
Volume 2, No. 4, July-August 2011 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved     635  

ISSN No. 0976-5697 

Protein Profile Analysis: an exploration with HMM
 

Er. Neeshu Sharma* 
CSE,  

RIMT MAEC 
Mandi Gobindgarh, India 
neeshukhn@yahoo.com 

 
Er. Dinesh Kumar 

CSE,  
DAVIET 

Jallandhar, India 
Er.dineshk@gmail.com

 
Er. Reet Kamal Kaur 

CSE,  
RIMT MAEC 

Mandi Gobindgarh, India 
reetkamal1901@yahoo.co.in 

 
Abstract---- HMM has found its application in almost every field. Applying Hmm to biological sequences has its own advantages. HMM’s being 
more systematic and specific, yield a result better than consensus techniques. Profile HMMs use position specific scoring for the matching & 
substitution of a residue and for the opening or extension of a gap. HMMs apply a statistical method to estimate the true frequency of a residue at a 
given position in the alignment from its observed frequency while standard profiles use the observed frequency itself to assign the score for that 
residue. This means that a profile HMM derived from only 10 to 20 aligned sequences can be of equivalent quality to a standard profile created from 
40 to 50 aligned sequences. 
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I. INTRODUCTION 

Proteins are complex organic compounds that consist of 
amino acids joined by peptide bonds. Proteins are essential to 
the structure and function of all living cells and viruses. Many 
proteins function as enzymes or form subunits of enzymes. 
Some proteins play structural or mechanical roles. Some 
proteins function in immune response and the storage and 
transport of various ligands. Proteins serve as nutrients as 
well; they provide the organism with the amino acids that are 
not synthesized by that organism. Proteins are amongst the 
most actively studied molecules in biochemistry and they were 
discovered by the Swedish scientist, Jons Jakob Berzelius in 
1838. 

An amino acid is any molecule that contains both an 
amino group and a carboxylic acid group. An amino acid 
residue is the residuals of an amino acid after it forms a 
peptide bond and loses a water molecule. Since we are 
interested in amino acids that form proteins, it is safe to use 
the terms residue and amino acid interchangeably. There are 
20 different amino acids in nature that form proteins.  

 
 
 

 
 

Figure 1: Structure of Amino Acid 

II. PROFILE   ANALYSIS 

Profile Analysis: Profile analysis is a sequence 
comparison method for finding and aligning distantly related 
sequences. The comparison allows a new sequence to be 
aligned optimally to a family of similar sequences. The 
comparison uses a scoring matrix called a PAM matrix and an 
existing optimal alignment of two or more similar protein 
sequences. The group or family similar sequences are first 
aligned together to create a multiple sequence alignment.[16] 
The information in the multiple sequence alignment is then 
represented quantitatively as a table of position-
specificsymbol comparison values and gap penalties. This 
table is called a profile.  

The starting point for the creation of a profile is a 
sequence or group of aligned sequences. This probe is 
generally a group of functionally related proteins that have 
been aligned. A profile, however, can be created from a single 
sequence. The similarity of new sequences to an existing 
profile can be tested by comparing each new sequence to the 
profile with the same algorithm used to make optimal 
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alignments. To understand how this is done we must first 
recall what alignment algorithms do. Alignment algorithms 
find alignments between two sequences that maximize the 
number of matches and minimize the number of gaps. Gaps 
are given penalties in the same units as the values in the 
scoring matrix. The best alignment is then simply defined as 
the alignment for which the sum of the scoring matrix values 
minus the gap penalties is maximal. Each row in the profile 
corresponds to a position in the original multiple sequence 
alignment. Each possible sequence symbol has a value (a 
column) in each row of the profile. The comparison of a 
sequence symbol to any row of the profile defines a specific 
value or "profile comparison value." The best alignments of a 
sequence to a profile are found by aligning the symbols of the 
sequence to the profile in such a way that the sum of the 
profile comparison values minus the gap penalties is maximal. 
The profile also contains gap coefficients that are specific for 
each position so the penalty for inserting a gap in one part of 
the alignment might be more or less than in another part. The 
position-specific gap coefficients penalize gaps in conserved 
regions more heavily than gaps in more variable regions.[16] 
The profile contains a consensus sequence for the display of 
alignments of other sequences to the profile. The consensus 
sequence character corresponds to the highest value in the 
row. Since the table on which the profile is based is usually 
the Dayhoff   evolutionary distance table, the consensus 
residue is the residue that has the smallest evolutionary 
distance from all of the residues in that position of the 
alignment rather than simply the most frequent residue at that 
position. In the original approach of Dayhoff the actual 
estimation is restricted to only very closely related pairs of 
sequences. However, once a Markov model is fitted to this 
data, replacement frequencies characteristic for distantly 
related sequences can be extrapolated from the model. 

For example the table value for a profile that is 25 amino 
acids will have 25 rows of 20 scores, each score in row for 
matching one of the amino acids in length is to be searched 
each 25 amino acids long stretch of sequence will be 
examined ,1-25,2-26 ,………..76-100.The first 25 amino acid  
long stretch will be evaluated using the profile scores for the 
amino acids in that sequence then the next 25 long stretch, and 
so on .The highest scoring section will be the most similar to 
the profile. 

