available among cached web pages and hence the name DynaSem. The proposed

policy marks the page for eviction prioritized by Eviction Index (EI) in CM and Relation Index (RI) in RM. CM uses an interface with a web

browser incorporated into it. The Trie data structure that enables the searching process to be more efficient has been framed to store the well-

known categories of cached content as clusters. Pages with highest EI are marked for eviction. RM employs a technique to reveal the relation

among cached documents. It evicts documents that are less related(minimum RI) to an incoming document which needs to be stored in the cache to

ensure that only related documents are cached; hence the contents of the cache represent the documents of interest to the user and those which are of

more static in nature. The proposed policy has been developed to incorporate two algorithms- one to find the dynamic count of the given web page 'P'

and the other to the find semantic relation between the pages cached. Both the models(CM and RM) are used to establish the semantic relation. The

policy has been simulated under model driven simulation with the help of an input set consisting of a few web pages. The parameters pertinent to

cache replacement algorithms are computed and the result shows there is a factual improvement compared to the original semantic based policies.

Keywords: Web caching, replacement policies, eviction, semantic relation, dynamism.

I. INTRODUCTION

Web caching is the process of storing the frequently
accessed web pages or documents. The increasing demand
for web services insisted the need for web caching that can
indubitably reduce the Internet traffic, download time,
network bandwidth usage, server load, and perceived lag.
Cache being a limited resource in terms of size, becomes
saturated quite frequently and hence eviction has to be made
often. Especially in wireless network, size of the client cache
at mobile terminal is very small that demands frequent
replacement. The state of art dictates multitude policies based
on recency, frequency, size, and combination of the above
parameters as some function. A cache server stores web
objects (e.g., HTML pages, images, and files) locally for the
use of future requests to those objects. As cache size is finite,
a cache replacement policy is needed to manage cache
content. If a cache is full when an object needs to be stored,
the policy will determine which object is to be evicted to
make room for the new object. However, in practical
implementation, a replacement policy usually takes place
before the cache is really full.

The cache uses two water marks, high and low, to guide
the replacement process. If the size of total cached objects
exceeds the high watermark, the policy will evict objects
until the low watermark is reached. The advantage of doing
this is reducing the overhead of invoking the policy on
demand. The goal of the replacement policy is to make the
best use of available resources, including disk space,
processing power, server load, and network bandwidth. The
increasing use of the internet and its emerging applications

tend to saturate the internet resources. Caching mechanism
helps to reduce the network and server load by avoiding the
transmission of web pages and documents that are already
requested. There are few key performance metrics used to
evaluate the performance of replacement policy. There is no
policy studied so far that can be optimal for all the metrics.
The metric to be considered depends on the environment in
which the policy is applied. Following are the definitions of
some of the key metrics normally considered and the targeted
environments.
A. Hit Rate (HR) is defined as the % of requests that can

be satisfied by the cache. It is of interests to system
with small cache size. (HR are similar when cache is
very large).

B. Byte Hit Rate (BHR) is defined as the number of bytes
satisfied by the cache as a function of total bytes
requested by client. It is of particular interest to systems
with limited external network bandwidth. Larger
popular object leads to higher BHR and smaller popular
objects leads to higher HR.

C. CPU Utilization analyses the time complexity of the
replacement policy. This parameter can be ignored if
CPU is not going to be the performance bottleneck. It is
of particular interest to busy cache servers with limited
processing ability.

D. Latency Reduction (LR) is defined as the percentage of
the object download latency that can be reduced. The
object that consumes highest latency can be cached to
increase the latency reduction. It is of particular interest
to the users who want to minimize retrieval time.

Geetha K et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,637-644

© 2010, IJARCS All Rights Reserved 638

II. RELATED WORK

It is well known that that there are already sufficient
number of good replacement policies available for usage
[1,2,3,4,5]. Hence research on new policies is less important.
Indeed, most of the policies in various proposals provide
evidence that they perform better than others for some

specific applications. This leads to a state of confusion as
to which policy should be used. Actually, there is no single
policy that performs best in all environments. This is because
different policies have different design rationale and are
designed to optimize different resources.

