
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 559

ISSN No. 0976-5697

Security Requirements Development Framework (
S
RDF)

Rajendra Kumar* and Mustafa K.
Department of Computer Science

Jamia Millia Islamia (Central University),

New Delhi-110 025, India

 verma_rajk@yahoo.com, kmfarooki@yahoo.com

Abstract: Any information system becomes successful for the business organizations when its diverse software modules work in a desired

manner. In today‟s vulnerable world, information systems entail more attention towards security. But, unfortunately, building secure software

still remains an issue. Several advances have recently been made on definition of processes for secure software development, but it still remains

in infancy. Earlier, security used to be an afterthought, but now-a-days it is widely accepted to be an integral part of each of the phases of SDLC.

A prescriptive framework, SRDF has been proposed on the basis of research findings and industry best practices. It is to accomplish the present

need of enriching SRS with requirements pertaining to security needs of particular software as a product. This may provide a roadmap to

incorporate the security through SRs in the inception itself.

Keywords: Security Requirements, Web Application Security, Security in Requirements Phase, Requirement Framework

I. INTRODUCTION

The exponential growth of the Web has made an

immense impact on many areas of routine life. Web-based

applications have forced many radical paradigm shifts in the

various sections of modern society like Entertainment,

Government, Commerce and Education. Web applications

are emerging fast as „the common interface‟ to most of the

technological applications. Regular works like banking, on-

line reservation etc are the common things that are done by

people on periodical basis. The sprawling impact of the Web

and the Internet, combined with the rapid ad-hoc approach

with which most web engineering projects are realized, have

concerns about the stability and success of Web-based

application development due to security. Hackers on the

Internet have evolved from fame-hungry sabotage to fraud

the profitable organized data and identity theft, which in

turn compromises security. One of the prime reason for

compromising security is the bad software and this happens

due to vulnerabilities occurring in the software.

Vulnerabilities are continuously increasing; hence

software is under attack at every time [1]. As this evolution

continues, it is important for business leaders to consider the

security of their web applications as a vital performance

indicator of the success of their business. Hence, it becomes

necessary to build secure web applications and ensure the

development of the same.

Any information system becomes successful for the

business organizations when its various software modules

work in a desired way. In today‟s vulnerable world,

information systems require more attention towards security.

But, unfortunately, building secure software still remains an

issue. Several advances have recently been made on

definition of processes for secure software development, but

it still remains in infancy. Earlier, security used to be an

afterthought, but now-a-days it is widely accepted to be an

integral part of each of the phases of SDLC [2].

To be really effective, security must be integrated into the

SDLC right from system inception. Early integration of

security in the SDLC enables agencies to maximize return

on investment in their security programs, through early

identification and mitigation of security vulnerabilities

resulting with much lower cost of security control

implementation and vulnerability mitigation. Integration

enables security to be planned, acquired, built in, and

deployed as an integral part of a project or system. It plays a

significant role in measuring and enforcing security

requirements throughout the phases of the life cycle. Life

cycle management helps document security-relevant

decisions and provides assurance to management that

security requirements were well attended in all phases.

Implementing information security early in the project

allows the requirements to mature as needed and in an

integrated and cost-effective manner.

 Requirements engineering is the branch of software

engineering concerned with the real-world goals for the

functions and constraints on software systems. Requirement

engineering process includes obtaining, modeling, analyzing

and extending the requirements [3]. There are some inherent

problems in the process. Requirements of different types of

system users including customers, developers and system

owners vary from one to another. They have different or

even contradictory goals. Those goals, though unavoidable,

might not be easily expressible. Perhaps, satisfaction of

some requirements would result into other uncontrollable

limitations [3]. These problems in engineering security

requirements must draw more attention due to lack of

awareness, experience, expertise, techniques and tools.

More accurate and consistent security sensitive

requirements could be a solution towards more secure

software. Therefore, a methodology for developing security

sensitive requirements for web applications may be a

solution of such type of problems. In order to curtain the

high impacts of vulnerabilities, it becomes essential to

develop security requirements early in the development on a

detailed level. Current approaches are well in place but the

area still warrants further investigations. A prescriptive

framework, SRDF has been proposed to accomplish the

present need. Due to non-availability of any standard

framework, completely devoted to web application, SRDF

may prove handy for developing the security requirements.

