
DOI: http://dx.doi.org/10.26483/ijarcs.v16i4.7322

Volume 16, No. 4, July-August 2025

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2023-2025, IJARCS All Rights Reserved 154

ISSN No. 0976-5697

TEMPERATURE-AWARE TASK SCHEDULING IN MOBILE SYSTEMS: A

SURVEY OF ALGORITHMS AND HARDWARE SOLUTIONS

Sandeep Gupta

SATI, Vidisha, India

Abstract—Temperature-based task scheduling has become a relevant remedy to thermal safety without compromising performance and energy

efficiency. Increasing complexity and performance needs of mobile and embedded processors have placed energy consumption and thermal

stability as system design issues. The increased compactness and power of the devices cause a problem of too much heat being produced which

might lead to reduced performance, low reliability and hardware short life. Here the strategy to alleviate such issues has come in the form of

temperature-aware task scheduling, which has proven to be an effective way of optimizing task scheduling to address both performance and

thermal limits. Through this survey, a rigorous survey of algorithmic as well as hardware-level approaches in thermal-aware scheduling is

presented. It discusses both the techniques of static and dynamic schedules, such as heuristic scheduling and optimization programming and

predictive scheduling. Lt also examines the hardware-enabled approaches like Dynamic Voltage and Frequency Scaling (DVFS), thermal sensors,

and thermal throttling services. The application in real-life settings is also presented and remarks provided on the measures of performance applied

to measure performance of scheduling strategies in the review. With the insight into the existing research and transforming trends, this paper seeks

to convey an in-depth view of the space that is temperature-aware scheduling in mobile systems and direct the future advancement of thermally

efficient designing systems.

Keywords—Temperature-aware scheduling, task scheduling algorithms, DVFS, multi-processor system-on-chip (MPSoC), embedded processors,

low-power design.

I. INTRODUCTION

The growth in processing capability of current
(micro)processors is exponential and a striking rise in energy
consumption on all computing platforms including small
handheld computers and large-scale data centers has mirrored
this expansion of processing power. This surge has led to
significant heat emissions, resulting in high operating
temperatures that adversely affect processor performance and
reliability [1]. Elevated temperatures not only degrade the
lifespan of chips but also risk permanent hardware damage.
Consequently, manufacturers have set strict thermal thresholds
and incorporated cooling systems that operate almost
continuously [2]. However, the energy consumed and heat
emitted by these cooling mechanisms contribute further to the
overall system energy footprint.

The scheduling of tasks is very important. Contrasted with
task allocation, which handles the timing and sequencing of
tasks once allocation is complete, task scheduling is formally
described as the problem of assigning a set of tasks to a set of
processors (or robots) in a way that optimizes multiple
objectives, such as total completion time, workload balancing,
or travel distances [3]. Efficient scheduling must now also
account for thermal constraints to ensure reliable and energy-
efficient operation.

As processor power consumption continues to rise rapidly
with each generation, energy and temperature management have
become a critical issue [4]. This is especially challenging since
advances in cooling technology have not kept pace with the
increase in heat generation. To mitigate this, a range of research
efforts have focused on incorporating energy and thermal
awareness into scheduling algorithms at the system and
operating system levels. Modern processors support
mechanisms such as Dynamic Voltage Scaling (DVS), which
enable the real-time control of processor speed and voltage,
allowing for dynamic thermal and energy management.

These days, thermal management isn't limited to central
processing units. In the world of electric vehicles and mobile
devices, batteries and related components are a big cause for
concern [5]. Battery performance and safety are highly
dependent on temperature conditions; hence effective thermal
management systems are necessary [6]. Additionally, the 3G/4G
network interface, a crucial part of mobile devices, uses a lot of
power. The main culprit here is tail energy, which maintains
power to the radio interface long after data transmission has
ended [7]. Together, these challenges highlight the importance
of developing temperature-aware task scheduling strategies that
not only optimize performance and energy consumption but also
maintain thermal safety across heterogeneous mobile computing
environments [8].

A. Structure of the paper

The structure of the paper is as follows: Section II discusses
the Classification of Temperature-Aware Task Scheduling
Approaches; Section III explores software-based scheduling
Algorithms; Section IV presents Hardware-Assisted Thermal
Management Techniques; Section V offers a comprehensive
literature review of recent RL-based energy optimization
approaches; and Section VI concludes with key findings and
future research directions.

II. CLASSIFICATION OF TEMPERATURE-AWARE TASK

SCHEDULING APPROACHES

A number of techniques are employed in temperature-aware
task scheduling for mobile systems in order to control thermal
behavior while preserving system performance. Although many
earlier models focused on energy and thermal management at the
micro-architecture level, it shifts the focus to the operating
system level for thermal management. When it comes to
reducing peak temperatures, most previous research has focused
on multi-core systems, which allow for the dynamic migration
of tasks between cores [9]. But recent work has demonstrated
that thermal efficiency can be enhanced even in systems with

Sandeep Gupta, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 154-161

© 2023-2025, IJARCS All Rights Reserved 155

only a single core by exploiting differences in heat generation
between tasks. Managing processor temperature more efficiently
can be accomplished by smart time scheduling of tasks with
considerations of their thermal property. Dynamic thermal
management (DTM) hardware continually reads the temperature
given on the chip, and acts in response to the temperature going
too high. To mitigate overheating, the system automatically
reduces the CPU frequency commonly by half, and potentially
down to one-fourth or one-eighth, if necessary, thereby reducing
heat output. The cooling system is always running, bringing the
processor's temperature closer to that of the surrounding
environment.