Table I. Summary of Different Replacement Policies

Policy Parameter Criteria for retaining the pages Context

LRU (Recency
Based)

Time

Last access time, average retrieval time,
recently referenced page, expiry time, last
modified time

When users are interested in same type
of web pages at the same instance

LFU(Frequenc
y based)

Number of previous
accesses

Popularity in terms of frequency For accessing stable and popular web
pages

Size Size Small sized pages retained Small sized pages retained

Function Utility value Time, frequency, size, etc., When swapping process leads to extra
overhead

Random Random seed NIL When the resources are limited and the
process is less complex

Figure.1. Classification of cache replacement policies.

Although Web cache replacement policies have been
summarized in previous work, from small overviews [2,3] to
more comprehensive surveys[4,5], many of them focus on
discussing the operations of common policies and comparing
their performance by running trace-driven simulations[6]. As a
matter of fact, recently proposed solutions provide only slight
improvement. Some policies[7] favor one resource at the
expense of another. Among the proposed replacement policies
the literature reports contradictory results. For example results
in [7] reports LRU outperforms size interms of HR for few
cache sizes, [8] show that the size based policy performs well
and can achieve higher HR than LRU. Among LRU and LFU,
[9] claims LRU is superior to LFU in terms of HR, whereas
[10] shows LFU performs better than LRU in most cases. From
the literature, it is understood that the performance of any
policy depends highly on workload characteristics. One
workload set may make a policy perform well and another may
degrade the performance. Most of the existing replacement
algorithms are listed in Table.1. It summarizes the kind of
parameters that decide the replacement strategy, the criteria
that decides the retention of cached pages, and the suitable
application that can make use of the policy efficiently.

Apart from the above tabulated replacement policies, very
few policies work on the semantic content of the web
page[11,12,13,14]. All these policies assume that for a given
time slot, the users' surfing pattern possesses a close semantic
relation. Semantic relations between cached documents are
considered for evicting the document for replacement [15].
Some attempts to create semantic caching mechanisms for
database and query systems for well structured data are
reported in [15]. They all claim that semantic based approach
for replacement can perform better than traditional policies.
The research work reported in [16] combines physical locality
information with semantics which can produce good result in
the field of wireless environment. A comprehensive list of the
most relevant cache replacement policies based on the physical
properties of objects is listed below:

A. Recency Based Policies :

a. LRU (Least Recently Used): This policy removes the

page that is least recently used by clients and is

identified by the timestamps [17].

b. RUMIN : This policy tends to keep in cache objects of

smaller size to minimize the number of replacements. If

a new object of size S has to be brought into the cache

and if the cache is full then, among the objects with

size at least S, the least recently used one is removed.

Otherwise objects with size at least S/2 or S/4 and so

on are removed until the required room is created [17]

c. Pitkow/Recker : This policy removes the LRU, but if

all the documents are accessed with same recency, then

the largest one is removed.

B. Frequency based Policies:

This policy elects the page that is least frequently used by
the clients and is implemented with many variations:

a. In-Cache LFU: In this version, the access counter for

an object is zeroed every time the object enters the

cache.

Geetha K et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,637-644

© 2010, IJARCS All Rights Reserved 639

b. Perfect LFU: In this version, the access counter for an

object is zeroed only for the first time the object enters

the cache. If the object that has been previously

removed comes back to cache, it access the counter

with the previous value used before removal.

c. Hyper-G: This is also a variation of LFU with last

access time and size considerations.

C. Size Based Policies :

a. Size Adjustment LRU (SLRU): This is like an

Knapsack problem. It sorts the objects based on cost

and size and the largest index is evicted from the cache

when a replacement is required[17].

b. Segmented Cache: This policy splits the cache into

partitions based on the size of the objects and chooses

the one for replacement that has high variability

noticed in WWW [18].

c. Pyramidal Selection Scheme with Award: In this, the

objects are classified based on the size using a log

function combined with frequency access rate [19].

D. Function Based Policies :

Figure.2. DynaSem Policy

These policies employ general functions for different
factors such as last access, entry time of an object into the
cache, transfer cost and time to live of an object [20].

a. Lowest Relative Value LRV : This policy assigns a

relative cost for each object in the cache based on their

utility value. The object with the Lowest Utility

Value(LUV) is marked for removal.

b. Lowest Latency First: This policy removes the object

that has lowest download latency first in order to

minimize the object latency [20].

c. Hybrid : This policy aims at reducing the total latency.

