
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 648

ISSN No. 0976-5697

A Multi Layer Technique for Performance Estimation for Asip Design Space

Exploration

Manoj Kumar Jain
Associate Professor in Computer Science

Mohanlal Sukhadia University,

Udaipur, Rajsthan, India

 manoj@cse.iitd.ernet.in

Abstract: Application Specific Instruction Set Processor or ASIPs are designed for a given application or for a set of applications. Since

application set is limited, a better analysis of applications is possible which helps in identifying their special characteristics. These characteristics

are used in ASIP design space exploration. This exploration suggests the optimum design which meets the stringent design constraints. The

exploration is supported by estimation tools. Performance estimation is one such tool. Various researchers had suggested two types of techniques

for performance estimation, namely, simulator based, and scheduler based approaches. They seem to be contrary to each other. This paper

proposes that they are not contrary; in fact they are complimentary to each other. Since the scheduler based approaches use a very coarse model

of architecture so they might not be as accurate as simulator based approaches. But the scheduler based approaches are very fast in nature and

can handle a larger design space as they are not dependent on retargetable compilers and retargetable simulators. So we propose a new technique

for performance estimation. A scheduler based approach should be used for an early design space exploration as the other approach is not

suitable at this stage. This layer will suggest a few possible architectures suitable for input application. These architectures can be further

analysed by a simulator based technique.

Keywords: Application Specific Instruction Set Processor (ASIP), simulation, synthesis, time to market, instruction set simulator, scheduler

based, and performance estimation.

I. INTRODUCTION

Now a day’s embedded systems are used everywhere. A
few examples include wireless handsets, networked sensors,
smart cards, network routers, gateways, firewalls, and servers.
The heart of embedded system is usually implemented either
using a general purpose processor (GPP), or using an
application specific integrated circuit (ASIC), or combination
of both.

GPPs are flexible but do not meet out many design
constraints like performance requirement, area and power
constraints. On the other hand ASICs are very rigid in nature,
and they are expansive. Application Specific Instruction Set
Processor (ASIP) has emerged as a popular solution. ASIP
provides a design which meets out the design constraints and
has a limited flexibility.

A good survey of ASIP design methodologies is available
in [1]. Five main steps identified in ASIP synthesis are
application analysis, design space exploration, instruction set
generation, code synthesis and hardware synthesis.

Typically ASIP design starts with analysis of the

applications. These applications with their test data should be

analyzed statically and dynamically using some suitable

profiler before proceeding further in the design process. Inputs

from the application analysis step are used along with the

range of architecture design space to select a suitable

architecture(s). The selection process typically can be viewed

to consist of a search technique over the design space driven

by a performance estimator. Instruction set is generated or

synthesized for chosen architecture. Software tool set

including operating system, editors, compilers, debuggers etc.

are generated. A synthesizable hardware description of the

selected architecture is provided to synthesize the processor.

Design space exploration is driven by various estimators.

Performance estimation is one such estimator. Performance

estimator can be simulator based or scheduler based.
This paper is organized as follows. II Section Describes a

typical ASIP Design methodology. Design space exploration
technique is described in Section III. IV Section presents a
simulator based approach for performance estimation. V
Section presents a scheduler based approach for performance
estimation. A brief comparison of both is presented in Section
VI. Section VII presents proposed multi layer performance
estimation technique. Paper concludes with conclusions in
Section VIII.

II. ASIP DESIGN METHODOLOGY

Gloria et al [2] defined some main requirements of the
design of application-specific architectures. Important among
these are as follows:

 Design starts with the application behavior.

 Evaluate several architectural options.

 Identify hardware functionalities to speed up the
application.

 Introduce hardware resources for frequently used
operations only if it can be supported during
compilation.

ASIP fits in between these two and provides flexibility at
lower cost than general programmable processors. According
to MK Jain et al [1] design of ASIP can be typically divided in
five steps which is shown in Figure 1:

 Application Analysis

 Architecture design space Exploration.

 Instruction-set generation

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 648-653

© 2010, IJARCS All Rights Reserved 649

 Code synthesis

 Hardware synthesis

A. Application Analysis

ASIP design starts with analysis of application, analysis of
test-data and design constraints. An application written in any
high level language is analyzed both statically and dynamically
which is then stored in some suitable intermediate format,
which is then used in the subsequent steps.

Figure 1. Flow Diagram of ASIP design Methodology

B. Architecture Design Space Exploration

It involves identifying the broad architectural features of the
ASIP. First of all, the architectural space to be explored is
defined, keeping in view the parameters extracted during
application analysis and the input constraints. Architecture is
defined using some standard Architecture Definition Language
(ADL) as EXPRESSION [3] and LISA [4].