A. Thermal Management in Mobile Systems

Thermal management in mobile systems goes beyond
conventional energy-saving mechanisms by ensuring that chip
temperatures remain within safe thermal thresholds [10]. When
a device approaches or exceeds these thresholds, throttling
techniques are typically employed to reduce temperature by
lowering performance or temporarily disabling certain
components. Most of the approaches discussed in this section
focus specifically on managing thermal issues in mobile MPSoC
(Multi-Processor System-on-Chip) platforms. Although
numerous thermal management strategies have been proposed
over the years, the majority of research has focused on general-
purpose processors and Network-on-Chip (NoC) architectures,
rather than the distinct characteristics and constraints of mobile
Many-Core System-on-Chip (MPSoC) architectures [11].
However, modern computing devices from smartphones to
complex cyber-physical systems increasingly rely on MPSoC
architectures to meet growing demands for performance and
energy efficiency. As a result, effective and targeted thermal
management solutions tailored to mobile MPSoC platforms are
becoming critically important.

B. Static vs. Dynamic Scheduling

Task scheduling in mobile systems is broadly classified into
Static and Dynamic approaches. Static Scheduling (SS) makes
scheduling decisions during the compilation process and is apt
to program segments where the control flow and execution time
are predictable. Dynamic Scheduling (DS) on the other hand
modifies its decisions at run time thus it is suitable for workloads
with variable or unpredictable behavior [12]. DSS is a kind of
hybrid architecture, where SS is used to optimize the regularly
program areas and DS is used on the rest of the program parts.
This moderate approach improves performance and
performance efficiency at the same time. There is a succinct
comparison of the two methods in Table I:

TABLE I. STATIC VS. DYNAMIC SCHEDULING

Aspe

ct

Static

Schedulin

g (SS)

Dynamic

Scheduling

(DS)

Hybrid (Static +

Dynamic

Scheduling -

DSS)

Defin

ition

Scheduling

decisions

made at

compile

time

Scheduling

decisions

made at

runtime

Combines static

and dynamic

scheduling to

balance

performance and

area

Use

Case

Suitable

for code

sections

with

simple

control

Ideal for

irregular,

unpredictabl

e control

flows

Static parts

identified (e.g.,

via pragmas), and

remaining code

scheduled

dynamically

flow and

fixed

latency

Flexi

bility

Less

flexible;

does not

adapt to

runtime

conditions

Highly

flexible;

adapts to

dynamic

system

behavior

Offers a balance

between

flexibility and

efficiency

Perfo

rman

ce

Opti

mizat

ion

Optimized

for known,

determinist

ic

workloads

Optimized

for variable

workloads

Targets minimal

area usage and

maximal

performance

User

Invol

veme

nt

Compiler

or user

annotates

fixed-

schedule

regions

System

autonomousl

y handles

scheduling

Current

implementations

require user

annotations;

future work aims

for automation

Integr

ation

Strate

gy

Applied to

specific

parts of a

program

Applied to

the

remaining

parts after

static regions

are handled

Areas that remain

static are handled

as opaque entities

while the

remainder of the

program is

dynamically

scheduled.

DSS a compromise between SS and DS, which seeks low
area and high performance, illustrated in Figure 1:

Fig. 1. A Sketch Comparing the Design Quality of Different Scheduling

Approaches.

C. Reactive vs. Proactive Scheduling

Reactive vs. Proactive Scheduling Reactive-proactive
scheduling has the twin features of combining two
complementary steps to arrange the execution of tasks in an
uncertain setting. During the proactive period, a baseline plan is
developed based on the statistical information in order to foresee
disturbances. This plan strong which implies that it is not overly
affected by unplanned events when implementing the plan.
Reactive scheduling comes into action when deviations or
disruptions are experienced during the run time, and this is done
by modifying the baseline schedules to adapt to the real-time
differences [13]. The plan which is thus obtained is known as the
realized schedule. Robustness in this case is the capability of
base schedule that is able to take up or defend against
interruptions with a minimum performance loss. Robustness has
been discussed in many fields in various ways, resulting in
varied definitions and criteria of evaluation. This means an

Sandeep Gupta, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 154-161

© 2023-2025, IJARCS All Rights Reserved 156

increased requirement for common standards of robustness and
measurement procedures.