R. Kumar & Mustafa K. et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,559-566

© 2010, IJARCS All Rights Reserved 560

This proposed framework may be used by the

requirement engineers as well as the research community for

further development of security requirements in a

prescriptive manner.

The rest of the paper is organized as follows: Section II

presents a brief discussion on the SRDF Process, whereas in

Section III, Implementation Mechanism is discussed. In

Section IV, Tryout Results on the security requirements

specification (SRS) of a live project are discussed. Section

V presents Conclusion and Future Research Directions in

the area.

II.
S
RDF PROCESS

It is an emergent need to develop a comprehensive

framework to develop the security requirements, based on

the vulnerabilities of web applications. Hence, a prescriptive
SRDF is hereby proposed to develop the security

requirements for a web application. By adapting SRDF,

requirement engineers may assess the risk aspects of

vulnerabilities through SRDF in a right perspective, which

leads to the development of security requirements for web

applications. Moreover, SRDF is an iterative process

comprising of a number of stages to reach the ultimate

objective.

The framework is useful along with functional

requirement phase. By following strictly the steps prescribed

at various stages of SRDF, requirement engineers would be

able to assess the risk aspects of the vulnerabilities, which in

turn help to develop realistic and meaningful security

requirements. It may be used for every web application by

requirement engineers‟ inputs of domain. The thrust largely

rests upon security vulnerabilities, their severity and risk

associated with web applications. For each of the security

vulnerabilities, various attributes/properties are identified to

determine the severity and corresponding risk. A

mathematical formulation is proposed for the calculation of

the severity and risk. Then the tolerance level of the risk is

also assessed, and accordingly the practical and significant

security requirements can be developed in a technical

manner. The high level architecture of SRDF is given in the

Fig. 1:

Figure 1: Architecture of the SRDF

A. Vulnerability Identification:

Vulnerability is referred to as a set of conditions that

leads or may lead to an implicit or explicit failure of

primarily confidentiality, integrity, or availability of an

information system [4]. According to CERT/CC, more than

90% of vulnerabilities leak out during system development

and they are the result of ignoring known vulnerabilities

found in other systems [5]. The same report states that ten

vulnerabilities known worldwide are responsible for 75% of

security breaches in today‟s software applications. In the

other words, if the developers get to know these ten

vulnerabilities, about majority of them can be avoided.

Keeping this fact in view, most important and prevalent

security vulnerabilities for web applications were identified

and given in Table 1.

B. Vulnerability Classification:

The second step in SRDF is vulnerability classification. It

refers to the classification based on several relevant

attributes. Some frameworks describe vulnerabilities by

classifying the techniques used to exploit them, others

characterize vulnerabilities in terms of the software and

hardware components and interfaces that make up the

vulnerability, and also others classify vulnerabilities by their

nature. For our research work, we classified vulnerabilities

on the basis of CIA as Security vulnerabilities and exposures

R. Kumar & Mustafa K. et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,559-566

© 2010, IJARCS All Rights Reserved 561

may be exploited to compromise the confidentiality,

integrity and availability (CIA) of computing systems [6].

To develop a complete set of security requirement, it is

necessary to know that in which phase vulnerability can

occur. Therefore, the time of introduction in SDLC phase of

each vulnerability is also recognized. It is advised that more

prevalent vulnerabilities need to be mitigated first,

likelihood of exploit attribute is considered as an add-on to

this notion. For the classification of vulnerabilities, SRDF

proposes the following attributes:

a. Confidentiality: It refers to the prevention of

unauthorized disclosure of information.

b. Integrity: It refers to the prevention of unauthorized

modification of information.

c. Availability: It refers to the prevention withholding

of information.

d. Likelihood of Exploit: Likelihood of

vulnerability/threat occurring is the estimation of the

probability that the threat will succeed in achieving

an undesirable event. The presence, tenacity and

strengths of vulnerability/threats, as well as the

effectiveness of safeguards must be considered while

assessing the likelihood of the vulnerability/threat

occurring.

e. Time of Introduction: To categorize vulnerabilities

according to when they were introduced in the

software lifecycle. For example, a vulnerability may

be due to a bad algorithm being chosen during design

phases. Another may be due to a bad implementation

of a correctly chosen algorithm, and therefore the

vulnerability was introduced at some point during the

implementation phases of the program. So, 5 classes

have been proposed: requirement and analysis,

design, implementation, deployment, and

maintenance [7].

