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Abstract—Temperature-based task scheduling has become a relevant remedy to thermal safety without compromising performance and energy 

efficiency. Increasing complexity and performance needs of mobile and embedded processors have placed energy consumption and thermal 

stability as system design issues. The increased compactness and power of the devices cause a problem of too much heat being produced which 

might lead to reduced performance, low reliability and hardware short life. Here the strategy to alleviate such issues has come in the form of 

temperature-aware task scheduling, which has proven to be an effective way of optimizing task scheduling to address both performance and 

thermal limits. Through this survey, a rigorous survey of algorithmic as well as hardware-level approaches in thermal-aware scheduling is 

presented. It discusses both the techniques of static and dynamic schedules, such as heuristic scheduling and optimization programming and 

predictive scheduling. Lt also examines the hardware-enabled approaches like Dynamic Voltage and Frequency Scaling (DVFS), thermal sensors, 

and thermal throttling services. The application in real-life settings is also presented and remarks provided on the measures of performance applied 

to measure performance of scheduling strategies in the review. With the insight into the existing research and transforming trends, this paper seeks 

to convey an in-depth view of the space that is temperature-aware scheduling in mobile systems and direct the future advancement of thermally 

efficient designing systems. 

Keywords—Temperature-aware scheduling, task scheduling algorithms, DVFS, multi-processor system-on-chip (MPSoC), embedded processors, 

low-power design. 

I. INTRODUCTION 

The growth in processing capability of current 
(micro)processors is exponential and a striking rise in energy 
consumption on all computing platforms including small 
handheld computers and large-scale data centers has mirrored 
this expansion of processing power. This surge has led to 
significant heat emissions, resulting in high operating 
temperatures that adversely affect processor performance and 
reliability [1]. Elevated temperatures not only degrade the 
lifespan of chips but also risk permanent hardware damage. 
Consequently, manufacturers have set strict thermal thresholds 
and incorporated cooling systems that operate almost 
continuously [2]. However, the energy consumed and heat 
emitted by these cooling mechanisms contribute further to the 
overall system energy footprint. 

The scheduling of tasks is very important.  Contrasted with 
task allocation, which handles the timing and sequencing of 
tasks once allocation is complete, task scheduling is formally 
described as the problem of assigning a set of tasks to a set of 
processors (or robots) in a way that optimizes multiple 
objectives, such as total completion time, workload balancing, 
or travel distances [3]. Efficient scheduling must now also 
account for thermal constraints to ensure reliable and energy-
efficient operation. 

As processor power consumption continues to rise rapidly 
with each generation, energy and temperature management have 
become a critical issue [4]. This is especially challenging since 
advances in cooling technology have not kept pace with the 
increase in heat generation. To mitigate this, a range of research 
efforts have focused on incorporating energy and thermal 
awareness into scheduling algorithms at the system and 
operating system levels. Modern processors support 
mechanisms such as Dynamic Voltage Scaling (DVS), which 
enable the real-time control of processor speed and voltage, 
allowing for dynamic thermal and energy management. 

These days, thermal management isn't limited to central 
processing units. In the world of electric vehicles and mobile 
devices, batteries and related components are a big cause for 
concern [5]. Battery performance and safety are highly 
dependent on temperature conditions; hence effective thermal 
management systems are necessary [6]. Additionally, the 3G/4G 
network interface, a crucial part of mobile devices, uses a lot of 
power. The main culprit here is tail energy, which maintains 
power to the radio interface long after data transmission has 
ended [7]. Together, these challenges highlight the importance 
of developing temperature-aware task scheduling strategies that 
not only optimize performance and energy consumption but also 
maintain thermal safety across heterogeneous mobile computing 
environments [8].  

A. Structure of the paper 

The structure of the paper is as follows: Section II discusses 
the Classification of Temperature-Aware Task Scheduling 
Approaches; Section III explores software-based scheduling 
Algorithms; Section IV presents Hardware-Assisted Thermal 
Management Techniques; Section V offers a comprehensive 
literature review of recent RL-based energy optimization 
approaches; and Section VI concludes with key findings and 
future research directions. 