D. Thermal-Aware Real-Time Scheduling

Real-time task scheduling with temperature management is
called thermal-aware real-time scheduling. This way, jobs can
be limited by time constraints and also be sure to stay within safe
temperature ranges. Particular real-time schedulers, like Earliest
Deadline First (EDF) or Rate Monotonic (RM) schedulers,
benefit from thermal awareness in embedded and mobile
systems when timing guarantees are crucial and thermal
headroom is minimal. These are dynamic modifications of task
hierarchies with temperature, recovery of idle time to cool down,
and using forward-looking schedule slippage to prevent
overheating. The scheduler either relies on real-time temperature
data or predictive models to make decisions and hence high-
priority tasks run on time without thermal throttling. Such a
balance between thermal control and time accuracy is critical to
ensuring reliability as well as performance of thermally limited
platforms, e.g. wearables, smartphones, and automotive
embedded systems.

III. SOFTWARE-BASED SCHEDULING ALGORITHMS

The application of software scheduling algorithms is critical
to optimal task execution within computing contexts and more
specifically, within operating systems, real-time systems and
cloud computing systems. These algorithms are calculated to
decide the order and time, at which the process or tasks would
be assigned to the resources like CPU or virtual machines.
Priority Scheduling, Round Robin, First-Come, First-Served
(FCFS), and Shortest Job Next (SJN) are some of the most well-
known scheduling strategies. Other, more practical methods like
Multilevel Queue and Multilevel Feedback Queue are also
suggested [14]. To meet strict timing constraints in real-time
systems, techniques such as Earliest Deadline First (EDF) and
Rate Monotonic Scheduling (RMS) are used. Trust-aware and
energy-efficient scheduling schemes are emerging in distributed
environments as well as in cloud computing environments with
the intention of delivering reliability, security, and maximization
of resource use availability. The choice of scheduling algorithm
significantly impacts system performance metrics like
turnaround time, throughput, and response time, making it a
critical aspect of system design and resource management.

A. Thermal-Aware DVFS (Dynamic Voltage and Frequency

Scaling)

As shown in Figure 2, the suggested temperature-aware
DVFS architecture is based on. Because logic gates' delays
change with temperature, a ring oscillator can double as a
thermometer. The decrease in oscillation frequency (𝑓𝑜𝑠𝑐) [15] is
due to an increase in the gate delay as a consequence of rising
ambient temperature. When the need to detect temperature
arises, a counter is set to operate for a predetermined length and
used to track this oscillator's output. The possibility of chip
overheating is indicated by a decreased (𝑓𝑜𝑠𝑐) If the counter
value drops below a set threshold. As a result, the system reduces
the supply voltage, which in turn minimises power usage.
Lessening the supply voltage helps lower the chip temperature
because, as shown in Equations (1) and (2) 𝑓, Dynamic power
and leakage both drop with lower voltages.

 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =∝ 𝐶𝑉2
𝐷𝐷
𝑓 ()

 𝑃𝑙𝑒𝑎𝑔𝑎𝑔𝑒 = 𝐼𝑙𝑒𝑎𝑔𝑎𝑔𝑒. 𝑉𝐷𝐷 ()

As the temperature drops, gate delays shorten, and
(𝑓𝑜𝑠𝑐)increases. To improve performance, the supply voltage

can be increased when the counter value goes beyond a certain
threshold, which indicates that there is enough cooling. For
Dynamic Voltage Scaling (DVS), the procedure is shown in
Figure 2 (a), where the adjustment is made to only 𝑉𝐷𝐷 ; for

DVFS, both 𝑉𝐷𝐷The clock frequency f is scaled, as seen in

Figure 2(b). Notably since lower 𝑉𝐷𝐷 Leads to longer gate

delays, the clock frequency must also be reduced in DVFS
schemes to maintain timing reliability.

Fig. 2. Dynamic Voltage Scaling (DVS)

B. Heuristic-Based Scheduling Algorithms

In order to complete a task, a resource must be chosen from
a pool of potential options that meet all of the criteria [16].
Although all resources in the list meet the minimum
requirements, a scheduling algorithm is essential to determine
the most suitable resource for efficient task execution. Heuristic-
based scheduling algorithms are widely used to make such
decisions, aiming to optimize performance, minimize
completion time, or balance load. Key heuristic algorithms
include:

• Min-Min Algorithm: The Min-Min method starts with
the set of all unassigned tasks, which is called the meta-
task (MT) set. The first step is to determine the shortest
amount of time that each MT task is likely to take. The
second step is to find the resource that can do the work
with the overall minimal predicted time. The earliest jobs
are given priority in this technique.

• Max-Min Algorithm: The second phase of the Max-
Min method is different from Min-Min, while the two
algorithms share a similar structure. It uses the maximum
expected completion time from the MT set to assign the
job to the corresponding resource, rather than the task
with the lowest completion time. In an effort to decrease
total make span, this strategy gives higher priority to
longer tasks, with the goal of tackling tasks of longer
durations first.

• Switcher Algorithm: The minimum completion times of
unassigned jobs are used to determine the Switcher
algorithm's dynamic choice between the Min-Min and
Max-Min methods. It finds the position in the list when
the time difference between two consecutive jobs is
greater than the standard deviation. Based on this
comparison, it switches to the more appropriate
algorithm for each scheduling instance.