C. Instruction Set Generation

Instruction set is to be generated for that particular
application and for the architecture selected. This instruction
set is used during the code synthesis and hardware synthesis
steps.

D. Code Synthesis

Compiler generator or retargetable code generator is used to
synthesize code for the particular application or for a set of
application.

E. Hardware Synthesis

In this step the hardware is synthesized using the ASIP
architecture template and instruction set architecture starting
from a description in VHDL/VERILOG using standard tools.

III. DESIGN SPACE EXPLORATION

Architecture exploration starts with the application analysis.

We need to input the parameters of application analysis along
with the identified architecture design space to the process

block which is responsible for performance estimation. Then
we need to do the performance estimation for the inputted
architecture along with the search control and then the
architecture will be selected. Figure 2 explains the procedure
of architecture explorer.

Figure 2. Block Diagram of an Architecture Explorer

Performance estimation which drives the design space
exploration is done by simulator based approach or by
scheduler based approach.

IV. SIMULATOR BASED PERFORMANCE ESTIMATION

Figure 3. A typical simulator based performance estimation technique.

 In such approaches [Figure 3], first code is generated for

the target processor using retargetable compiler. Then this

code and processor description is supplied to a retargetable

simulator which simulates the code for target processor and

gives performance estimation.

 Kienhuis et al. [5] constructed a retargetable simulator for

an architecture template. For each architecture instance, a

specific simulator is derived in three steps. The architecture

instance is constructed, an execution model is added and the

executable architecture is instrumented with metric collectors

to obtain performance numbers. Object oriented principles

together with a high-level simulation mechanism are used to

ensure retargetability and efficient simulation speed.

V. SCHEDULER BASED PERFORMANCE

ESTIMATION

Such approaches take a very simple architecture model as
input. A suitable internal representation of the input application
is generated. Application is run on host machine to gather
profile information. A suitable processor configuration is
chosen by an explorer using a scheduler for performance

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 648-653

© 2010, IJARCS All Rights Reserved 650

estimates. An illustrative approach of this class suggested by
Gupta et al [6] and Ghazal et al [7] (Figure 4 and 5) is briefly
described here.

Figure 4. Overall flow of Retargetable Estimator

Figure 5. Flow of Estimation Scheme.

 Each processor architecture considered for evaluation is

described by the architecture model. Designer can chose from

a database of previously captured architecture or can enter his

own. Input application is described in high level language (C).

Prediction of optimal run-time behaviour is achieved through

profiling and a series of passes that search for generic

optimizations, and more importantly, for the application-

specific optimization features. The estimator provides the

designer with a total cycle count estimate, and a profile of the

code, annotated with the chosen optimizations and a ranking

of the dominant code segments.

VI. SIMULATOR V/S SCHEDULER BASED

PERFORMANCE ESTIMATION

When we look at both the approaches for performance
estimation, we find that simulator based performance
estimation technique is being used by various researchers right
from the beginning of the research work on ASIP design
starting from around 1990. This approach seems to be trivial
and have been used by researchers for such a long time. Many
architectural features have been explored so far using this
approach. The problems associated with simulator based
techniques are as follows.

 Simulator based techniques need retargetable compiler and

retargetable simulator for performance estimation. Generally it

is not feasible to get such compilers and simulators which can

retarget a large design space. Based on the retargetablility,

retargetable compilers can be classified as automatic-

retargetable or parameterizable, user retargetable and

developer retargetable depending on the effort involved in

retarget. Retargetable compilers can be divided mainly into

three categories. So basically the design space which can be

explored gets limited by capabilities of these compilers and

simulators. The other problem associated with such

approaches is large simulation times. Both these problems

make such techniques unsuitable for design space exploration,

especially for an early design space exploration where the

design space is huge.

 As time progressed, new architectural features added and the

volume of the design space started expanding drastically. In

2000 a couple of researchers raised this issue and proposed

scheduler based approaches as an alternative. Since its

inception was almost a decade later that simulator based

approach, a very few architectural features has been explored

in such approaches. These approaches are very fast compared

to simulator based approaches. But they may not be as

accurate as their counterpart.

VII. MULTI LAYER PERFORMANCE ESTIMATION

Our proposed multi level performance estimation technique

is shown in Figure 6. Initial design space is huge as architecture
contains a number of parameterizable architectural features and
each feature can have a number of possible values. It seems to
be unrealistic or infeasible to explore such a huge design space
using simulator based performance estimator. Some of the
reasons are already discussed when we have compared these
two techniques. Practically it would not be possible to have
code generators for each configuration of such design space.
There is a well known trade-off between retargetability and the
quality of the generated code. So even if retargetable attempts
to generate code for large designs, it can generate only sub
optimized code. Long simulation times also do not allow us to
use this approach at this level.