It replaces the objects which has the lowest value

calculated using the function: where s is a server, p is

an object located in s, Cs is the time to connect to s, bs

is the bandwidth of the server s, np is the number of

times p has been requested since it was brought into

the cache, Zp is the size (in bytes) p, and Wb and Wn

are constants.
Web pages have increased drastically in the recent past due

to increased dynamic and flashy content. Hence it is imperative
to have a cache which improves performance. Several
researchers have done web analysis with respect to typical
behavior using web histogram distribution. However, the
results of these web analyses have not been incorporated by the
existing replacement policies. As web access phenomenon is
dynamic, dynamic access modeling approach can only provide
a deep insight. But no attempt has been made so far in all the

existing semantic based replacement policies to rate the
dynamic level. In this paper an attempt has been made to
devise an improved policy that integrates dynamism and
semantic relation of the web pages.

III. CONTRIBUTION OF THIS PAPER

The primitive idea of the proposed approach is motivated
by the observation that the web access patterns of the user are
not random. They exhibit some minute relation from the user
behavior and application programs. The present work focuses
on designing a new semantic based replacement policy that
also considers the influences of the dynamicity of the web
pages, the rapid dynamic pages not being cached. In the
proposed work, the semantic analysis and ranking of cached
pages based on dynamic count have been implemented in Java
platform. This puts this work in a unique position to exploit the
nature and the updating pattern of web pages that helps in
taking effective decision for web cache management. This
combination of dynamism and semantic relations of cached
pages has resulted in much improved performance. The
simulation of the proposed policy has been carried out
employing a model-driven approach. The synthetic workload
generated in this work reflects the actual access log trace of the
Bharathidasan University, referred from the records generated
by the squid proxy server covering a week period.

A. Proposed Replacement Policy:

The proposed policy consists of two logical models. The
first one called dynamic logic determines the dynamic count of
the cached page and the second module called semantic
relation further consists of CM and RM to establish the
semantic relation among the cached pages. Fig.2 shows the
arrangement of the modules in the proposed policy

B. Dynamic Logic:

This logic aims at rating the dynamic count based on the
nature of the document. It is a very important heuristic
parameter that can be used to prioritize the pages enjoying the
same semantic relation marked for purging. Dynamic Count
(DC) ranks the page into one of the following four categories:

a. DC = 4 (More dynamic): This type of document is more
susceptible for eviction. It holds the content that keeps
changing in small time intervals. A typical example
would be the web site hoisting the scores of a cricket
match.

b. DC = 3 (Dynamic): Content of such page changes with
periodic frequency. A typical example is the site
hoisting the newspaper. Contents of such pages need to
be refreshed daily or every 24 hours.

c. DC = 2 (Partially dynamic): Portion or subset of the
web pages alone changes. For e.g. few pages of railway
web site will contain static information and remaining
pages like reservation chart will be kept updated
frequently.

d. DC = 1 (Static): These pages contain static information
that will be updated at rare occasions. For e.g. in
websites of educational institutions, syllabus will
remain static at least for one academic year.

The dynamicity of the requested web page is assigned by
using the following algorithm.

Algorithm: Dynamic (Requested URL:(P)) [Dynamic
Count(DC): 4-Highly dynamic,

Geetha K et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,637-644

© 2010, IJARCS All Rights Reserved 640

3-Dynamic,2-Partially dynamic,1-Static]
Check `P' with the set of URLs identified as dynamic links

stored with their respective DC.
if any match is found
set DC(P) = DC(i) where i is the matching URL.
return(DC(P))
check the extensions of the files accessed from P to decide

the dynamicity
switch (file extension)
case(pdf or mhtml or doc or txt)
 DC = 1
case(html or htm)
 DC = 2
case(xml or php or asp or aspx or wma or wav)
 DC = 3
end case.
return(DC)
check the important keywords of P with the built-in list.
if any match is found
 DC = 2.
return(DC)
if (time of day = expiry time(P))
 DC = 4.
return(DC)
count the number of web links available in P
if (count > threshold)
DC=3// threshold is a dynamic parameter initialized in the

text file
if (response = ``yes'') //get user preference to cache the page

or not
 DC = 1
else if(response = ``no'')
 DC = 4
return(DC)
if(clearbrowsercache = 1) then
 empty the cache.