• Suffrage Algorithm: Each task's minimum and second
minimum predicted completion times are calculated
using this method. A person's suffrage value is the
difference between these two numbers. The task with the
highest suffrage value indicating that its optimal resource
assignment is more critical is then scheduled on the
machine that offers the minimum completion time.

Sandeep Gupta, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 154-161

© 2023-2025, IJARCS All Rights Reserved 157

C. Thermal-Aware Allocation and Scheduling

The thermal-aware ASP considers temperature when finding
a solution to the thermal issue. The total system temperature is
determined by the power consumption, size, and location of each
processor element (PE) on the embedded system platform.
Hotspot, a thermal modelling program, is used to get the
temperature profile [17]. Hotspot provides a simple compact
model that takes into consideration the internal heat dissipation
of each PE as well as the exterior heat flow between PEs. For
each function block, Hotspot can generate accurate temperature
estimates by taking the system topology and power usage into
account. In order to initiate the thermal-aware application
programming interface (API), transmit to the Hotspot the
aggregate power consumption of all PEs as well as the power
consumed by the ongoing scheduled task. By averaging the
temperatures returned from the Hotspot, they may compute the
dynamic criticality, which was previously defined. Minimizing
the average temperature is the goal of replacing the Pow term
with the newly added Avg. Temperature. This objective also
necessitates lowering the maximum temperature.

IV. HARDWARE-ASSISTED THERMAL MANAGEMENT

TECHNIQUES

Mobile and embedded systems require high efficiency and
thermal stability, which can be effectively achieved through
hardware-assisted thermal management. This strategy
incorporates specialized hardware components, e.g. thermal
sensors, dynamic thermal management (DTM) engines and
thermal throttling, into processor and system-on-chip (SoC)
designs. This allows dynamically varying performance-related
settings to be made, including supply voltage, clock frequency,
and workload distribution, among processing cores [18]. Such
real-time thermal information can be used right away to adjust
to thermodynamic changes and therefore system reliability and
effectiveness. Hardware-based thermal control entails DVFS
modules which are typically embedded into processors. The
dynamic power optimization used in these modules is based on
thermal feedback that prevents overheating of the modules
compared to when power consumption is kept constant to allow
optimal performance at the higher levels [19]. DVFS helps to
reduce the chances of temperature failures by diffusing power
draw under the condition of high temperature, though the
processing capabilities are not reduced much.

A. System Hardware Model

The physical embodiment and structure of a computer
system are specified in the system hardware model, which
implements the software and performs the computation. All
these models commonly have the processing unit (CPU/GPU),
memory unit [RAM, cache], storage unit (HDD and SSD),
input/output devices, and communication ports. In a multi-core
or distributed implementation, the hardware model involves
some headcount of processors or nodes that are interconnected
and each has its memory since processing of information occurs
[20]. The design of effective scheduling algorithms relies on the
model, as it affects execution time, resource competition, and
any communication overhead. Performance optimization,
balanced load, and the ability to enable concurrency in tasks
across different computing architecture types, such as embedded
systems, clouds, and HPCs, require a precise understanding of
hardware architecture.

B. Thermal Management Strategies

The ability to manage thermal performance, battery pack life
and security of electric vehicle (EV) battery packs relies on
thermal management strategies. Such strategies usually involve

active cooling, passive cooling, and cooling insulation, hoping
to keep the individual operating temperatures optimal, and avoid
thermal runaway (TR). The most effective methods in cooling
include active cooling where liquid is used to cool down the heat
produced during charging and releasing the heat. These systems
actively circulate coolant around battery cells which gives
accurate thermal regulation. Passive cooling techniques on the
other hand, such as the utilization of phase change materials
(PCMs) assist in the process of the temperature variation by not
bringing in extra energy instead [21]. High-load periods refuse
to be wasted by PCMs, which are able to absorb the surplus to
keep the heat till its release in a few moments and become
originators of energy-efficient thermal stability. Safety is also
increased by thermal insulation that reduces the outside thermal
influences, provides stable internal temperatures. This
minimizes the chances of getting overheated and guarantees
regular battery performance. The synergy between these
strategies allows EV battery systems to achieve comprehensive
thermal performance, higher operation safety, and battery life.

C. Hotspot Thermal Model

Hotspot computes temperatures of processors by simulating
the thermal behavior of an electronic system in a manner similar
to how electrical networks are analyzed, with heat flow modeled
much as the current flow of a network of thermal resistors and
capacitors. Floorplan The input to the simulator is a floorplan,
which describes the physical arrangement, placement, and
connectivity of the different processor elements [22]. The
heatsink, fan and thermal interface material are also provided in
the thermal model in order to provide realistic simulation. A
variation of a previous floor layout is adapted to the new setup
here, with 4 cores in the layout branched out but each one is
smaller in size. Every core includes all elements to handle an
out-of-order pipeline. Four cores are also interconnected with
each other by single L2 cache and on-chip interconnection
because this is a typical architecture of multicore processors.
Hotspot can do both steady-state and transient temperature
profiles. Although a considerable number of past research have
focused on steady-state analysis, which is applicable in
introducing approximations of long-term thermal conduct even
in the presence of short-time simulation duration, it can prove
quite challenging to utilize steady-state analysis in certain
instances, specifically at periods that are much less than the
periods of thermal response.