In contrast to this, scheduler based approaches use
retargetable estimators which are very fast. Since scheduler
based approach do not involve code generation and simulation
and is faster than simulator based techniques so it would be
better if such technique can be used at this level. These
approaches do not take a detail model of architecture as they
are not generating code for configuration under evaluation. Its
architecture model is very simple so it is very easily
retargetable which is very much significant at an early design
space exploration considering the volume of design space at
this level. It is correct that such technique may not generate
results as accurate as that of simulator based technique.
Considering this fact, rather than one particular processor and
memory configuration a set of possible configurations should
be suggested as outcome of this technique. This set of
configurations will constitute design space for layer 2. In our
opinion scheduler based approach is unavoidable at level. This
way both techniques seems to be complimentary to each other
rather that contrary to each other.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 648-653

© 2010, IJARCS All Rights Reserved 651

Layer 1

Layer 2

Figure 6. Proposed Multi Level Performance Estimator

Simulator based approach is used explore design space at
layer 2. At this layer only a few designs are there in the design
space. Simulator based approach uses a fine model of
architecture and is supposed to be more accurate compare to
scheduler based approach. Due to very small design space even
comparatively longer simulation times will not be a problem
and will meet out time to market constraint.

Suitable architecture evaluators are used at each level. They
take generated estimates and helps in deciding about that
configuration as well as it also helps in suggesting next
configuration for evaluation. It also helps in pruning the design
space. Retargetable simulator technique and scheduler based
performance estimation technique are presented here.

A. Proposed Retargetable Simulator Technique

 Proposed Retargetable Simulator technique is shown in
Figure 7. Processor specification and Scheduled and optimized
code are input to simulator. Processor Model, Interconnect
model and Memory model interact among themselves. The
entire model in conjunction simulates the instructions of the

programs and provides the Execution statistics of the input
program.

Figure 7. Methodology of our Retargetable Simulator

 Our simulator supports the interconnection of bus. All
processing elements and all memory modules are connected
through a common bus. Uniform shared memory access is
assumed, that is, access of any memory module from any
processor takes the same amount of time (ignoring delays due
to bus contention).
 The simplest interconnection strategy is to use a single bus
which is being shared by every other component for
communication. Though this strategy is easy to implement, as
the number of processor go up, the bus becomes the
bottleneck. All the components connected to this bus should
tune their interfaces to use the bus protocol. Apart from this,
designers have to implement some arbitration mechanism to
resolve the conflicts.
 There are several other interconnection choices which
enhance the communication bandwidth at higher cost. These
are: multiple buses, multistage interconnection network
(MINs) and crossbar switches. Out of these, crossbar
establishes one to one correspondence, but this is most
expensive.
 The analyzed interconnection network is quite general and
their performance is application dependent. However, in an

Huge early

design

space

(Processor

+ Memory)

Scheduler based Performance

Estimator

Architecture evaluator 1

Simulator based Performance

Estimator

Architecture evaluator 2

Suggested Processor +

Memory Configuration

A few selected designs

Processor

Specificatio

n

Scheduled

and

Optimized

code

Processor

Model

Simulating

Instructions of

program

Execution

Statistics

Interconnect

Model

Memory

Model

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 648-653

© 2010, IJARCS All Rights Reserved 652

application specific multiprocessor architecture, one needs
analyze the possible communication traffic of the application.
This analysis will lead to the decision if one of the above
interconnection is employed or a custom interconnection based
on traffic is explored.

B. Proposed Retargetable Scheduler Based Performance

Estimation Technique

 We use the concept of Register Reuse Chains (RRCs),

which makes it possible to do register allocation for

unscheduled code blocks. While doing register allocation, an

attempt is made to minimize the schedule overhead which will

occur due to limited registers. A priority based resource

constrained list scheduler is used to get local performance

estimates of each block. Global analysis is performed at the

function level to find additional schedule overhead required to

handle global needs which are ignored when the local

estimates are generated. This overhead is added to the local

estimates to produce the total estimates.

 Our performance estimation methodology is shown in

figure 8. Input application (written in C) is profiled using

gprof to find execution count of each basic block as well as

functions. These execution counts are used to multiply with

the estimated execution times. Intermediate representation is

generated using SUIF [8]. Control and dependency analysis is

done using this intermediate representation. Control flow

graph is generated at the function level whereas the data flow

graph is generated at the basic block level.

Figure 8. Scheduler based Performance Estimation Technique

 For each basic block B, local register allocation is

performed taking the data flow graph and number of registers

to be used for local register allocation (say k) as input using a

modified register reuse chains approach. Data flow graph may

be modified because of additional dependencies as well as

spills inserted during register allocation. This modified data

flow graph is taken as input by a priority based resource

constrained list scheduler, which produces schedule estimates.