II. CLASSIFICATION OF TEMPERATURE-AWARE TASK 

SCHEDULING APPROACHES 

A number of techniques are employed in temperature-aware 
task scheduling for mobile systems in order to control thermal 
behavior while preserving system performance. Although many 
earlier models focused on energy and thermal management at the 
micro-architecture level, it shifts the focus to the operating 
system level for thermal management.  When it comes to 
reducing peak temperatures, most previous research has focused 
on multi-core systems, which allow for the dynamic migration 
of tasks between cores [9]. But recent work has demonstrated 
that thermal efficiency can be enhanced even in systems with 
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only a single core by exploiting differences in heat generation 
between tasks. Managing processor temperature more efficiently 
can be accomplished by smart time scheduling of tasks with 
considerations of their thermal property. Dynamic thermal 
management (DTM) hardware continually reads the temperature 
given on the chip, and acts in response to the temperature going 
too high. To mitigate overheating, the system automatically 
reduces the CPU frequency commonly by half, and potentially 
down to one-fourth or one-eighth, if necessary, thereby reducing 
heat output. The cooling system is always running, bringing the 
processor's temperature closer to that of the surrounding 
environment. 

A. Thermal Management in Mobile Systems 

Thermal management in mobile systems goes beyond 
conventional energy-saving mechanisms by ensuring that chip 
temperatures remain within safe thermal thresholds [10]. When 
a device approaches or exceeds these thresholds, throttling 
techniques are typically employed to reduce temperature by 
lowering performance or temporarily disabling certain 
components. Most of the approaches discussed in this section 
focus specifically on managing thermal issues in mobile MPSoC 
(Multi-Processor System-on-Chip) platforms. Although 
numerous thermal management strategies have been proposed 
over the years, the majority of research has focused on general-
purpose processors and Network-on-Chip (NoC) architectures, 
rather than the distinct characteristics and constraints of mobile 
Many-Core System-on-Chip (MPSoC) architectures [11]. 
However, modern computing devices from smartphones to 
complex cyber-physical systems increasingly rely on MPSoC 
architectures to meet growing demands for performance and 
energy efficiency. As a result, effective and targeted thermal 
management solutions tailored to mobile MPSoC platforms are 
becoming critically important. 

B. Static vs. Dynamic Scheduling 

Task scheduling in mobile systems is broadly classified into 
Static and Dynamic approaches. Static Scheduling (SS) makes 
scheduling decisions during the compilation process and is apt 
to program segments where the control flow and execution time 
are predictable. Dynamic Scheduling (DS) on the other hand 
modifies its decisions at run time thus it is suitable for workloads 
with variable or unpredictable behavior [12]. DSS is a kind of 
hybrid architecture, where SS is used to optimize the regularly 
program areas and DS is used on the rest of the program parts. 
This moderate approach improves performance and 
performance efficiency at the same time. There is a succinct 
comparison of the two methods in Table I: 

TABLE I.  STATIC VS. DYNAMIC SCHEDULING 

Aspe

ct 

Static 

Schedulin

g (SS) 

Dynamic 

Scheduling 

(DS) 

Hybrid (Static + 

Dynamic 

Scheduling - 

DSS) 

Defin

ition 

Scheduling 

decisions 

made at 

compile 

time 

Scheduling 

decisions 

made at 

runtime 

Combines static 

and dynamic 

scheduling to 

balance 

performance and 

area 

Use 

Case 

Suitable 

for code 

sections 

with 

simple 

control 

Ideal for 

irregular, 

unpredictabl

e control 

flows 

Static parts 

identified (e.g., 

via pragmas), and 

remaining code 

scheduled 

dynamically 

flow and 

fixed 

latency 

Flexi

bility 

Less 

flexible; 

does not 

adapt to 

runtime 

conditions 

Highly 

flexible; 