V. LITERATURE REVIEW

This literature Summary brings new developments in the
field of temperature-sensitive task scheduling, including
heuristic, optimization, and machine learning methods. A
particular focus is given to energy efficiency, thermal stability,
and performance on a wide range of platforms, even in cloud,
fog, embedded, and trusted execution environments.

Kasturi et al. (2025) an Energy and Temperature conscious
scheduling policy based on the Earthworm Optimization
Algorithm (EOA) to effectively optimize energy consumption,
thermal status and performance of systems. The proposed EOA
takes the foraging behavior that the earthworm uses and
optimizes Task Scheduling (TS) by finding energy-efficient
nodes and assigning workload to minimize temperature hotspots.
Introducing energy consumption rates as well as temperature
barrier into the fitness function allows the algorithm to
dynamically assign the tasks in order to minimize the energy
usage and avoid the thermal overload on both cloud and fog
layers. The results of the experiments prove that the EOA-based
scheduling lowers overall energy consumption and sustains
constant temperature levels by a significant margin as compared

Sandeep Gupta, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 154-161

© 2023-2025, IJARCS All Rights Reserved 158

to the traditional algorithms, such as HDDPGTS, EEOA, and
MAO [23].

Li et al. (2024) examine performance penalty in parallel
implementation of the cross-device resource sharing tasks. Then,
a novel multi-task perceiving and scheduling framework
(MTPS) is proposed to guarantee the quality of service of the
parallel tasks. The basic idea of MTPS is to first build a master-
slave system model to reorganize mobile devices under the same
network. Then, MTPS perceives the running cross-device
resource sharing tasks and schedules the parallel execution of
multiple tasks to avoid mutual interference. Experimental results
on real devices show that MTPS can reduce the average
completion time of file sharing by 63.5%, and maintain at least
24 frames per second for screen casting at optimal levels in the
presence of other tasks. The prevalence of cross-device resource
sharing enables users to utilize various device resources of the
connected mobile devices seamlessly [24].

Peng et al. (2023) a two-stage temperature-aware scheduling
scheme for approximate tasks based on homogeneous multicore
platforms, solving approximate task scheduling problem under
time, energy, reliability, and temperature constraints. In the first
stage, it can design a heuristic scheduling algorithm to perform
task-to-processor assignment and preliminarily task frequency
selection to minimize energy and make span. In the second stage,
it can design a temperature optimization algorithm that combines
DVFS and slack distribution to ensure that processor
temperature is lower than the temperature threshold. Compared
with the existing methods, the experimental simulations show
that method achieves 97.6% runtime reduction and 14.9% peak
temperature reduction [25].

Wang et al. (2023) a thorough evaluation of the efficiency of
the freely available TEE encryption algorithm. Next suggest an
ETS-TEE, a task scheduling technique that is very energy
efficient. Policy considers the intricacy of TA jobs through the
application of deep learning. Offloading to an edge server and
local device modelling are two ways these tasks are dynamically
scheduled. They use a Raspberry Pi 3B to evaluate the method
as both a local mobile device and an edge server. The results
show that the method reduces energy consumption by an average
of 38.0% and increases speed by 1.6 times compared to the
default scheduling strategy on the local device. Creating a
trusted execution environment that is both quick and secure,
greatly reduces the performance hit that mobile devices might
impose, ensuring the secure execution of programs [26].

Nong et al. (2022) an architectural framework that takes
energy economy into account when managing resources, taking
thermal factors into account. A layered architecture underpins
the framework, which includes a suite of intuitive client tools
and middleware that accounts for temperature conditions while
allocating tasks within and across data centers. The creation of
a data center-specific job scheduling component that takes
thermal considerations into account is the primary emphasis of
this article. In light of upcoming efforts to reduce data center
energy costs, this component is essential for maintaining a stable
temperature distribution within a single data center [27].

Pourmohseni et al. (2022) a strategy for migrating tasks in
order to optimize thermal performance in systems with multiple
cores and different types of hardware. The proposed strategy is
based on a thermally safe analytical power-budgeting method
that uses Dynamic Voltage and Frequency Scaling (DVFS) for
electricity and heat management. The migration policy
aggressively implements DVFS in an effort to optimize the
system's performance while simultaneously guaranteeing
thermal safety. To achieve this goal, it iteratively fine-tunes the
distribution of active cores in the system (via suitable migration
decisions) to maximize their thermally safe power budget, which
enables them to operate on higher frequencies without being
overheated [28].