Based on these aforementioned attributes the

classification of the most important and prevalent twenty-

seven security vulnerabilities has been accomplished and

shown in Table 1:

Table 1: Vulnerabilities Classification

S. No. Name of the Vulnerability Confidentiality Integrity Availability ToI LoE

1. Insufficient Authentication H M L R, D, I H

2. Insufficient Authorization H H H R, D, I, O H

3. Integer Overflows L H H I M

4. Insufficient Transport Layer

Protection

H H L R, D, O H

5. Remote File Inclusion H L L R, D, I L

6. Format String H H H I H

7. Buffer Overflow H H H R, D, I, O H

8. Cross-site Scripting H H H R,D,I H

9. Cross-site Request Forgery H H L R, D H

10. Denial of Service H H R,D, I, O M

11. Brute Force H H H R,D,I H

12. Information Leakage H M L R,D,I H

13. Server Misconfiguration H L H R, D L

14. Application Misconfiguration H L M R, D M

15. Directory Indexing H L L R, D L

16. Improper Filesystem Permissions H M L R,D,I H

17. Credential/Session Prediction H H L R,D,I H

18. SQL Injection H H L R,D,I, O H

19. Improper Input Handling H H H R,D,I H

20. Insufficient Anti-Automation H L L R,D H

21. Improper Output Handling H H L R,D,I, O H

22. OS Commanding H H H R,D,I H

23. Path Traversal H H H R,D,I H

24. Predictable Resource Location H L H R,D,I, O H

25. Session Fixation H H L R, D, I M

26. Insufficient Session Expiration H H L R, D, I M

27. Insufficient Password Recovery H H L R,D H

C. Severity Estimation:

The best way to avoid or prevent security incidents is to

establish an ongoing vulnerabilities‟ severity assessment

process that must continuously identify the critical ones and

mitigate the same from the beginning and throughout their

lifecycle i. e. from development through production. In our

approach, the researcher recommends to estimate severity of

a vulnerability. For the estimation of this severity, the

following variables have been identified:

a. CIA: Based on the data compiled from various

vulnerability databases, it is observed that successful

exploitation of a vulnerability may have high,

medium, low impact on CIA. But there exists some

vulnerabilities, whose impact in terms of CIA is not

known. In these cases, impact may be taken „high‟

until the correct values are discovered by the

researchers. Based on these observations, a CIA

metric is recommended as follows:

Vulnerability

Attribute

Rating Rating value

Confidentiality Low(L)

Medium (M)

High (H)

3

5

7

Integrity Low(L)

Medium (M)

High (H)

3

5

7

Availability Low(L)

Medium (M)

High (H)

3

5

7

R. Kumar & Mustafa K. et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,559-566

© 2010, IJARCS All Rights Reserved 562

b. LoE: Likelihood of Exploit (LoE) is another

important variable, identified to calculate the

severity of a vulnerability.

Vulnerability attribute Rating Rating

value

Likelihood of Exploit Low (L)

Medium (M)

High (H)

3

5

7

c. TOI Metric: A vulnerability can be introduced

during any phase in the development life cycle. The

logic behind taking this variable into the severity

metric is quite simple. During the assessment of any

SRS, for any vulnerability V1, if it is taken care

properly at very initial stage i. e. during the

requirements phase, its impact will be low, whereas

for design phase, it will be medium. Moreover, if

proper mitigation mechanisms are not in place and

the vulnerability comes in the implementation phase,

obviously, its impact will be high. Based on these

assumptions, a „time of introduction‟ variable is

established and assigned the rating according to the

introduction of vulnerability in a SDLC phase as

follows:

Vulnerability

attribute

Rating Rating

value

Time of

Introduction

Requirement (R)- Low (L)

Design (D)- Medium (M)

Implementation (I)- High (H)

3

5

7

After determining the variables, which are playing a

major role in severity determination, it becomes important to

impose some statistical tool based on the requirements. But

before this, first of all some relationship among these

variables must be identified. From the available research

studies, it is established that:

Severity C‟

 I‟

 A‟

 LoE

Where, C‟= compromise of C

 I‟ = compromise of I

 A‟= compromise of A

For the given conditions, the most suitable statistical tool

for projection that may be used is multiple linear regression.

