
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 114

ISSN No. 0976-5697

Security Coding Technique for Web Applications

Shylaja Akinapally*
M.Tech(CSE)

Sree Chaitanya College Of Engineering
Karimnagar,A.P.India

shylaja_akinapally@rediffmail.com

K.Srinivas
Assoc.Prof,CSE Dept

Sree Chaitanya College Of Engineering
Karimnagar,A.P,India.

kaparthisrini@yahoo.com

T.P.Shekhar
Assoc.Prof,IT Dept

Sree Chaitanya College Of Engineering
Karimnagar,A.P,India
tpshekhar@gmail.com

A.Sanjeeva Raju

Assoc.Prof,CSE Dept
Kamala Institute of Technology&Science,Singapur

Huzurabad,Karimnagar,A.P,India.
sanjeevaraju@rediffmail.com

Abstract----We propose a method that provides information-theoretic security for client-server communications. An appropriate encoding
scheme based on wiretap codes is used to show how a client -server architecture under active attacks can be modeled as a binary-erasure wiretap
channel. The secrecy capacity of the equivalent wiretap channel is used as a metric to optimize the architecture and limit the impact of the
attacks. We also provide a method to design attack-resistant client-server architectures that are resilient and secure using wiretap codes.
Specifically, the objective is not only to ensure reliable communication between client and servers in the presence of disrupted nodes, but also to
guarantee that a malicious attacker hacking the packet information at compromised nodes is unable to retrieve the content of the message being
exchanged. In principle, standard encryption techniques could be implemented to ensure secure communication between client and servers;
however, instead of using traditional cryptographic tools to encrypt information contained in the packet, the proposed approach exploits the fact
that the attacker only gets parts of the packets sent by the client. we define wiretap model as a java web application security framework in order
to solve web application vulnerabilities. Wiretap model extends web application’s behavior by adding security functionalities maintaining the
API and the framework specification. The security functionalities include Integrity, Editable data validation, Confidentiality, Anti-CSRF token.

Keywords- Client-server architecture ,Cross-site scripting, Denial of service, Host compromise attacks, Distributed DoS attack, , network
security, parameter tampering, secrecy capacity, SQL Injection , vulnerabilities., wiretap channel

I. INTRODUCTION

Nowadays, web application security is one of the most
important issues in the information system development
process. According to Gartner the 75% of the attacks
performed nowadays are aimed to web applications,
because operative system security and net level security
have increased considerably. As a result, it is considered
that the 95% of the web applications are vulnerable to a
certain type of attack. Communication over large networks
is often impaired by malicious attacks that aim at disrupting
packet traffic. Among the many attacks that infect networks,
the most damaging ones are probably denial of service
(DoS) and host compromise attacks. In a DoS attack, an
attacker tries to direct a large amount of bogus traffic to a
susceptible node, with the intention of consuming a large
amount of bandwidth and rendering the node unable to
service legitimate traffic, whereas in a host compromise
attack, an attacker attempts to gain control of a node by
exploiting its vulnerabilities. In a more harmful manner,
host compromise and DoS attacks can be combined to cause
a distributed DoS attack (DDoS), where attackers
compromise nodes and use them to launch DoS attacks on a
large scale. The frequency and magnitude of DoS attacks
have been steadily increasing for the last couple of years

[1]. For instance, there has been a significant number of
DoS attacks on popular e-commerce websites and
governmental websites in 2000 and 2001, and more
recently, these attacks have targeted the root domain name
servers (DNSs) and the DNS backbone network. Most of
the earlier research for countering these attacks has focused
on designing schemes capable of detecting attacks and
recovering from these attacks using detection mechanisms,
such as filtering [2]. More recently, schemes designed to
resist attacks have also been proposed, based, for instance,
on specialized overlay nodes that have capabilities to resist
and survive attacks [3], [4]. Despite all of these protective
measures, networks inevitably possess vulnerabilities that
attackers may exploit to launch successful attacks;
therefore, designing network architectures and additional
schemes capable of mitigating the impact of unavoidable
attacks has become a crucial issue. In this paper, we
consider the effect of these attacks upon the design on
resilient and secure client-server architectures.