Lee (2021) effectively controls the temperature of embedded
systems by combining two procedures: dynamic thermal
management in real-time and a utilization bound that takes
thermal awareness into account. In order to adhere to the chip
temperature restriction which is influenced by variables like
system configurations, workloads, environmental conditions,
and chip cooling capacity the former specifies a maximum
allowable processor utilization. The latter takes into account the
thermal-aware utilization bound and optimizes the execution
rates of specific tasks. By studying a vehicle controller, they
were able to improve system utilization by 18.2% over earlier
approaches and demonstrate the thermal-aware utilization bound
[29].

Table II presents a comparative summary of recent
temperature-aware task scheduling strategies, highlighting
diverse algorithmic approaches, key findings, encountered
challenges, and prospective future research directions in mobile
systems

TABLE II. LITERATURE SUMMARY ON TEMPERATURE-AWARE TASK SCHEDULING IN MOBILE SYSTEMS

Author Study On Approach Key Findings Challenges Future Directions

Kasturi et al.

(2025)

Energy and

temperature-

aware

scheduling in

cloud and fog

systems

Earthworm

Optimization

Algorithm (EOA)

using energy-

efficient node

selection and thermal

constraints

Reduced energy

consumption and

thermal hotspots

compared to

HDDPGTS,

EEOA, and MAO

Balancing real-

time performance

and

environmental

constraints

Extend EOA to

heterogeneous edge

environments and

real-time IoT

scenarios

Li et al.

(2024)

Temperature-

aware

scheduling for

approximate

tasks on

homogeneous

multicore

platforms

Two-stage

scheduling scheme.

Heuristic task-to-

processor

assignment with

preliminary DVFS

for energy and

makespan

optimization.

Achieved 97.6%

runtime reduction

and 14.9% peak

temperature

reduction

compared to

baseline methods

Balancing trade-

offs among

energy efficiency,

reliability, and

temperature

within task

deadlines;

complexity in

coordinating

Extend to

heterogeneous

systems, integrate

machine learning

for dynamic

prediction, explore

real-time adaptive

scheduling for

dynamic workloads

Sandeep Gupta, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 154-161

© 2023-2025, IJARCS All Rights Reserved 159

Temperature

optimization using

DVFS and slack

distribution

scheduling and

thermal

management

Peng et al.

(2023)

Scheduling of

approximate

tasks under

time, energy,

and

temperature

constraints

Two-stage heuristic:

task-to-core

assignment with

frequency scaling,

followed by DVFS +

slack distribution for

thermal control

Achieved 97.6%

runtime reduction

and 14.9% peak

temperature

reduction

Handling

approximation

accuracy with

thermal limits

Incorporating

adaptive

approximation

models and

extending to multi-

application systems

Wang et al.

(2023)

Conserving

Power Through

Efficient Task

Scheduling in

TEE

Deep learning-based

ETS-TEE policy on

mobile–edge

systems

Ensured secure

execution while

achieving a 38.0%

decrease in energy

consumption and a

1.6-fold increase in

speed.

TEE overhead

and device

limitations

Explore hybrid

secure task

offloading with

dynamic trust

assessment

Nong et al.

(2022)

Middleware for

thermally-

aware work

scheduling in

cloud data

centers

Layered architecture

with thermal-aware

scheduling

middleware and

distributed cluster

monitoring

Improved

temperature

regulation and

decreased power

consumption

Scalability across

data centers,

middleware

integration

Develop intelligent

thermal prediction

modules and inter-

data center thermal

coordination

Pourmohseni

et al. (2022)

Migration of

thermally-

aware tasks in

diverse many-

core

architectures

DVFS-based

analytical power-

budgeting with

proactive task

migration

Maximized safe

thermal operation

and system

performance

Overhead in

continuous

migration and

prediction

Integrate AI-based

decision models for

predictive core

activation and

migration planning

Lee (2021) Thermal-aware

scheduling in

embedded

systems with

real-time

constraints

Dynamic thermal

management in real-

time and thermally

aware utilization-

bound

Enhanced system

utilization by

18.2% while

meeting thermal

restrictions for the

associated chips

Dependence on

cooling

environment and

dynamic

workloads

Apply to safety-

critical systems like

automotive ECUs

with formal

guarantees

VI. CONCLUSION AND FUTURE WORK

This study of temperature-aware task scheduling strategies
in mobile and embedded systems emphasizes the critical
interplay between energy efficiency and thermal management.
The paper outlined key scheduling models, including dynamic
and static approaches, proactive versus reactive strategies, and
hardware-assisted methods such as DVFS and thermal sensing.
Recent advances demonstrate how algorithmic and architectural
innovations help mitigate thermal hotspots, prolong device
lifespan, and maintain optimal system performance. While
significant progress has been made, particularly in multi-core
and heterogeneous processor platforms, challenges persist in
scalability, real-time responsiveness, and platform-specific
optimizations. Integrating task scheduling with advanced
thermal modeling tools, such as Hotspot, further enhances the
effectiveness of thermal-aware design strategies. However, most
existing approaches are tailored to specific platforms and lack
generalizability across diverse hardware configurations.