C. Semantic Relation:

Semantic relation among cached documents and the
incoming document is established through the following two
different models of CM and RM with the same objective of
calculating the semantic distance/offset.

a. Clustered Model:

The simplest definition of clustering is grouping together of
similar data items into clusters. The mathematical definition of
clustering as stated in [21 is: let X € R m*n a set of data
items representing a set of m points xi in Rn. The goal is to
partition X into K groups Ck such that each data belonging
to the same group is more "alike" than the data in different
groups. Each of the k groups is called a cluster. The result of

the algorithm is an injective mapping X C of data items
Xi to clusters Ck.

The following definitions are assumed in the clustering
algorithm:

X € R m*n denotes a set of data items representing a set of
m points xi in Rn., Ck denotes the k -th cluster , K represents
the number of clusters, C j k denotes the k-th cluster center at
the iteration j.

 Non- parametric approach is adopted for this clustered
model. Two good representative examples of this approach are
the agglomerative and divisive algorithms, also called

hierarchical algorithms that produce dendograms [22]. A
dendogram is simply a tree that shows the group of clusters
that were agglomerated in each step. It can be easily broken at
selected links to obtain clusters or groups of desired cardinality
or radius. Of course the major limitation of this dendogram is,
its sensitivity to merging of clusters that occurred in previous
steps i.e, data are not permitted to change cluster membership
once assignment has taken place. The key advantage of this
method is that they no assumptions are made about the
underlying data distribution. For implementing the clustering
algorithm a matrix with pairwise similarities is required and it
demands storage space of the order of m 2 for m number of
data points to be clustered.

b. Hierarchical Clustering Algorithm:

The algorithm adopted in CM model is the variation of
Hierarchical Clustering Algorithm namely complete linkage
clustering (Maximum or Furthest - Neighbor Method). The
dissimilarity between two clusters i and j is the minimum
dissimilarity between member of the cluster i and member of
the cluster j. This method tends to produce a very tight clusters
of similar cases. This method uses centroid as initial set of
clusters that will select the starting cluster close to the mass
centroid of data set. Each cluster center is calculated adding a
small random perturbation to the centroid of the dataset.

Algorithm: Let D(i,j) be the distance between clusters i, J
and N(i) the nearest neighbor of cluster i.

Initialize 'N' clusters // N = No. of pages stored in cache.
For each pair of clusters (i,j) computer D(i,j)
For each cluster i compute N(i)
Repeat until the desired number of clusters is obtained
Determine i,j such that D(i,j) is maximized
Agglomerate cluster i and j
Update each D(i,j) and N(i) as necessary
End of repeat
Important keywords of the web page contents are identified

and clusters are obtained in the form of trie like data structure
[23] and then the semantic offset is calculated. All the common
categories are first listed out. Then word count is calculated for
these keywords and based on the word count, the keywords are
added to the corresponding category list for that page. Number
of similar and dissimilar categories between the pages are
counted. The page which has more number of dissimilar
categories accumulated with respect to the other remaining
pages is assigned a high eviction index EI.

A web server is simulated and the document manager acts
like a web server that returns the document when queried, if it
is found in the cache. If the requested document is not in the
cache, it redirects the request to the appropriate server and
fetches the requested page. The newly fetched page is then
cached if it can be accommodated, else replacement has to be
made for want of space. The page with the highest EI can be
evicted for replacement. If more than one pages hold the same
EI then the dynamic logic will prioritize eviction process
based on DC. The newly cached page has to be inserted into
appropriate cluster and the keywords have to be arranged
properly into the already established trie data structure that can
be further processed to assign new EI.

c. Relational Model:

This idea is proposed based on the underlying assumption
that the user access pattern is not random and is greatly

Geetha K et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,637-644

© 2010, IJARCS All Rights Reserved 641

influenced by the behavior of the users and their invocation
pattern of the application programs. If the user access pattern
exhibits semantic relation among the cached pages, then the
cache replacement policy could be enforced based on the
semantic relation. Those pages that possess more dynamism by
nature can be exempted from caching. The semantic relation in
terms of semantic distance is evaluated between the incoming
page and the cached pages. The page which has minimum
Relation Index RI (less related) can be marked for eviction. If
more than one pages hold the same minimum semantic
distance then the dynamic logic will prioritize the pages based
on the dynamicity for eviction. The relation between the files
can be expressed in two categories namely: (i) Inter file
relations and (ii) Intra file relations.