adapts to 

dynamic 

system 

behavior 

Offers a balance 

between 

flexibility and 

efficiency 

Perfo

rman

ce 

Opti

mizat

ion 

Optimized 

for known, 

determinist

ic 

workloads 

Optimized 

for variable 

workloads 

Targets minimal 

area usage and 

maximal 

performance 

User 

Invol

veme

nt 

Compiler 

or user 

annotates 

fixed-

schedule 

regions 

System 

autonomousl

y handles 

scheduling 

Current 

implementations 

require user 

annotations; 

future work aims 

for automation 

Integr

ation 

Strate

gy 

Applied to 

specific 

parts of a 

program 

Applied to 

the 

remaining 

parts after 

static regions 

are handled 

Areas that remain 

static are handled 

as opaque entities 

while the 

remainder of the 

program is 

dynamically 

scheduled. 

DSS a compromise between SS and DS, which seeks low 
area and high performance, illustrated in Figure 1:  

 

Fig. 1. A Sketch Comparing the Design Quality of Different Scheduling 

Approaches. 

C. Reactive vs. Proactive Scheduling 

Reactive vs. Proactive Scheduling Reactive-proactive 
scheduling has the twin features of combining two 
complementary steps to arrange the execution of tasks in an 
uncertain setting. During the proactive period, a baseline plan is 
developed based on the statistical information in order to foresee 
disturbances. This plan strong which implies that it is not overly 
affected by unplanned events when implementing the plan. 
Reactive scheduling comes into action when deviations or 
disruptions are experienced during the run time, and this is done 
by modifying the baseline schedules to adapt to the real-time 
differences [13]. The plan which is thus obtained is known as the 
realized schedule. Robustness in this case is the capability of 
base schedule that is able to take up or defend against 
interruptions with a minimum performance loss. Robustness has 
been discussed in many fields in various ways, resulting in 
varied definitions and criteria of evaluation. This means an 
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increased requirement for common standards of robustness and 
measurement procedures.  

D. Thermal-Aware Real-Time Scheduling 

Real-time task scheduling with temperature management is 
called thermal-aware real-time scheduling. This way, jobs can 
be limited by time constraints and also be sure to stay within safe 
temperature ranges. Particular real-time schedulers, like Earliest 
Deadline First (EDF) or Rate Monotonic (RM) schedulers, 
benefit from thermal awareness in embedded and mobile 
systems when timing guarantees are crucial and thermal 
headroom is minimal. These are dynamic modifications of task 
hierarchies with temperature, recovery of idle time to cool down, 
and using forward-looking schedule slippage to prevent 
overheating. The scheduler either relies on real-time temperature 
data or predictive models to make decisions and hence high-
priority tasks run on time without thermal throttling. Such a 
balance between thermal control and time accuracy is critical to 
ensuring reliability as well as performance of thermally limited 
platforms, e.g. wearables, smartphones, and automotive 
embedded systems. 

III. SOFTWARE-BASED SCHEDULING ALGORITHMS 

The application of software scheduling algorithms is critical 
to optimal task execution within computing contexts and more 
specifically, within operating systems, real-time systems and 
cloud computing systems. These algorithms are calculated to 
decide the order and time, at which the process or tasks would 
be assigned to the resources like CPU or virtual machines. 
Priority Scheduling, Round Robin, First-Come, First-Served 
(FCFS), and Shortest Job Next (SJN) are some of the most well-
known scheduling strategies. Other, more practical methods like 
Multilevel Queue and Multilevel Feedback Queue are also 
suggested [14]. To meet strict timing constraints in real-time 
systems, techniques such as Earliest Deadline First (EDF) and 
Rate Monotonic Scheduling (RMS) are used. Trust-aware and 
energy-efficient scheduling schemes are emerging in distributed 
environments as well as in cloud computing environments with 
the intention of delivering reliability, security, and maximization 
of resource use availability. The choice of scheduling algorithm 
significantly impacts system performance metrics like 
turnaround time, throughput, and response time, making it a 
critical aspect of system design and resource management. 