Future research should focus on developing adaptive and
predictive scheduling algorithms that utilize artificial
intelligence to anticipate thermal events in real-time. A
promising direction lies in integrating machine learning models
with hardware-level thermal feedback to enable self-optimizing
systems. Furthermore, expanding the scope of temperature-
aware scheduling to include emerging platforms such as edge AI

devices, wearable computing, and automotive embedded
systems can ensure broader applicability. Addressing the
limitations of current cooling mechanisms and incorporating
robust energy models for next-generation batteries will be
essential. Ultimately, achieving a synergistic balance between
energy, performance, and thermal behavior remains a key
challenge for designing sustainable and intelligent mobile
systems.

VII. REFERENCES

[1] V. Panchal, “Energy-Efficient Core Design for Mobile

Processors: Balancing Power and Performance,” Int.

Res. J. Eng. Technol., vol. 11, no. 12, pp. 1–11, 2024.

[2] E. Bampis, D. Letsios, G. Lucarelli, E. Markakis, and I.

Milis, “On multiprocessor temperature-aware

scheduling problems,” J. Sched., vol. 16, no. 5, pp. 529–

538, 2013, doi: 10.1007/s10951-013-0319-z.

[3] C. Rema, P. Costa, M. Silva, and E. J. S. Pires, “Task

Scheduling with Mobile Robots—A Systematic

Literature Review,” Robotics, vol. 14, no. 6, p. 75,

2025, doi: 10.3390/robotics14060075.

[4] J. Zidar, T. Matić, I. Aleksi, and Ž. Hocenski,

“Dynamic Voltage and Frequency Scaling as a Method

for Reducing Energy Consumption in Ultra-Low-

Sandeep Gupta, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 154-161

© 2023-2025, IJARCS All Rights Reserved 160

Power Embedded Systems,” Electronics, vol. 13, no. 5,

p. 826, Feb. 2024, doi: 10.3390/electronics13050826.

[5] S. Gupta and A. Mathur, “Enhanced Flooding Scheme

for AODV Routing Protocol in Mobile Ad Hoc

Networks,” in 2014 International Conference on

Electronic Systems, Signal Processing and Computing

Technologies, IEEE, Jan. 2014, pp. 316–321. doi:

10.1109/ICESC.2014.60.

[6] S. Shelare, K. Aglawe, M. Dhande, S. Wagmare, M.

Giripunje, and P. Sirsat, “Battery Thermal Management

System: A Review on Recent Progress, Challenges and

Limitations,” MATEC Web Conf., vol. 405, p. 02004,

2024, doi: 10.1051/matecconf/202440502004.

[7] Z. Tang, S. Guo, P. Li, T. Miyazaki, H. Jin, and X. Liao,

“Energy-Efficient Transmission Scheduling in Mobile

Phones Using Machine Learning and Participatory

Sensing,” IEEE Trans. Veh. Technol., vol. 64, no. 7, pp.

3167–3176, 2015, doi: 10.1109/TVT.2014.2350510.

[8] R. Patel, “Remote Troubleshooting Techniques for

Hardware and Control Software Systems: Challenges

and Solutions,” Int. J. Res. Anal. Rev., vol. 11, no. 2,

pp. 933–939, 2024, doi: 10.56975/ijrar.v11i2.311510.

[9] M. Chrobak, C. Dürr, M. Hurand, and J. Robert,

“Algorithms for temperature-aware task scheduling in

microprocessor systems,” Sustain. Comput. Informatics

Syst., vol. 1, no. 3, pp. 241–247, 2011, doi:

10.1016/j.suscom.2011.05.009.

[10] A. Hassan, “Thermal and Energy Efficiency

Management of Mobile MPSoC: A Review,” Arid. J.

Basic Appl. Res., vol. 4, no. 1, 2024, doi:

10.55639/607.414039.

[11] V. Panchal, “Mobile SoC Power Optimization :

Redefining Performance with Machine Learning

Techniques,” IJIRSET, vol. 13, no. 12, pp. 1–17, 2024,

doi: 10.15680/IJIRSET.2024.1312117.

[12] J. Cheng, L. Josipovic, G. A. Constantinides, P. Ienne,

and J. Wickerson, “DASS: Combining Dynamic Static

Scheduling in High-Level Synthesis,” IEEE Trans.

Comput. Des. Integr. Circuits Syst., vol. 41, no. 3, pp.

628–641, 2022, doi: 10.1109/TCAD.2021.3065902.

[13] M. İ. Ulucak and H. Gökçen, “Dynamic Scheduling in

Identical Parallel-Machine Environments: A Multi-

Purpose Intelligent Utility Approach,” Appl. Sci., vol.

15, no. 5, 2025, doi: 10.3390/app15052483.

[14] M. Ben Ahmed and A. A. Boudhir, Innovations in

Smart Cities and Applications, vol. 37, no. January. in

Lecture Notes in Networks and Systems, vol. 37. Cham:

Springer International Publishing, 2018. doi:

10.1007/978-3-319-74500-8.