In the following chart we can see the list of the most
important vulnerabilities published by OWASP (Open Web
Application Security Project).

Shylaja Akinapally et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,114-120

© 2010, IJARCS All Rights Reserved 115

Figure. 1. Vulnerabilities

A. Parameter Tampering:
Parameter tampering is a type of attack based on the

modification of the data sent by the server in the client side.
The process of data modification is very simple for the user.
When a user sends a HTTP request (GET or POST), the
received HTML page may contain hidden values, which
cannot be seen by the browser but are sent to the server
when a submit of the page is committed. Also, when the
values of a form are “pre-selected” (drop-down lists, radio
buttons, etc.) these values can be manipulated by the user
and thus the user can send an HTTP request containing the
parameter values he wants.

Example: We have a web application of a bank, where
its clients can check their accounts information by typing
this URL (XX= account number):

When a client logs in, the application creates a link of

this type for each account of this client. So, by clicking in
the links, the client can only access to its accounts.
However, it would be very easy for this user to access
another user account, by typing directly in a browser the
bank URL with the desired account number.

For this reason the application (server side) must verify
that the user has access to the account he asks for. The same
occurs with the rest of non editable html elements that exist
in web applications, such as, selection able lists, hidden
fields, checkboxes, radio buttons, destiny pages, etc. This
vulnerability is based on the lack of any verification in the
server side about the created data and it must be kept in
mind by the programmers when they are developing a new
web application.

Despite being a link the modified element in this
example, we must not forget that it is possible to modify any
type of element in a web page (selects, hidden fields, radio
buttons…). This vulnerability does not only affect to GET
requests (links) because POST request (forms) can also be

modified using appropriate audit tools, which are very easy
to use by anyone who knows how to use a web browser.

B. SQL-Injection:
In this case the problem is based in a bad programming

of the data access layer. A SQL-Injection attack consists of
insertion or injection of a sql query via the input data from
client to application. A successful SQL-Injection exploit can
read sensitive data from the database, modify database data
(insert/update/delete) , execute administrative operations on
the database.

Example: We have a web page that requires user
identification. The user must fill in a form with its username
and password. This information is sent to the server to check
if it is correct.

As we can see in the example, the executed SQL is

formed by concatenating directly the values typed by the
user. In a normal request where the expected values are sent
the SQL works correctly. But we can have a security
problem if the sent values are the following ones:

Shylaja Akinapally et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,114-120

© 2010, IJARCS All Rights Reserved 116

In this case, the generated SQL returns all the users of
the table, without having typed any valid combination of
username and password. As a result, if the program doesn’t
control the number of returned results, it might gain access
to the private zone of the application without having
permission for that. The consequences of the exploitation of
this vulnerability can be mitigated by limiting the database
permissions of the user used by the application. For
example, if the application user can delete rows in the table
the consequences can be very severe.

C. Cross-Site Scripting (XSS):
This attack technique is based in the injection of code

(java script or html) in the pages visualized by the
application user.

Example: We have a web page where we can type a text,
as is shown in the image below:

Figure.2. XSS Vulnerability Example.

The html code of the page is:

Typing the following text in the textbox:

This is the result:

Figure.3. XSS Vulnerability Example Result.

There is a large variety of attacks to exploit this
vulnerability. A well known attack is a massive email
sending, attaching a trusted URL (in this example, happy
banking) where the final result is the execution of a
JavaScript function that can redirect us to another website (a
fake website which apparently is the same as original) or can
obtain the cookies of our browser and send them to the
attacker.

Figure.4. XSS Mail Attack

The rob of cookies can give the attacker access to the
web applications where the user is authenticated in that
moment (online bank, personal email account, etc.). This is
because most of the web applications use cookies to
maintain sessions. This vulnerability (XSS) can be solved
using generic validation policies (where certain characters
are not allowed) or using libraries like Struts which avoids
this kind of problems.