This estimate is multiplied by the execution frequency of

block B to compute local estimate (LEB,k) for this block.

 Local estimates are produced for all the basic blocks

contained in a function, for the complete range of register file

sizes to be explored. Schedule overheads needed to handle

global needs with limited number of registers are computed

using life time analysis of variables. For each block, we need

information on variables used, defined, consumed, live at entry

and exit points of this block. This additional global needs

overhead is also generated for the complete range of number

of registers for each basic block. Then, we decide on the

optimal distribution of the registers available (say n) into

registers to handle local register allocation (k) and registers to

handle global needs (n-k), such that overall schedule estimate

for that block is minimized.

Overall estimate for a block B can be expressed as

OEB = mink(LEB,k +GEB,n-k) (1)

where OEB is the total schedule estimate for basic block B, and

GEB,n-k is the overhead to handle global needs with n-k

registers. OEB values for all blocks are summed up to produce

estimates at the function level. Estimates for all functions are

added together to produce overall estimate for the application

i.e. etR. So etR can be expressed as

etR = (OEB) (2)

f or each f unction f or each basic block B

VIII. CONCLUSION

Embedded Systems are the need of the hour. They are being
used everywhere. Combination of a processor (typically a GPP)
and some ASICs are used for embedded system. This
implementation assumes that GPP is fine for them. But this
may not true. This problem is resolved with the invention of
ASIP which is basically a customized processor. Important
steps involved in ASIP synthesis include application analysis,
design space exploration, instruction set generation, code
synthesis and hardware synthesis.

Design space exploration is the most crucial step in ASIP
synthesis. This exploration is supported by estimators. We have
considered performance estimation. We found that two
different approaches exist in literature for performance
estimation which seems to be contrary in nature. We propose a
novel approach and suggested a multi layer performance
estimations. According to our approach, scheduler based
approach should be used for an early design space exploration
considering the volume of design space at this level and the
design space which can be handled by scheduler based
approach, its easy retargetability characteristics, its faster
speed. Since scheduler based approach uses a very simple
processor and memory configuration its estimates may not be
very accurate. So a set of possible designs suggested by
scheduler based approach at level 1 are further estimated in
detail using simulator based approach at layer 2.

IX. REFERENCES

[1] M.K. Jain, M. Balakrishnan, and A. Kumar, “ASIP Design
Methodologies: Survey and Issues”, In Proceedings of the IEEE

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 648-653

© 2010, IJARCS All Rights Reserved 653

/ ACM International Conference on VLSI Design. (VLSI 2001),
pages 76–81, January 2001.

[2] Gloria A. D.; Faraboschi, P., “An evaluation system for
application specific architectures.”, In Proc. Micro-23, 27-29
Nov. 1990, pp. 80-89.

[3] A. Halambi, P. Grun, A. Khare, V. Ganesh, N. Dutt, A. Nicolau,
EXPRESSION: A Language for Architecture Exploration
through Compiler/Simulator Retargetability, In Proceedings of
the Design Automation and Test in Europe (DATE), pages 485–
490, March 1999.

[4] S. Pees, V. Zivojnovic, H. Mey, LISA- Machine Description
Language for Cycle Accurate Models of Programmable DSP
Architectures, In Proceedings of the Design Automation
Conference (DAC), pages 933–938, June 1999.

[5] B. Kienhuis, E. Deprettere, K. Vissers, and P. van derWolf. The
Construction of a Retargetable Simulator for an Architecture
Template. In Proceedings of the Sixth International Workshop
on Hardware/Software Co-design 1998 (CODES/CASHE ’98),
pages 125–129, March 1998.

[6] T. V. K. Gupta, P. Sharma, M. Balakrishnan, S. Malik,,
Processor evaluation in an embedded systems design
environment, In Proc. VLSI Design 2000, pages 98-103, January
2000.

[7] N. Ghazal, R. Newton, and J. Rabaey. Retargetable Estimation
Scheme for DSP Architecture Selection. In Proceedings of the
Asia and South Pacific Design Automation Conference, pages
485–489, January 2000.

[8] SUIF Homepage. http://suif.stanford.edu/

M.K. Jain received the M.Sc. degree from M.L. Sukhadia
University, Udaipur, India, in 1989. He received M.Tech.
Degree in Computer Applications and PhD in Computer
Science & Engineering from IIT Delhi, India in 1993 and 2004
respectively. He is Assistant Professor in Computer Science at
M.L. Sukhadia University Udaipur, India since 1993. His
current research interests include application- specific-
instruction- set processor design, wireless sensor networks,
semantic web and embedded systems.