This is a statistical technique that uses several explanatory

variables to predict the outcome of a response variable. The

goal of Multiple Linear Regression (MLR) is to model the

relationship between the explanatory and response variables.

In this, there are n explanatory variables, and the

relationship between the dependent variable and the

explanatory variables is represented by the following

equation:

y = b + m1x1 + m2x2 + m3x3 +..... +mnxn

where, b is the constant term, and m1 to mn are the

coefficients relating the n explanatory variables (x1, x2, x3,

.....xn) to the variables of interest. Based on the multiple

linear regression model, the following equation has been

formulated to analyze the severity of a vulnerability:

Vulnerability Severity = b + (m1 * C) + (m2 * I) + (m3 *A)

+ (m4 * Rphase) + (m5 * Dphase) + (m6 * Iphase) + (m7 *

LoE) …………..(1)

In MLR, we must have the values for dependent as well

as independent variables. In the present scenario, the values

for all the independent variables are taken from the available

vulnerabilities databases, whereas for dependent variable,

namely severity, an experts‟ feedback is taken. In this, a

complete exercise has been accomplished through a

questionnaire in which every expert is asked to give a

severity rating for each of the vulnerability with respect to

high/medium/low. For our calculation, we analyzed these

qualitative terms as given in the earlier section; high as 7,

medium as 5, and low as 3. After receiving the feedback

from various experts, the average is computed of the

severity level for each of the vulnerability.

D. Vulnerability Prioritization:

The issue of vulnerability prioritization has been actively

discussed in the literature and the need for vulnerability

prioritization in organizations is widely recognized

[8][9][10][11]. This work uses the notion that organizations

should prioritize their remediation efforts based on the value

of their assets and the severity of the vulnerability [9].

Empirical research has also shown that the actual impact of

security incidents varies significantly among different types

of organizations, businesses and users [12][13]. Since

different organizations perceive the severity of a particular

vulnerability differently; they also prioritize its mitigation

differently [10]. Based on the severity estimation discussed

in subsection C, vulnerabilities can be prioritized as

described as follows:

a. High: This type of vulnerabilities should be

addressed as quickly as possible.

b. Medium: This type of vulnerabilities should be

addressed, but only after High level weaknesses have

been addressed.

c. Low: It is not urgent to address the vulnerability, or it

is not important at all.

A tabular presentation of the same can be given as follows:

Vulnerability Severity Score Priority

≤ 7 High

≤ 5 Medium

≤ 3 Low

After assessing the severity level, need of the application

for the security perspective must be reexamined. For

example, if a vulnerability comes under the umbrella of

„high‟, but the application whose SRS is under examination,

does not require security up to an high extent, mitigation of

the vulnerability may be avoided.

E. Proposal for Security Requirements:

Based on the tolerance level defined in the earlier

subsection, security requirements may be proposed for the

mitigation of each vulnerability, depending upon the need as

well as nature of the web application/project. These may be

inclusive and not mutually exclusive of other

recommendations. Here, we are providing a sample of

Session Management. On the basis of this representation, the

security requirements may be given for the rest of the

vulnerabilities.

Session management is required to analyze, how the

user‟s session is maintained and managed during their

interaction with the application. Authentication is only a

small part of managing a user‟s access to data. Critical to the

R. Kumar & Mustafa K. et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,559-566

© 2010, IJARCS All Rights Reserved 563

process and often overlooked is the area of session

management. Insecure session management can negate the

security implemented by both authentication and access

control (authorization) mechanisms. Due to the limitations

of HTTP, all interactive applications need to connect the

user‟s stateless HTTP session with their stateful application

session. Typically, this is achieved through a Session ID

sent to and associated with the user during the login process,

often as a cookie. Having authenticated, this Session ID is

the only token that the application checks when determining

what data the user may access, and what privilege they have.