D. Cross-Site Request Forgery (CSRF):
Cross-site request forgery, also known as one click

attack or session riding and abbreviated as CSRF (Sea-Surf)
or XSRF, is a type of malicious exploit of websites.
Although this type of attack has similarities to cross-site
scripting (XSS), cross-site scripting requires the attacker to
inject unauthorized code into a website, while cross-site
request forgery merely transmits unauthorized commands
from a user the website trusts. The attack works by
including a link or script in a page that accesses a site to
which the user is known (or is supposed) to have
authenticated.

Example: One user, Bob, might be browsing a chat
forum where another user, Mallory, has posted a message.
Suppose that Mallory has crafted an HTML image element
that references a script on Bob's bank's website (rather than
an image file), e.g.,

Shylaja Akinapally et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,114-120

© 2010, IJARCS All Rights Reserved 117

If Bob's bank keeps his authentication information in a
cookie, and if the cookie hasn't expired, then Bob's
browser's attempt to load the image will submit the
withdrawal form with his cookie, thus authorizing a
transaction without Bob's approval. A cross-site request
forgery is a confused deputy attack against a Web browser.
The deputy in the bank example is Bob's Web browser
which is confused into misusing Bob's authority at Mallory's
direction.

The following characteristics are common to CSRF:
a. Involve sites that rely on a user's identity
b. Exploit the site's trust in that identity
c. Trick the user's browser into sending HTTP

requests to a target site
d. Involve HTTP requests that have side effects

II. STATE OF ART

All the vulnerabilities presented before can be solved
through a proper input validation. There are solutions for
this but most of them are custom solutions and developers
have to create a new solution for each use case. Also we
must add that it’s highly probable that developers forget a
validation in some points of the web application. In order to
solve this problem there are some global solutions. Web
application framework validators can be useful to solve
problems like SQL Injection or XSS but it’s limited to type
validation. We can’t solve parameter tampering through
Struts’ validator. With these validators we can assure that a
parameter is an integer but we can’t know if the value it’s
the same that the server sent to the client. In other words, we
can’t assure server data integrity. Avoiding this vulnerability
manually implies a great development effort and it is likely
to fail in some pages because it is very difficult to test the
correct programming of each page.

III. WIRETAP MODEL

A. Introduction:
In order to solve web application vulnerabilities a

WIRETAP MODEL is created. We can briefly define
WIRETAP MODEL as a Java Web Application Security
Framework. WIRETAP MODEL extends web applications’
behavior by adding Security functionalities, maintaining the
API and the framework specification. This implies that we
can use WIRETAP MODEL in applications developed in
Struts 1.x, Struts 2.x, Spring MVC or/and JSTL in a
transparent way to the programmer and without adding any
complexity to the application development.

B. The Security Functionalities Added to the Web
Applications :
a. Integrity: WIRETAP MODEL guarantees integrity (no

data modification) of all the data generated by the server
which should not be modified by the client (links, hidden
fields, combo values, radio buttons, destiny pages,

cookies, headers, etc.). Thanks to this property we avoid
all the vulnerabilities based on the parameter tampering.

b. Editable data validation: WIRETAP MODEL
eliminates to a large extent the risk originated by attacks
of type Cross-site scripting (XSS) and SQL Injection
using generic validations of the editable data (text and
text area). As there isn't any base in editable data to
validate the information, the user will have to
configurate generic validations through rules in XML
format, reducing or eliminating the risk against attacks
based on the defined restrictions. Unlike the traditional
solution where validations are applied to each field
through the Commons validator, and where the
probability of a human error is very high, WIRETAP
MODEL allows to apply generic rules that avoid to a
large extent the risk within these data types. Anyway, it
is advisable to use existing solutions such as the Struts’
validator and Struts’ tag libraries to avoid Cross-site
scripting (XSS) attacks and to use prepared statements to
avoid SQL injection in the data access layer. The
responsibility of showing error messages on the user
screen, if the WIRETAP MODEL validator detects not
allowed values in editable fields, is delegated to the
errors handler and this handler will show them in the
input form.