An interfile relation exists between two files A and B, if B
is the next file opened following A being closed. A is called B's
precursor. A heuristic policy INTER is defined as quoted in
[24] to show the relation of the file with its precursor. A
heuristic parameter, INTER(i), is defined to represent the
importance of a file i with respect to the interfile relations with
its precursors. The stronger the relation, the less likely it will be
replaced. Thus it is used to calculate RI. The following
parameters are logged for each cached page p to calculate RI:

 N p
: number of time the page p is accessed

 T p : time since the last access is made to p
 T j : represents the time since the last access to file j

where j is a precursor of p .

 N j :
represents the number of times file j precedes file p .

INTER (p) calculates the semantic relation of the file with
other files based on the recency, popularity and based on
precursor relations. Another heuristic parameter, INTRA(p), is
defined as quoted in [24] to represent the unimportance of a file
p based on its intra file relations. This is opposite to the
definition of the importance based on interfile relations
explained above, in the sense that the bigger the value the less
important is the file. Here rather than depending on precursors,
INTRA(p) is defined based on the files that shared time.

 Tp: represents the time since the last access to file p
Tj: represents the time since the last access to file j where j

is open before p is closed
Sp,j: represents the shared time of file p with respect to file j

where p is closed before j
St: represents the total shared time with all files that are

open before p is closed

The INTRA (p) gives the unimportance of the file based on

the shared time of the files.INTER(p) and INTRA(p) are
combined to be reflected as a single value as RI(p) which is
given as

The larger the value of RI(p), the less likely it is to be

replaced. When the file p is to be replaced, calculate RI(p) with
respect to the remaining file in the cache and select the victim
file V which has a the lowest RI. If more than one file possess
same RI then the dynamic counts of those pages are calculated
and the one with maximum count is considered to be more
dynamic and hence that file V is selected for replacement.

where DC(i) is the Dynamic Count of page i then V =
Max(DC(i)) for all i that has same RI.

Figs.3, 4 and Fig 5 show the graphs plotted for the key

cache performance metrics like PHR,BHR and number of
evictions respectively for varying cache size from 1000 to
20,000 KB. Simulation has been carried out without dynamic

Geetha K et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,637-644

© 2010, IJARCS All Rights Reserved 642

logic(dynamicity_NIL) and with dynamic logic. Inclusion of
dynamic logic is done by using both the models CM
(dynamicity_CM) and RM (dynamicity_RM). EI obtained
from CM marks the pages for purging. For the same test cases
RI obtained from RM marks the pages for purging.

From the results observed and depicted, it is clearly
understood that dynamicity_CM outperforms dynamicity_RM
and dynamicity_NIL for all the above mentioned parameters.
Though both the models (CM and RM) enjoy same time
complexity, CM performs well. The only limiting factor of CM
is the need for some extra space. It is consumed while framing
the matrix for grouping the clusters. As far as PHR is
concerned there is a marginal improvement for dynamic logic
as shown in Fig.3. The inclusion of dynamic logic gives better
performance especially in terms of BHR from 8000KB
onwards as shown in Fig. 4. As the cache size is increased
keeping the requests as the same, the hit ratio grows steadily
and finally attains a constant saturation value [Figs. 3 and 4]
which turns out to be approximately 55 to 60%. Also after
attaining a saturation value, there is not much variation in the
hit ratio even if the cache size is increased further. It is
imperative to choose a proper cache size. Too less is going to
be less efficient and too high can be very expensive. Hence the
size needs to be optimal. This implies that from all the above
metrics, the optimal cache value can be freezed to 20,000 KB
beyond which there is no reasonable improvement for the
above requests made. Though it is obvious that number of
evictions can be minimized if the cache size is more, from Fig.
5 it can be perceived that it follows a straight line in the range
15,000 KB to 20, 000 KB. Theoretically if the cache is large
enough, communication between the client and server can be
greatly reduced; however, practically large caches aren't
feasible yet on resource constrained devices.