A. Thermal-Aware DVFS (Dynamic Voltage and Frequency 

Scaling) 

As shown in Figure 2, the suggested temperature-aware 
DVFS architecture is based on.  Because logic gates' delays 
change with temperature, a ring oscillator can double as a 
thermometer. The decrease in oscillation frequency (𝑓𝑜𝑠𝑐) [15] is 
due to an increase in the gate delay as a consequence of rising 
ambient temperature. When the need to detect temperature 
arises, a counter is set to operate for a predetermined length and 
used to track this oscillator's output. The possibility of chip 
overheating is indicated by a decreased (𝑓𝑜𝑠𝑐) If the counter 
value drops below a set threshold. As a result, the system reduces 
the supply voltage, which in turn minimises power usage. 
Lessening the supply voltage helps lower the chip temperature 
because, as shown in Equations (1) and (2) 𝑓, Dynamic power 
and leakage both drop with lower voltages. 

 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =∝ 𝐶𝑉2
𝐷𝐷
𝑓 () 

 𝑃𝑙𝑒𝑎𝑔𝑎𝑔𝑒 = 𝐼𝑙𝑒𝑎𝑔𝑎𝑔𝑒. 𝑉𝐷𝐷 () 

As the temperature drops, gate delays shorten, and 
(𝑓𝑜𝑠𝑐)increases. To improve performance, the supply voltage 

can be increased when the counter value goes beyond a certain 
threshold, which indicates that there is enough cooling. For 
Dynamic Voltage Scaling (DVS), the procedure is shown in 
Figure 2 (a), where the adjustment is made to only 𝑉𝐷𝐷 ; for 

DVFS, both 𝑉𝐷𝐷The clock frequency f is scaled, as seen in 

Figure 2(b). Notably since lower 𝑉𝐷𝐷   Leads to longer gate 

delays, the clock frequency must also be reduced in DVFS 
schemes to maintain timing reliability.  

 

Fig. 2. Dynamic Voltage Scaling (DVS) 

B. Heuristic-Based Scheduling Algorithms 

In order to complete a task, a resource must be chosen from 
a pool of potential options that meet all of the criteria [16]. 
Although all resources in the list meet the minimum 
requirements, a scheduling algorithm is essential to determine 
the most suitable resource for efficient task execution. Heuristic-
based scheduling algorithms are widely used to make such 
decisions, aiming to optimize performance, minimize 
completion time, or balance load. Key heuristic algorithms 
include:  

• Min-Min Algorithm: The Min-Min method starts with 
the set of all unassigned tasks, which is called the meta-
task (MT) set.  The first step is to determine the shortest 
amount of time that each MT task is likely to take.  The 
second step is to find the resource that can do the work 
with the overall minimal predicted time.  The earliest jobs 
are given priority in this technique.  

• Max-Min Algorithm: The second phase of the Max-
Min method is different from Min-Min, while the two 
algorithms share a similar structure. It uses the maximum 
expected completion time from the MT set to assign the 
job to the corresponding resource, rather than the task 
with the lowest completion time.  In an effort to decrease 
total make span, this strategy gives higher priority to 
longer tasks, with the goal of tackling tasks of longer 
durations first. 

• Switcher Algorithm: The minimum completion times of 
unassigned jobs are used to determine the Switcher 
algorithm's dynamic choice between the Min-Min and 
Max-Min methods. It finds the position in the list when 
the time difference between two consecutive jobs is 
greater than the standard deviation. Based on this 
comparison, it switches to the more appropriate 
algorithm for each scheduling instance. 