[15] Y. W. Yang and K. S. M. Li, “Temperature-aware

dynamic frequency and voltage scaling for reliability

and yield enhancement,” Proc. Asia South Pacific Des.

Autom. Conf. ASP-DAC, pp. 49–54, 2009, doi:

10.1109/ASPDAC.2009.4796440.

[16] K. Gupta and M. Singh, “Heuristic-based task

scheduling in grid,” Int. J. Eng. Technol., vol. 4, no. 4,

pp. 254–260, 2012.

[17] M. N. Shehzad et al., “Thermal-aware resource

allocation in earliest deadline first using fluid

scheduling,” Int. J. Distrib. Sens. Networks, 2019, doi:

10.1177/1550147719834417.

[18] İ. Çetin, E. Sezici, M. Karabulut, E. Avci, and F. Polat,

“A comprehensive review of battery thermal

management systems for electric vehicles,” Proc. Inst.

Mech. Eng. Part E J. Process Mech. Eng., vol. 237, no.

3, pp. 989–1004, Jun. 2023, doi:

10.1177/09544089221123975.

[19] R. Patel, “Advancements in Data Center Engineering :

Optimizing Thermal Management , HVAC Systems ,

and Structural Reliability,” Int. J. Res. Anal. Rev., vol.

8, no. 2, pp. 991–996, 2021.

[20] O. L. Abraham, M. Asri Bin Ngadi, J. Bin Mohamad

Sharif, and M. Kufaisal Mohd Sidik, “Task Scheduling

in Cloud Environment–Techniques, Applications, and

Tools: A Systematic Literature Review,” IEEE Access,

vol. 12, no. October, pp. 138252–138279, 2024, doi:

10.1109/ACCESS.2024.3466529.

[21] M. Murugan et al., “A Comprehensive Review of

Thermal Management Methods and Ideal System

Design for Improved Electric Vehicle Battery Pack

Performance and Safety,” Energy Sci. Eng., vol. 13, no.

3, pp. 1011–1036, 2025, doi: 10.1002/ese3.2081.

[22] T. A. N. T. Perera, T. M. D. Nayanajith, G. Y.

Jayasinghe, and H. D. S. Premasiri, “Identification of

thermal hotspots through heat index determination and

urban heat island mitigation using ENVImet numerical

micro climate model,” Model. Earth Syst. Environ.,

2022, doi: 10.1007/s40808-021-01091-x.

[23] S. B. Kasturi, S. S. H. Raju, N. Srikanth, K. Anusha, M.

Revathi, and S. K. Medishetti, “EOA: Energy and

Temperature Aware Scheduling in Cloud-Fog

Computing Environment,” in 2025 5th International

Conference on Pervasive Computing and Social

Networking (ICPCSN), 2025, pp. 112–119. doi:

10.1109/ICPCSN65854.2025.11035542.

[24] W. Li, H. Li, L. Yang, L. Qiao, and L. Shi, “MTPS: A

Multi-Task Perceiving and Scheduling Framework

Across Multiple Mobile Devices,” IEEE Trans. Mob.

Comput., vol. 23, no. 12, pp. 15048–15061, Dec. 2024,

doi: 10.1109/TMC.2024.3450577.

[25] C. Peng, L. Mo, J. Liu, and D. Niu, “Thermal-Aware

Approximate Real-Time Task Scheduling for Multicore

Embedded Systems,” in 2023 China Automation

Congress (CAC), 2023, pp. 6439–6444. doi:

10.1109/CAC59555.2023.10450488.

[26] H. Wang, L. Cai, X. Hao, J. Ren, and Y. Ma, “ETS-

TEE: An Energy-Efficient Task Scheduling Strategy in

a Mobile Trusted Computing Environment,” Tsinghua

Sci. Technol., vol. 28, no. 1, pp. 105–116, 2023, doi:

10.26599/TST.2021.9010088.

[27] J. Nong, J. Chen, Y. Wang, W. Qin, and X. He,

“Thermal-aware Energy Efficient Task Scheduling

Framework,” in 2022 IEEE 21st International

Conference on Ubiquitous Computing and

Communications (IUCC/CIT/DSCI/SmartCNS), 2022,

pp. 304–309. doi: 10.1109/IUCC-CIT-DSCI-

SmartCNS57392.2022.00055.

[28] B. Pourmohseni, S. Wildermann, F. Smirnov, P. E.

Meyer, and J. Teich, “Task Migration Policy for

Thermal-Aware Dynamic Performance Optimization in

Many-Core Systems,” IEEE Access, vol. 10, pp.

Sandeep Gupta, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 154-161

© 2023-2025, IJARCS All Rights Reserved 161

33787–33802, 2022, doi:

10.1109/ACCESS.2022.3162617.

[29] Y. Lee, “Thermal-Aware Design and Management of

Embedded Real-Time Systems,” in 2021 Design,

Automation & Test in Europe Conference & Exhibition

(DATE), 2021, pp. 1252–1255. doi:

10.23919/DATE51398.2021.9474042.