As such, it is vital that the Session ID is treated with at least

the same high level of security as the user‟s credentials.

Compromise of the Session ID will allow an attacker to

assume the identity of the user. To strengthen session

management, Web application designers and developers

should take into account following recommendations

[14][15][16][17]. Table 2, representing a set of security

requirements proposed, which may be incorporated for the

mitigation of session management related vulnerabilities:

Table 2: Session Management Security Requirements

SR 1: Properly manage HTTPS sections, especially if other portions of a Web application can be visited with HTTP.

SR 2: Use adequate directives for caching and cookie transmission.

SR 3: Protect Web applications against XSS attacks.

SR 4: Design thoroughly session termination mechanisms.

SR 5: Reduce the possibility of having multiple tokens for the same user at the same time or of having static user tokens [49].

SR 6: Create securely a unique session identifier after the individual is successfully authenticated.

SR 7: Associate the session identifier viz. session token, key/string in a strong manner with the session such that the system

resists attacks against the session management function.

SR 8: Ascertain that session identifiers are not containing sensitive information and also ensure that it is not predictable,

readily reverse engineered, or susceptible to a brute-force

attack.

SR 9: Verify that the session identifiers are assigned from a sufficiently large key space.

SR 10: Pass the session identifier to/from the user/client computer in a manner that will not result in inadvertent disclosure of

the value/s in use.

SR 11: Verify that the integrity and authenticity of a session identifier received back through internet is secure. /*an approved

hash function must be used*/

SR 12: Keep the session information saved on the user/clients/computer to the minimum extent.

SR 13: Ensure that the application is not leaving behind any sensitive and /or personnel data on the user/clients computer

namely in cache or cookie upon termination of a session.

SR 14: Force the user /clients browser to discard web pages from the cache.

SR 15: Retain the session information by the application server and delete upon the termination of the session.

SR 16: Provide a logout facility to deactivate the session.

SR 17: Implement the standard mechanisms to detect brute force attacks.

SR 18: Display a reminder on the importance of prominently login out if, access is no longer required.

SR 19: Ascertain that the sessions must be subjected to an inactivity time out to reduce the chance of an abundant active

session being exploited.

SR 20: Use shorter inactivity time outs depending on the risk involved and the nature of the transactions.

F. Structured Representation Model of Security

Requirements:

Security requirements (SRs) presented in the

aforementioned tables has been placed in the order of

implementation for the mitigation of vulnerabilities

belonging to each individual vulnerability family. A

structured representation model for the session management

is given in following Figure 2:

Figure 2: Structured Representation Model of Session Management SRs

Session Management

Session Termination

HTTP session: Manage properly (SR 1)

Caching and cookies transmission: Use
adequate directives (SR 2)

XSS attacks: Protect application (SR 3)

Session termination mechanism: Design properly (SR 4)

Multiple/static user token: Reduce possibility (SR 5)

Session Identifier

Assure that it doesn’t contain sensitive
information (SR 8)

Assign large key space (SR 9)

Brute force attack: Implement standard
mechanism (SR 17)

Pass securely (SR 10)

Integrity and authenticity: Verify (SR 11)

Session information saved on the
user/clients/computer: Keep
minimum extent (SR 12)

Don’t leave any sensitive
information (SR 13, SR 14)

Delete session information (SR 15)

Deactivate session: Provide logout
facility (SR 16)

Importance of prominently login: Display a reminder (SR 18)

Inactivity time out: Use shorter inactivity time (SR 19, SR 20)

Create unique and securely (SR 6, SR 7)

R. Kumar & Mustafa K. et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,559-566

© 2010, IJARCS All Rights Reserved 564

III. IMPLEMENTATION MECHANISM

Following are the guidelines/ steps for implementation

of the SRDF:

A. SRS will be taken as input in the SRDF.

B. The first step as per the SRDF will be vulnerability

identification based on the well accepted databases

available in the literature namely OWASP.

C. Second step is the classification of identified

vulnerabilities in the above step based on the several

attributes given in SRDF.