• Suffrage Algorithm: Each task's minimum and second 
minimum predicted completion times are calculated 
using this method.  A person's suffrage value is the 
difference between these two numbers. The task with the 
highest suffrage value indicating that its optimal resource 
assignment is more critical is then scheduled on the 
machine that offers the minimum completion time. 
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C. Thermal-Aware Allocation and Scheduling 

The thermal-aware ASP considers temperature when finding 
a solution to the thermal issue.   The total system temperature is 
determined by the power consumption, size, and location of each 
processor element (PE) on the embedded system platform.   
Hotspot, a thermal modelling program, is used to get the 
temperature profile [17]. Hotspot provides a simple compact 
model that takes into consideration the internal heat dissipation 
of each PE as well as the exterior heat flow between PEs. For 
each function block, Hotspot can generate accurate temperature 
estimates by taking the system topology and power usage into 
account. In order to initiate the thermal-aware application 
programming interface (API), transmit to the Hotspot the 
aggregate power consumption of all PEs as well as the power 
consumed by the ongoing scheduled task. By averaging the 
temperatures returned from the Hotspot, they may compute the 
dynamic criticality, which was previously defined. Minimizing 
the average temperature is the goal of replacing the Pow term 
with the newly added Avg. Temperature. This objective also 
necessitates lowering the maximum temperature. 

IV. HARDWARE-ASSISTED THERMAL MANAGEMENT 

TECHNIQUES 

Mobile and embedded systems require high efficiency and 
thermal stability, which can be effectively achieved through 
hardware-assisted thermal management. This strategy 
incorporates specialized hardware components, e.g. thermal 
sensors, dynamic thermal management (DTM) engines and 
thermal throttling, into processor and system-on-chip (SoC) 
designs. This allows dynamically varying performance-related 
settings to be made, including supply voltage, clock frequency, 
and workload distribution, among processing cores [18]. Such 
real-time thermal information can be used right away to adjust 
to thermodynamic changes and therefore system reliability and 
effectiveness. Hardware-based thermal control entails DVFS 
modules which are typically embedded into processors. The 
dynamic power optimization used in these modules is based on 
thermal feedback that prevents overheating of the modules 
compared to when power consumption is kept constant to allow 
optimal performance at the higher levels [19]. DVFS helps to 
reduce the chances of temperature failures by diffusing power 
draw under the condition of high temperature, though the 
processing capabilities are not reduced much. 

A. System Hardware Model 

The physical embodiment and structure of a computer 
system are specified in the system hardware model, which 
implements the software and performs the computation. All 
these models commonly have the processing unit (CPU/GPU), 
memory unit [RAM, cache], storage unit (HDD and SSD), 
input/output devices, and communication ports. In a multi-core 
or distributed implementation, the hardware model involves 
some headcount of processors or nodes that are interconnected 
and each has its memory since processing of information occurs 
[20]. The design of effective scheduling algorithms relies on the 
model, as it affects execution time, resource competition, and 
any communication overhead. Performance optimization, 
balanced load, and the ability to enable concurrency in tasks 
across different computing architecture types, such as embedded 
systems, clouds, and HPCs, require a precise understanding of 
hardware architecture. 

B. Thermal Management Strategies 

The ability to manage thermal performance, battery pack life 
and security of electric vehicle (EV) battery packs relies on 
thermal management strategies. Such strategies usually involve 

active cooling, passive cooling, and cooling insulation, hoping 
to keep the individual operating temperatures optimal, and avoid 
thermal runaway (TR). The most effective methods in cooling 
include active cooling where liquid is used to cool down the heat 
produced during charging and releasing the heat. These systems 
actively circulate coolant around battery cells which gives 
accurate thermal regulation. Passive cooling techniques on the 
other hand, such as the utilization of phase change materials 
(PCMs) assist in the process of the temperature variation by not 
bringing in extra energy instead [21]. High-load periods refuse 
to be wasted by PCMs, which are able to absorb the surplus to 
keep the heat till its release in a few moments and become 
originators of energy-efficient thermal stability. Safety is also 
increased by thermal insulation that reduces the outside thermal 
influences, provides stable internal temperatures. This 
minimizes the chances of getting overheated and guarantees 
regular battery performance. The synergy between these 
strategies allows EV battery systems to achieve comprehensive 
thermal performance, higher operation safety, and battery life. 