Since dynamicity_ CM gives better performance as

observed in Fig. 3,4 and Fig. 5, other two types namely
dynamicity_RM and dynamicity_NIL are ignored for further
experiments. The next set of simulations are carried out for
related request set and unrelated request set with repspect to an
individual user. In has been proved that the efficiency of
dynamicity_CM has not been degraded even if the user triggers
unrelated request set, as shown in Figs.6,7 and Fig. 8. In both
the cases for related request set, it is apparent that both PHR
and BHR increase sharply in the beginning and tend to settle
around 50% which is supposed to be a good hit rate i.e. one in
two pages is found in the cache. For unrelated request set, on
the other hand, the hit ratio tends to settle around 30%. Hence
there is a remarkable improvement in using this policy for
related request set. If the user requests for pages that are
semantically related and within quick succession, then the hit
ratio are increased by almost 20% from unrelated request set
which contains random pages that are less related. Fig. 8
illustrates the improvement in the number of evictions made
for related request set compared to unrelated for a large set of
requests submitted.

The behavior of this DynaSem policy (dynamicity_CM) is
dependent on the nature of the requests being made and hence
different sets of requests are generated and its performance is
evaluated and compared against the standard LRU policy,
SEMANTIC, SEMALRU in terms of PHR, BHR and number
of evictions. SEMANTIC policy evicts pages only based on
semantic relation, whereas SEMALRU combines semantic
policy with LRU. The results are shown in Figs. 9, 10 and Fig.
11.

Both the hit rates follow similar pattern for SEMALRU and
DYNASEM and beyond 50000 KB, DYNASEM performs
better than the remaining policies. The values initially rise to a
certain limit and later attain saturation. In Certain systems the
size of the cache might be a critical factor or a bottleneck. For
such systems the optimal value of the size of the cache could
be easily fixed from the above observation. The above results
have been noted only for related request set and DynaSem
policy supersedes the other policies in all the above metrics.

Geetha K et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,637-644

© 2010, IJARCS All Rights Reserved 643

IV. CONCLUSION AND FUTURE WORK

This work aims at improvising the semantic based web

cache replacement policy by considering the level of dynamism
among the pages possessing the same relation. A modified
policy termed `DynaSem' has been developed. A formal
framework for the DynaSem policy has been designed that
incorporates two logics - dynamic and semantic relations.
Rating the document based on the dynamic count leads to
conservative improvement in most of the performance metrics
used to evaluate the cache replacement policy. The semantic
relation has been established using clustered model and

relational model. Both models aim at identifying the
dependencies among the cached document and the new
incoming document. The request set is generated by a
simulation process and the clustered model can be chosen, if
the user access pattern is going to explore all the possible sub
links provided in a web site. Relational model can be preferred
if the user switches between various web sites for related
information. Though both models experience same time
complexity, better results can be obtained in CM in spite of its
increased space complexity. Using model driven simulation,
the performance of DynaSem policy has been analyzed for
related and unrelated request sets. Even if the user access
pattern is not related, this policy has not deteriorated much
from other policies namely LRU, SEMANTIC and
SEMALRU. Ranking the documents based on their dynamism
shows commendable results and hence it can be used as a vital
parameter for tuning the performance of all prevalent
replacement strategies that ignore file relations and
communication overhead. An increasingly important technique
to enhance the web caching performance is to prefetch web
pages. Prefetching can happen in a predictive manner or in an
interactive manner. For predictive prefetching, the proposed
policy can be used to predict the reference probability of new
requests after analyzing the user access pattern The
experiments conducted in the proposed work are restricted to
only isolated cache. A possible extension to this work could be
to experiment with a grid of cooperating caches. This policy
tackles single user interest and can be extended to satisfy group
of users. Instead of trie structure used in CM, standard vector
model that is widely employed in search engines for
information retrieval can also be adopted.

V. ACKNOWLEDGMENT

The authors would like to thank Mr. N. Ramasubramanian,
Associate Professor, Department of Computer Science and
Engineering, National Institute of Technology, Tiruchirappalli
for permiting to conduct the simulation work in his lab and for
his valuable suggestions in making this work possible

VI. REFERENCES

[1] Kin Yeung Wong, “Web Cache Replacement Policies: A
Pragmatic Approach”, IEEE Network , 20(3):342-351, 2006.

[2] J Wanf, “A Survey of Web Caching Schemes for the
Internet”,ACM SIGCOMM Computer. Communication review,
29(5):36-46, 2006.