c. Confidentiality: WIRETAP MODEL guarantees the
confidentiality of the data as well. Usually lots of the
data sent to the client has key information for the
attackers such as database registry identifiers, column or
table names, web directories, etc. All these values are
hidden by WIRETAP MODEL to void a malicious use
of them. For example a link of this type,
http://www.host.com?data1=12&data2=24 is replaced by
http://www.host.com?data1=0&data2=1, guaranteeing
confidentiality of the values representing database
identifiers.

d. Anti-CSRF token: Random string called a token is
placed in each form and link of the HTML response,
ensuring that this value will be submitted with the next
request. This random string provides protection because
not only does the compromised site need to know the
URL of the target site and a valid request format for the
target site, it also must know the random string which
changes for each visited page.
Therefore, WIRETAP MODEL helps to eliminate most

of the web vulnerabilities based on non editable data and it
can also avoid vulnerabilities related with editable data
through generic validations, which is easier to apply than
traditional input validation with the Commons Validator.

In addition to that, WIRETAP MODEL hides all critical
information to the client to avoid a malicious use of them

C. Base Concepts:
Before detailing the way WIRETAP MODEL guarantees

data integrity and confidentiality it is necessary to explain
some base concepts.

Shylaja Akinapally et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,114-120

© 2010, IJARCS All Rights Reserved 118

a. State: For WIRETAP MODEL a state represents
all the data that composes a possible request to a web
application, that is, the parameters of a request, its values
and its types and the destiny or page request. We may have
more than one state (possible request) for a page which
represents the links and forms existing in the page. When a
page (JSP) is processed in the server, WIRETAP MODEL
generates an object of type state for each existing link o
form in the page (JSP).Generated state can be stored in two
locations:

b. Server: States are stored inside de session (Http
Session) of the user.

c. Client: State objects are sent to the client as
parameters. For each possible request (link or form) an
object that represents the state of the request is added. These
states make it possible the later verification of the requests
sent by the clients, comparing the data sent by the client
with the state.

Figure.5. Validation process

D. Architecture:
WIRETAP MODEL has two main modules:

a. Tag Library: Tag Library is responsible for modifying
the html content sent to the client that then will be
checked by the security filter.

b. Security Filter: It validates the editable and non editable
information of the requests, using the generic validations
defined by the user for editable data and the state
received in the requests for the non editable information.

Figure.6. Architecture

IV. OPERATION STRATEGY

Having the same objectives, WIRETAP MODEL has
different operation strategies: Let’s see the html code
generated by WIRETAP MODEL using different strategies
and configurations as well as the steps of the validation
process. Suppose that we have a page that generates the
following html code, where shaded text represents non
editable data that we must protect.

A. Cipher Strategy:

The state is sent to the client as a hidden field or a
parameter if it is a link. In order to guarantee integrity, the
state is ciphered using a symmetrical algorithm. In order to
guarantee confidentiality, non editable data is replaced by
relative values.

a. Response Generation:
First of all WIRETAP MODEL gathers all the request

data and it generates an object of type org .WIRETAP .state.
IState for each request of the page (forms + links). This
State object is what the client receives as a serialized object.
Then, WIRETAP MODEL replaces non editable real values
by relative values. For instance, if we have a selection list
with the following values: 150, 133, 22 they are replaced by
these: 0, 1, 2. This way WIRETAP MODEL guarantees
confidentiality of non editable data. Once IState object is
created, it will be sent to the client as a hidden field for the
forms and as an extra parameter for the links.
These are the steps to get the value of this parameter:

i. An array of bytes of the IState object is obtained
(the object must be serializable).

ii. It is compressed.
iii. It is ciphered

Shylaja Akinapally et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,114-120

© 2010, IJARCS All Rights Reserved 119

iv. It is coded to Base64.
The result of a page using the Cipher strategy and which

has activated confidentiality flag
will be like this:
<html>
<body>
<a href=/struts-examples/action1.do?data=0&_WIRETAP
MODEL_STATE=6347dfhdfd84r73e9483494734837487>
LinkRequest
<form method=”post “ action=”/struts-
examples/processSimple.do”>
<input type=”text” name=”name” value=””/>
<input type=”password” name=”secret” value=””/>
<select name=”color”>
<option value=”0”>Red</option>
<option value=”1”>Green</option>
<option value=”2”>Blue</option>
</select>
<input type=”radio” name=”rating” value=”0”>Actually, I
hate it