C. Hotspot Thermal Model 

Hotspot computes temperatures of processors by simulating 
the thermal behavior of an electronic system in a manner similar 
to how electrical networks are analyzed, with heat flow modeled 
much as the current flow of a network of thermal resistors and 
capacitors. Floorplan The input to the simulator is a floorplan, 
which describes the physical arrangement, placement, and 
connectivity of the different processor elements [22]. The 
heatsink, fan and thermal interface material are also provided in 
the thermal model in order to provide realistic simulation. A 
variation of a previous floor layout is adapted to the new setup 
here, with 4 cores in the layout branched out but each one is 
smaller in size. Every core includes all elements to handle an 
out-of-order pipeline. Four cores are also interconnected with 
each other by single L2 cache and on-chip interconnection 
because this is a typical architecture of multicore processors. 
Hotspot can do both steady-state and transient temperature 
profiles. Although a considerable number of past research have 
focused on steady-state analysis, which is applicable in 
introducing approximations of long-term thermal conduct even 
in the presence of short-time simulation duration, it can prove 
quite challenging to utilize steady-state analysis in certain 
instances, specifically at periods that are much less than the 
periods of thermal response.  

V. LITERATURE REVIEW 

This literature Summary brings new developments in the 
field of temperature-sensitive task scheduling, including 
heuristic, optimization, and machine learning methods. A 
particular focus is given to energy efficiency, thermal stability, 
and performance on a wide range of platforms, even in cloud, 
fog, embedded, and trusted execution environments. 

Kasturi et al. (2025) an Energy and Temperature conscious 
scheduling policy based on the Earthworm Optimization 
Algorithm (EOA) to effectively optimize energy consumption, 
thermal status and performance of systems. The proposed EOA 
takes the foraging behavior that the earthworm uses and 
optimizes Task Scheduling (TS) by finding energy-efficient 
nodes and assigning workload to minimize temperature hotspots. 
Introducing energy consumption rates as well as temperature 
barrier into the fitness function allows the algorithm to 
dynamically assign the tasks in order to minimize the energy 
usage and avoid the thermal overload on both cloud and fog 
layers. The results of the experiments prove that the EOA-based 
scheduling lowers overall energy consumption and sustains 
constant temperature levels by a significant margin as compared 
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to the traditional algorithms, such as HDDPGTS, EEOA, and 
MAO [23]. 

Li et al. (2024) examine performance penalty in parallel 
implementation of the cross-device resource sharing tasks. Then, 
a novel multi-task perceiving and scheduling framework 
(MTPS) is proposed to guarantee the quality of service of the 
parallel tasks. The basic idea of MTPS is to first build a master-
slave system model to reorganize mobile devices under the same 
network. Then, MTPS perceives the running cross-device 
resource sharing tasks and schedules the parallel execution of 
multiple tasks to avoid mutual interference. Experimental results 
on real devices show that MTPS can reduce the average 
completion time of file sharing by 63.5%, and maintain at least 
24 frames per second for screen casting at optimal levels in the 
presence of other tasks. The prevalence of cross-device resource 
sharing enables users to utilize various device resources of the 
connected mobile devices seamlessly [24]. 

Peng et al. (2023) a two-stage temperature-aware scheduling 
scheme for approximate tasks based on homogeneous multicore 
platforms, solving approximate task scheduling problem under 
time, energy, reliability, and temperature constraints. In the first 
stage, it can design a heuristic scheduling algorithm to perform 
task-to-processor assignment and preliminarily task frequency 
selection to minimize energy and make span. In the second stage, 
it can design a temperature optimization algorithm that combines 
DVFS and slack distribution to ensure that processor 
temperature is lower than the temperature threshold. Compared 
with the existing methods, the experimental simulations show 
that method achieves 97.6% runtime reduction and 14.9% peak 
temperature reduction [25]. 