[3] Abdullah Balamash And Marwan Krunz, “An Overview of Web
Caching Replacement Algorithms”, IEEE Communications
Surveys, 6(2):44-56, Second Quarter 2004.

[4] S Podlipnig and L Boszormenyi, “Web cache Replacement
strategies”, ACM Computing Surveys, 35(4):374-398, 2003.

[5] Brian D Davison, “A Web Caching Primer”, IEEE Internet
Computings, 5(4):38-45, July/August 2001.

[6] K Psounis and Balaji Prabhakar, “A Randomized Web-Cache
Replacement Scheme”, INFOCOM - Twentieth Annual Joint
Conference of the IEEE Computer and Communications
Societies. Proceedings, 4, 1407-15, April 2001.

[7] L Rizzo and L Vicisano, “Replacement policies for a proxy
cache”, IEEE/ACM Trans. Networking , 8(2):158-70, April
2000.

Geetha K et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,637-644

© 2010, IJARCS All Rights Reserved 644

[8] S Williams et al., “Removal Policies in Network Caches for
World-Wide Web documents”, Proc. ACM SIGCOMM, 293-
305, Aug. 1996.

[9] P Cao and S Irani, “Cost-Aware WWW Proxy Caching
Algorithms”, Proc. USENIX Symp. Internet Tech. and Sys..,
193-206, Dec 1997.

[10] L Breslau et al., “Web caching and Zipf-like Distributions:
Evidence and Implications”, Proc. INFOCOM, 126-34, Aug.
1999.

[11] Alcides Calsavara, Rogerio Guaraci dos Santos, Edgard
Jamhour, “The Least Semantically Related Cache Replacement
Algorithm”, ACM Latin America conference on Towards a
Latin American agenda for network research Proceedings of the
2003 IFIP, 21-34, October 2003.

[12] Ren Q, Dunham M H, and Kumar, “Semantic caching and query
processing”, IEEE transactions on Knowledge and Data
Engineering, 15, 192-210, 2003.

[13] Michael Stollberg, Martin Hepp, and Jorg Hoffmann, “A
Caching Mechanism for Semantic Web Service Discovery”,
LNCS 4825, Springer-Verlag Berlin, 15, 480-493,2007.2

[14] K Geetha, and N Ammasai Gounden, and S Monikandan,
“SEMALRU: An implementation of modified web cache
replacement algorithm”, INC -09 International Symposium On
Innovations In Natural Computing IEEE Computer Society,
1406-1410, Dec. 2009.

[15] Chidlovskii, B Roncanico C, “Semantic cache mechanism for
heterogeneous web querying”, www8/computer networks,
31(11-16):1347-1360, 1999.

[16] Zheng B, et al., “Cache invalidation and replacement strategies
for location-dependent data in mobile environments”, IEEE
Transactions on computers, 10(51):1141-1153, 2002.

[17] C Aggarwal, J Wolf, and P Fellow, “Caching on the World
Wide Web”, IEEE Trans. Knowledge and Data Eng., 11(1):94-
107, Jan./Feb. 1999.

[18] Murta et al., “Analyzing performance of partitioned caches for
the WWW”, Proceedings of 3rd International WWW caching
workshop, 1998.

[19] Cheng K, Kambayashi, “Advanced replacement policies for
www caching.,” In web-Age Information Management, 239-
244, 2000.

[20] R Wooster and M Abrams, “Proxy Caching that EstimatesPage
Load Delays”, Proc. 6th Intl. World Wide Web Conf., Santa
Clara, 32534, Apr.1997.

[21] D Fasulo, “An analysis of recent work on clustering algorithms.
of the Technical report”, 1999.

[22] Glenn Fung, “A Comprehensive overview of Basic Clustering
Algorithms” of the technical report, June 2001.

[23] Seung-Hyun Oh, and Jong-Suk Ahn, “Bit-map trie: a data
structure for fast forwarding lookups”, INC -09, Global
Telecommunications Conference, GLOBECOM '01. IEEE, 3,
1872-1876, Dec.2001.

[24] Sharun Santhosh and Weisong Shi, “A Semantic-based Cache
Replacement Algorithm for Mobile File Access”, WWW2005
conference, 2005.