<input type=”radio” name=”rating “ value=”1”>Not so
much

<input type=”radio” name=”rating ” value=”2”> I am
indifferent

<textarea name=”message” cols=”40” rows=”6”/>
<input type=”hidden” name=”hidden” value=”0”/>
<input type=”hidden” name=”WIRETAP
MODEL_STATE”
value=”jkfhdfhgdf948dkfhghfdkhfffjfdf”/>
<input type=”submit” value=”submit”/>
</form>
</body>
</html>

b. Validation:
The first step in the validation process is to decrypt the

value of the _WIRETAP MODEL_STATE_ parameter,
which has the state of the request. If there is no error
decrypting the state, it means that the value hasn’t been
modified and so we must continue with the validation
process. The next step is to decompress the parameter value
and to create a new IState object from the obtained bytes.
Once we have the IState object we are ready to validate the
client request. WIRETAP MODEL will check each of the
parameters of the request and all the values of each
parameter.

First of all, WIRETAP MODEL verifies that the

parameter value is between the possible relative values for
the parameter. If it is correct WIRETAP MODEL returns the
real value of the option selected by the client. For example,
if the relative value of the account parameter is 0,
WIRETAP MODEL replaces it by the value in the 0
position on the list of values for this parameter. If the

request is correct it is redirected to the Struts controller to
generate the corresponding page. Otherwise, if a security
error is detected the user is redirected to an error page and
the incident is logged on a file.

B. Hash Strategy:
The state is coded in Base64 and sent to the client as a

hidden field or as a parameter if it is a link. In order to
guarantee integrity, before sending the state to the client a
hash of the state is generated and it is stored in the user
session. Later, this will be use to check that the value hasn’t
been modified. The main difference between this strategy
and Cipher strategy is that here the state integrity is
guaranteeing using a hash, instead of ciphering the state
object. It is worth mentioning that in this case data
confidentiality can’t be guaranteed, as the data is not
ciphered. On the other hand, no real values are sent inside
each component in order to make it more difficult to know
the real values.

a. Response Generation:
Visually the result of a page using this strategy is the

same as the previous one
<html>
<body>
<a href=/struts-examples/action1.do?data=0&_WIRETAP
MODEL_STATE=wJTAwJTAwbvAlQzFKJUMzJTQwJTE
>
LinkRequest
<form method=”post “ action=”/struts-
examples/processSimple.do”>
<input type=”text” name=”name” value=””/>
<input type=”password” name=”secret” value=””/>
<select name=”color”>
<option value=”0”>Red</option>
<option value=”1”>Green</option>
<option value=”2”>Blue</option>
</select>
<input type=”radio” name=”rating” value=”0”>Actually, I
hate it

<input type=”radio” name=”rating“ value=”1”>Not so
much

<input type=”radio” name=”rating” value=”2”> I am
indifferent

<textarea name=”message” cols=”40” rows=”3”/>
<input type=”hidden” name=”hidden” value=”0”/>
<input type=”hidden” name=”_WIRETAP
MODEL_STATE” value=”lRMwUHDSFRwGFDgew CX
fj”/>
<input type=”submit” value=”submit”/>
</form>
</body>
</html>

b. Validation:
The only difference with the Cipher strategy is that the

decrypting process is replaced by the integrity verification
using the hash. In order to check the integrity WIRETAP
MODEL calculates the hash of the value that represents the

Shylaja Akinapally et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,114-120

© 2010, IJARCS All Rights Reserved 120

state and it is compared with the one stored in session. From
this point, the request verification is exactly the same as on
the previous strategy.