D. Next step is severity estimation based on the

statistical formulation, proposed in SRDF, which in

turn provides a quantified value for each

vulnerability.

E. In the fourth step, value of the severity may be

compared with the threshold values as given in
SRDF, which are classified in three terms namely

high, medium, and low.

F. If the severity level is tolerable, requirement

engineers should hand over the SRS to designers.

G. Further, if it is not tolerable, proposed security

requirements must be incorporated into the SRS for

the mitigation of vulnerabilities. Although, for

building the secure web application, mitigation of all

the vulnerabilities must be done. But, the depending

upon the time, nature and the most important aspect i.

e., need of the application, security requirements as

proposed in SRDF may be incorporated.

H. After incorporating these security requirements, SRS

will be called secure SRS, which will serve as output

of the framework. This secure SRS should again

submitted for the designing purpose.

IV. TRYOUT RESULTS

The proposed framework, for development of security

requirements has been validated by using SRS of one live

project, Web Store System. This Web Store System is

designed to allow new online store owners a quick and easy

means to setup and perform sales and other core business

over the internet.

As per implementation mechanism of SRDF, first step is

vulnerability identification. In the subsections A, all the

possible vulnerability that may occur for a web application,

have already been identified. But, in the scenario of this

project, 21 vulnerabilities may occur. Therefore, the detailed

classification and severity estimation of these already

identified vulnerabilities, as prescribed in SRDF is hereby

accomplished. The Table 3 presents the values of severity

computed through statistical formulation for the

vulnerabilities as well as project need (security is highly

needed as discussed above) and final recommendation in

terms of security requirements:

Table 3: Vulnerabilities and their Severity

Vulnerability ID Name of the Vulnerability Severity

V1 Insufficient Authentication H

V2 Insufficient Authorization H

V3 Integer Overflows M

V4 Insufficient Transport Layer Protection H

V5 Format String H

V6 Buffer Overflow H

V7 Cross-site Scripting H

V8 Cross-site Request Forgery H

V9 Brute Force H

V10 Information Leakage H

V11 Server Misconfiguration M

V12 Application Misconfiguration M

V13 Directory Indexing M

V14 Improper Filesystem Permissions H

V15 Credential/Session Prediction H

V16 SQL Injection H

V17 Improper Input Handling H

V18 Improper Output Handling H

V19 Session Fixation H

V20 Insufficient Session Expiration H

V21 Insufficient Password Recovery M

SRDF proposes various security requirements for the

mitigation of these 21 above mentioned vulnerabilities.

After the study of SRS (complete and ready to submit for

designing), researcher found that some of the security

requirements have already been taken care of. But there are

a number of remaining security requirements, to be

incorporated before proceeding to the design phase. Here, as

mentioned in earlier section, we are providing security

requirements only for session management in the following

Table 4:

http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Improper-Input-Handling
http://projects.webappsec.org/Improper-Output-Handling

R. Kumar & Mustafa K. et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,559-566

© 2010, IJARCS All Rights Reserved 565

Table 4: Proposed Security Requirements (SR) and Compliance Status

Vulnerability ID : Name of the

vulnerability

Proposed Security Requirements (SR) Compliance Status (Y/N)

V1: Insufficient

 Authentication

V21: Insufficient

 Password

 Recovery

V10: Information

 Leakage

Minimal: Incorporate SR1 to SR8.

SR1 to SR3 were already adapted; further, SR4 to

SR8 have been incorporated.

Clients/organizations: Incorporate SR1 to SR2. Y

Administrators: Incorporate SR1 to SR4. Y

Users: Incorporate SR1 to SR3. SR1 was already there; SR2 to SR3 have been

incorporated.

Password Selection Rules: Incorporate SR1 to SR4. Y

Password Best Practices: Incorporate SR1 to SR3. Y

Password Management: Incorporate SR1 to SR12. SR1 to SR4 were already adapted; SR5 to SR7 have

been incorporated. Further, SR8 to SR10 were already

in place and again SR11 and SR12 have been added.

V2: Insufficient

 Authorization

V14: Improper

 Filesystem

 Permissions

Authorization: Ascertain that SR1 to SR8 have been

incorporated.
Ascertained.