Wang et al. (2023) a thorough evaluation of the efficiency of 
the freely available TEE encryption algorithm. Next suggest an 
ETS-TEE, a task scheduling technique that is very energy 
efficient. Policy considers the intricacy of TA jobs through the 
application of deep learning. Offloading to an edge server and 
local device modelling are two ways these tasks are dynamically 
scheduled. They use a Raspberry Pi 3B to evaluate the method 
as both a local mobile device and an edge server. The results 
show that the method reduces energy consumption by an average 
of 38.0% and increases speed by 1.6 times compared to the 
default scheduling strategy on the local device. Creating a 
trusted execution environment that is both quick and secure, 
greatly reduces the performance hit that mobile devices might 
impose, ensuring the secure execution of programs [26]. 

Nong et al. (2022) an architectural framework that takes 
energy economy into account when managing resources, taking 
thermal factors into account. A layered architecture underpins 
the framework, which includes a suite of intuitive client tools 
and middleware that accounts for temperature conditions while 
allocating tasks within and across data centers.  The creation of 
a data center-specific job scheduling component that takes 
thermal considerations into account is the primary emphasis of 
this article. In light of upcoming efforts to reduce data center 
energy costs, this component is essential for maintaining a stable 
temperature distribution within a single data center [27]. 

Pourmohseni et al. (2022) a strategy for migrating tasks in 
order to optimize thermal performance in systems with multiple 
cores and different types of hardware.  The proposed strategy is 
based on a thermally safe analytical power-budgeting method 
that uses Dynamic Voltage and Frequency Scaling (DVFS) for 
electricity and heat management.   The migration policy 
aggressively implements DVFS in an effort to optimize the 
system's performance while simultaneously guaranteeing 
thermal safety.   To achieve this goal, it iteratively fine-tunes the 
distribution of active cores in the system (via suitable migration 
decisions) to maximize their thermally safe power budget, which 
enables them to operate on higher frequencies without being 
overheated [28]. 

Lee (2021) effectively controls the temperature of embedded 
systems by combining two procedures: dynamic thermal 
management in real-time and a utilization bound that takes 
thermal awareness into account. In order to adhere to the chip 
temperature restriction which is influenced by variables like 
system configurations, workloads, environmental conditions, 
and chip cooling capacity the former specifies a maximum 
allowable processor utilization. The latter takes into account the 
thermal-aware utilization bound and optimizes the execution 
rates of specific tasks. By studying a vehicle controller, they 
were able to improve system utilization by 18.2% over earlier 
approaches and demonstrate the thermal-aware utilization bound 
[29]. 

Table II presents a comparative summary of recent 
temperature-aware task scheduling strategies, highlighting 
diverse algorithmic approaches, key findings, encountered 
challenges, and prospective future research directions in mobile 
systems 

TABLE II.  LITERATURE SUMMARY ON TEMPERATURE-AWARE TASK SCHEDULING IN MOBILE SYSTEMS 

Author Study On Approach Key Findings Challenges Future Directions 

Kasturi et al. 

(2025) 

Energy and 

temperature-

aware 

scheduling in 

cloud and fog 

systems 

Earthworm 

Optimization 

Algorithm (EOA) 

using energy-

efficient node 

selection and thermal 

constraints 

Reduced energy 

consumption and 

thermal hotspots 

compared to 

HDDPGTS, 

EEOA, and MAO 

Balancing real-

time performance 

and 

environmental 

constraints 

Extend EOA to 

heterogeneous edge 

environments and 

real-time IoT 

scenarios 

Li et al. 

(2024)  

Temperature-

aware 

scheduling for 

approximate 

tasks on 

homogeneous 

multicore 

platforms 

 

Two-stage 

scheduling scheme. 

Heuristic task-to-

processor 

assignment with 

preliminary DVFS 

for energy and 

makespan 

optimization. 

Achieved 97.6% 

runtime reduction 

and 14.9% peak 

temperature 

reduction 

compared to 

baseline methods 

 

 

Balancing trade-

offs among 

energy efficiency, 

reliability, and 

temperature 

within task 

deadlines; 

complexity in 

coordinating 

Extend to 

heterogeneous 

systems, integrate 

machine learning 

for dynamic 

prediction, explore 

real-time adaptive 

scheduling for 

dynamic workloads 
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Temperature 

optimization using 

DVFS and slack 

distribution 

 

 

 

scheduling and 

thermal 

management 

 

 

Peng et al. 