C. Memory Strategy:
The state of each request is stored in the user session,

being this the main difference with the other two strategies.
To be able to associate user requests with the state stored in
the session, an extra parameter (_WIRETAP
MODEL_STATE_) is added to each request. This parameter
contains the identifier that makes possible to get the state
from session.. In order to guarantee confidentiality, non
editable data are replaced by relative values.

a. Response Generation:
The difference with the other two strategies is that here

the state is not sent to the client. Only the request identifier
is sent in order to be able to recover the request state later.
<html><body>
 <a href=/struts-examples/action1.do?data=0&_WIRETAP
MODEL_STATE=0-1-5E26F18AD9E>
LinkRequest
<form method=”post “ action=”/struts-
examples/processSimple.do”>
<input type=”text” name=”name” value=””/>
<input type=”password” name=”secret” value=””/>
<select name=”color”>
<option value=”0”>Red</option>
<option value=”1”>Green</option>
<option value=”2”>Blue</option>
</select>
<input type=”radio” name=”rating” value=”0”>Actually, I
hate it

<input type=”radio” name=”rating “ value=”1”>Not so
much

<input type=”radio” name=”rating ” value=”2”> I am
indifferent

<textarea name=”message” cols=”40” rows=”3”/>
<input type=”hidden” name=”hidden” value=”0”/>
<input type=”hidden” name=”_WIRETAP
MODEL_STATE” value=”0-2-5E26F18AD9E”/>
<input type=”submit” value=”submit”/>
</form>
</body></html>

As we can see there are not visual differences in the
generated html code between state in client or state in server
versions. The only difference is the length of the parameter
that represents the state (_WIRETAP MODEL_STATE_),
which is much shorter in this case because it only contains
the request identifier.

b. Validation:
Before initializing validation, WIRETAP MODEL

obtains the request identifier and thus the object of type org.
WIRETAP MODEL. State. IState is obtained from user
session. From this point, the validation process is exactly the
same as the previous strategies.

V. CONCLUSION

We have investigated a method that provides
information-theoretic security for client-server architectures.
By introducing an appropriate encoding scheme we showed
how client-server architecture under active attacks can be
modeled as a binary erasure wiretap channel, which
motivates the use of wiretap coding before packet
transmission. Our analysis supports the idea that wiretap
channel models can be used beyond standard
communication problems, even in situations where the
presence of active attackers is assumed. Most of the web
application vulnerabilities are solved using this wiretap
security model.

VI. ACKNOWLEDGMENT

The Authors Would like to thank the Reviewers for their
usful comments that Greatly Improved the Presentation
and clarity of this paper.

VII. REFERENCES

[1] D. Moore, G. Voelker, and S. Savage, “Inferring internet
denial-of-service activity,” in Proc. USENIX Security
Symp.,Washigton, D.C., Aug.2001, pp. 9–22.

[2] P. Ferguson and D. Senie, “Network ingress filtering:
Defeating denial of service attacks which employ ip source
address spoofing,” RFC 2827, May 2000.

[3] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-sale:
Surviving organized ddos attacks that mimic flash crowds,”
presented at the 2nd Symp. Networked Systems Design and
Implementation, Boston,MA, May 2005.

[4] T. Bu, S. Norden, and T.Woo, “A survivable dos-resistant
overlay network,”Comput. Netw., vol. 50, no. 9, pp. 1281–
1301, Jun. 2006.

[5] T. Bu, S. Norden, and T. Woo, “Trading resiliency for
security: Model and algorithms,” in Proc. 12th IEEE Int.
Conf. Network Protocols, Berlin, Germany, 2004, pp. 218–
227.

[6] R. Narasimha, Z. Chen, and C. Ji, “Topological malware
propagation on networks: Spatial dependence and its
significance,” IEEE Trans. Secure Dependable Comput.,
2007, submitted for publication.

[7] C. E. Shannon, “Communication theory of secrecy systems,”
Bell Syst. Tech. J., vol. 28, pp. 656–715, 1948.

[8] A. D.Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol.
54, no. 8, pp. 1355–1367, Oct. 1975.

[9] L. H. Ozarow and A. D.Wyner, “Wire tap channel II,” AT&T
Bell Laboratories Tech. J., vol. 63, no. 10, pp. 2135–2157,
Dec. 1984.

.

	INTRODUCTION
	STATE OF ART
	WIRETAP MODEL
	OPERATION STRATEGY
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES
	.