User Identification: Ascertain that SR1has been

incorporated.
Y

Controls of user ID: Ascertain that SR1 to SR4 have

been incorporated.
Y

Information Asset Access Control: Ascertain that

SR1 to SR5 have been incorporated.

SR1 to SR3 ascertained; SR4 and SR5 were already in

place.

Application Asset Access Control: Ascertain that

SR1 to SR6 have been incorporated.
Ascertained.

Access to Database and Backend Systems: Ascertain

that SR1 to SR4 have been incorporated.
Ascertained

Access Rights granted to third party: Ascertain that

SR1 to SR5 have been incorporated.
Ascertained

V15:Credential/Session

 Prediction

V19:Session Fixation

V20:Insufficient Session

 Expiration

Session Management: Ascertain that SR1 to SR20

have been incorporated.

SR1 to SR5 were already adopted; SR6 to SR12 have

been incorporated. Further, SR13 to SR17 were

already in place and again SR18 and SR20 have been

added.

V3: Integer Overflows

V5: Format String

V6: Buffer Overflow

V7: Cross-site Scripting

V8: Cross-site Request

 Forgery

V9: Brute Force

V16:SQL Injection

V17:Improper Input

 Handling

V18:Improper Output

 Handling

Data Validation: Ascertain that SR1 to SR 12 have

been incorporated.

SR1 to SR5 ascertained; again SR6 to SR12 were

already incorporated.

V10:Information Leakage

V13:Directory Indexing

Cryptographic Protection of Information: Ascertain

that SR1 to SR 4 have been incorporated

Ascertained

Error Handling: Ascertain that SR1 to SR 9 have

been incorporated

SR1 to SR3 ascertained; SR4 and SR5 were already in

place.

V4:Insufficient Transport

 Layer Protection

Data Transport Security: Ascertain that SR1 to SR 8

have been incorporated.

SR1 to SR5 ascertained; again SR6 to SR8 were

already incorporated.

Data Encryption: Ascertain that SR1 to SR 10 have

been incorporated.

SR1 to SR7 ascertained; again SR8 to SR10 were

already incorporated.

Encryption key Management: Ascertain that SR1 to

SR 17 have been incorporated.

SR1 to SR4 ascertained; SR5 to SR9 have been

incorporated. Further, SR10 to SR13 were already in

place and again SR14 to SR17 have been added.

V11:Server Misconfiguration

V12:Application

 Misconfiguration

Web Application and Server Configuration:

Ascertain that SR1 to SR 13 have been incorporated.

SR1 to SR3 were already adapted; SR4 to SR9 have

been incorporated. Further, SR10 to SR12 were

already in place.

SRDF was implemented on the SRS of above mentioned

real life project. As discussed, 21 possible vulnerabilities

that may occur with the developed web application have

been identified by our framework. Since, security is highly

needed in this application, mitigation of all these

vulnerabilities is essential by incorporating security

requirements. For each vulnerability, the corresponding SRs

have been suggested and the adherence of the same is

rechecked in the SRS. On this basis, wherever security

requirements were not in place, the same has been adapted.

By incorporating all these SRs, SRS of the proposed

application will be strengthened with reference to security,

which is the current need of the said application.

R. Kumar & Mustafa K. et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,559-566

© 2010, IJARCS All Rights Reserved 566

V. CONCLUSION AND FUTURE WORK

The proposed framework, SRDF may be used for the

severity estimation of the vulnerabilities in the quantitative

manner for the requirements phase of SDLC. Once the final

value of the severity is calculated, its tolerance level should

be checked. This tolerance level depends upon the nature of

the project. Accordingly, three levels of severity e.g. high,

medium, low may be fixed. If value of the severity is high, it

will not be tolerable and it must be mitigated before moving

to the next step. Requirement engineers should repeat the

steps from beginning, iteratively. On the other hand, if the

value of the severity is medium, it may or may not be

tolerable. Depending upon the project type and resources,

mitigation techniques should be used. Finally, if value of the

severity is low, it may be tolerable and mitigation may or

may not be required. Based on the severity determination,

the next step should be followed. If severity is tolerable,

SRS should be processed for Design Phase, otherwise

incorporation of security requirements will be required.
SRDF can be effectively used in classification and

severity estimation of vulnerabilities in exhaustive way.
SRDF is also validated through different tryouts on a SRS of

live project provided by the industry. However, for the

standardization of the results, a large number of sample

projects are required. It appears to be an evolving process as

new vulnerabilities and their corresponding security

requirements shall be identified. Therefore,

extension/modification and proposal of new security

requirements may also be done. In future, new

vulnerabilities and security requirements must be added in
SRDF. A software tool may also be developed for the

automation of complete process. This work may provide

guidance to the industry as well as academia for developing

more secure software.