(2023) 

Scheduling of 

approximate 

tasks under 

time, energy, 

and 

temperature 

constraints 

Two-stage heuristic: 

task-to-core 

assignment with 

frequency scaling, 

followed by DVFS + 

slack distribution for 

thermal control 

Achieved 97.6% 

runtime reduction 

and 14.9% peak 

temperature 

reduction 

Handling 

approximation 

accuracy with 

thermal limits 

Incorporating 

adaptive 

approximation 

models and 

extending to multi-

application systems 

Wang et al. 

(2023) 

Conserving 

Power Through 

Efficient Task 

Scheduling in 

TEE 

Deep learning-based 

ETS-TEE policy on 

mobile–edge 

systems 

Ensured secure 

execution while 

achieving a 38.0% 

decrease in energy 

consumption and a 

1.6-fold increase in 

speed. 

TEE overhead 

and device 

limitations 

Explore hybrid 

secure task 

offloading with 

dynamic trust 

assessment 

Nong et al. 

(2022) 

Middleware for 

thermally-

aware work 

scheduling in 

cloud data 

centers 

Layered architecture 

with thermal-aware 

scheduling 

middleware and 

distributed cluster 

monitoring 

Improved 

temperature 

regulation and 

decreased power 

consumption 

Scalability across 

data centers, 

middleware 

integration 

Develop intelligent 

thermal prediction 

modules and inter-

data center thermal 

coordination 

Pourmohseni 

et al. (2022) 

Migration of 

thermally-

aware tasks in 

diverse many-

core 

architectures 

DVFS-based 

analytical power-

budgeting with 

proactive task 

migration 

Maximized safe 

thermal operation 

and system 

performance 

Overhead in 

continuous 

migration and 

prediction 

Integrate AI-based 

decision models for 

predictive core 

activation and 

migration planning 

Lee (2021) Thermal-aware 

scheduling in 

embedded 

systems with 

real-time 

constraints 

Dynamic thermal 

management in real-

time and thermally 

aware utilization-

bound 

Enhanced system 

utilization by 

18.2% while 

meeting thermal 

restrictions for the 

associated chips 

Dependence on 

cooling 

environment and 

dynamic 

workloads 

Apply to safety-

critical systems like 

automotive ECUs 

with formal 

guarantees 

VI. CONCLUSION AND FUTURE WORK 

This study of temperature-aware task scheduling strategies 
in mobile and embedded systems emphasizes the critical 
interplay between energy efficiency and thermal management. 
The paper outlined key scheduling models, including dynamic 
and static approaches, proactive versus reactive strategies, and 
hardware-assisted methods such as DVFS and thermal sensing. 
Recent advances demonstrate how algorithmic and architectural 
innovations help mitigate thermal hotspots, prolong device 
lifespan, and maintain optimal system performance. While 
significant progress has been made, particularly in multi-core 
and heterogeneous processor platforms, challenges persist in 
scalability, real-time responsiveness, and platform-specific 
optimizations. Integrating task scheduling with advanced 
thermal modeling tools, such as Hotspot, further enhances the 
effectiveness of thermal-aware design strategies. However, most 
existing approaches are tailored to specific platforms and lack 
generalizability across diverse hardware configurations. 

Future research should focus on developing adaptive and 
predictive scheduling algorithms that utilize artificial 
intelligence to anticipate thermal events in real-time. A 
promising direction lies in integrating machine learning models 
with hardware-level thermal feedback to enable self-optimizing 
systems. Furthermore, expanding the scope of temperature-
aware scheduling to include emerging platforms such as edge AI 

devices, wearable computing, and automotive embedded 
systems can ensure broader applicability. Addressing the 
limitations of current cooling mechanisms and incorporating 
robust energy models for next-generation batteries will be 
essential. Ultimately, achieving a synergistic balance between 
energy, performance, and thermal behavior remains a key 
challenge for designing sustainable and intelligent mobile 
systems. 
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