VI. REFERENCES

[1]. Premchand, “Building India as the Destination for Secure

Software Development- Next wave of Opportunities for

the ICT Industry”, LNCS Volume 3803/2005, pp 49-65,

Springer Berlin/ Heidelberg 2005

[2]. Steve Lipner, The Trustworthy Computing Security

Development Lifecycle, proceedings of the 20th Annual

Computer Security Applications Conference

(ACSAC'04), p.2-13, December 06-10

[3]. S. A. Hadavi, V. S. Hamishagi, H. M. Sangchi; Security

Requirements Engineering; State of the Art and

Research Challenges. Proceedings of the International

MultiConference of Engineers and Computer Scientists

2008 Vol I IMECS 2008, Hong Kong

[4]. IBM Security Solutions, IBM X-Force® 2010 Mid-Year

Trend and Risk Report, August 2010

[5]. Nancy R. Mead, Gary Mcgraw, "A Portal for Software

Security", Published By The Ieee Computer Society, Ieee

Security & Privacy, 2005.

[6]. Hoglund, G. and McGraw, G. (2004) Exploiting

Software: Howto Break Code. Addison-Wesley.

[7]. Piessens F, A. (2002) Taxonomy of causes of software

vulnerabilities in Internet software, Supplementary

Proceedings of the 13th International Symposium on

Software Reliability Engineering (Vouk, M., ed.), (pp.

47-52).

[8]. Y. Chen, “Stakeholder Value Driven Threat Modeling

for Off The Shelf Based Systems,” International

Conference on Software Engineering, IEEE Computer

Society Washington, DC, USA, 2007, pp. 91-92

[9]. G. Eschelbeck, “The Laws of Vulnerabilities: Which

security vulnerabilities really matter?,” Information

Security Technical Report, vol. 10, 2005, pp. 213-219

[10]. Y. Lai and P. Hsia, “Using the vulnerability information

of computer systems to improve the network

security,”Computer Communications, vol. 30, Jun. 2007,

pp. 2032-2047.

[11]. R. Rieke, “Modelling and Analysing Network Security

Policies in a Given Vulnerability Setting,” Critical

Information Infrastructures Security, First International

Workshop, CRITIS 2006, Samos Island, Greece. Volume

4347. Springer. pp. 67-78.

[12]. M. Ishiguro, H. Tanaka, K. Matsuura, and I. Murase,

“The Effect of Information Security Incidents on

Corporate Values in the Japanese Stock Market,”

International Workshop on the Economics of Securing

the Information Infrastructure (WESII), 2006

[13]. R. Telang and S. Wattal, “An empirical analysis of the

impact of software vulnerability announcements on firm

stock price,” IEEE Transactions on Software

Engineering, vol. 33, 2007, pp. 544-557

[14]. D. Stuttard and M. Pinto, The Web Application Hacker’s

Handbook: Discovering and Exploiting Security Flaws,

John Wiley & Sons, 2008.

[15]. C. Anley, “Weak Randomness: Part I—Linear Congru-

ential Random Number Generators,” Next Generation

Security Software, 2007; www.ngssoftware.com/Librar-

ies/Documents/02_07_Weak_Randomness.sfl b.ashx.

[16]. M. Kolšek, “Session Fixation Vulnerability in Web-

Based Applications,” Acros Security, Dec. 2002; www.

acrossecurity.com/papers/session_fi xation.pdf.

[17]. “OWASP Testing Guide v3,” Open Web Application

Security Project Foundation, Nov. 2008; www.owasp.

org/index.php/OWASP_Testing_Guide_v3_Table

_of_Contents.