The profile method differs in two major respects from 
methods of sequence comparison in common use:  
a. Any number of known sequences can be used to construct 

the profile, allowing more information to be used in the 
testing of the target than is possible with pairwise 
alignment methods. 

b.  The profile includes the penalties for insertion or deletion 
at each position, which allow one to include the probe 
secondary structure in the testing scheme.  

A. Role of Profile Analysis: 
Typical scenarios of a profiling approach become 

relevant, particularly, in the cases of the first two groups, 
where researchers commonly wish to combine information 
derived from several sources about a single query or target 
sequence. For example, users might use the sequence 

alignment and search tool BLAST to identify homologs of 
their gene of interest in other species, and then use these 
results to locate a solved protein structure for one of the 
homologs. Similarly, they might also want to know the likely 
secondary structure of the mRNA encoding the gene of 
interest, or whether a company sells a DNA Construct 
containing the gene. Sequence profiling tools serve to 
automate and integrate the process of seeking such disparate 
information by rendering the process of searching several 
different external databases transparent to the user. 

Advantages of sequence profiling tools include the ability 
to use multiple of these specialized tools in a single query and 
present the output with a common interface, the ability to 
direct the output of one set of tools or database searches into 
the input of another, and the capacity to disseminate hosting 
and compilation obligations to a network of research groups 
and institutions rather than a single centralized repository. 

B. Techniques for Profile Analysis: 

a. Protein Microarrays:  
Protein microarrays consist of antibodies, proteins, 

protein fragments, peptides or carbohydrate elements that are 
immobilized in a grid-like pattern on a glass surface. The 
arrayed molecules are then used to screen and assess protein 
interaction patterns with samples containing distinct 
proteins.[17] 
    
 
  
 
 
 
 
 
 
 
 

Figure 2: Protein Microarrays 
 

These microarrays are used to identify protein-protein 
interactions, to identify the substrates of proteins or to identify 
the targets of biologically active small molecules. And with 
this growth comes a need for bioinformatics tools to analyze 
the microarrays. 

b. Protein Amino Acid Sequences:  
The analysis of amino acid sequences, or primary 

structure, of proteins provides the foundation for many other 
types of protein studies. The primary structure ultimately 
determines how proteins fold into functional 3D structures. 
Primary structure is used in multiple sequence alignment 
studies to determine the evolutionary relationships between 
proteins, and to determine relationships between structure and 
function in related proteins. 
 
 

 
 
 

Figure 3: Protein Amino Acid Sequences 

http://en.wikipedia.org/wiki/Secondary_structure�
http://en.wikipedia.org/wiki/MRNA�
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c. Protein-Ligand Docking:  
In drug discovery and development, the manner in which 

small-molecule compounds bind or dock with proteins is of 
the utmost importance. Proteins are often the main targets for 
new drugs. And many drug compounds are small molecules 
that are designed to bind preferentially to specific proteins. 
Because of this need to design small molecules for protein 
docking, many bioinformatics tools exist for the analysis of 
protein-ligand interactions. These tools often fall in the 
category of computational chemistry. At the atomic scales in 
which compounds dock with proteins, the interactions are 
biochemical and biophysical in nature [17] 

d. Protein Folds:  
Although there is no universal agreement on how to 

define protein folds, one simple characterization of folds is 
“an arrangement of secondary structures into a unique tertiary 
structure.” That is, protein amino acid sequences arrange 
themselves in recognizable, identifiable, 3D structures. Some 
of these structures are so common in many different proteins 
that they are given special names, i.e. Rossmann folds, TIM 
barrels, etc.[17] 

III. HIDDEN MARKOV MODEL (HMM) 

Hidden Markov models are sophisticated and flexible 
statistical tool for the study of protein models. Using HMMs 
to analyze proteins is part of a new scientific field called 
bioinformatics, based on the relationship between computer 
science, statistics and molecular biology. Hidden Markov 
models (HMMs) offer a more systematic approach to 
estimating model parameters. The HMM is a dynamic kind of 
statistical profile. Like an ordinary profile, it is built by 
analyzing the distribution of amino acids in a training set of 
related proteins. However, an HMM has a more complex 
topology than a profile. It can be visualized as a finite state 
machine. Finite state machines typically move through a series 
of states and produce some kind of output either when the 
machine has reached a particular state or when it is moving 
from state to state. A markov model is a statistical model that 
stepwise goes through some kind of change. Markov model is 
characterized by the property that the change is dependent 
only on the current state. HMMs are hidden because only the 
symbols emitted by system are observable, not the underlying 
walks between states[15]. HMMs are the Legos of 
computational sequence analysis.A Hidden Markov Model M 
is defined by  
a. a set of states X  
b. a set A of transition probabilities between the states, an 

|X| x |X| matrix.  aij ≡ P(Xj | Xi)  The probability of going 
from state i to state j. 

c. States of X are “hidden” states. 
d. an alphabet  Σ of symbols emitted in states of X, a set of 

emission probabilities E, an X x Σ matrix 
e. ei(b) ≡ P(b | Xi).  The probability that b is emitted in state 

i. (Emissions are sometimes called observations.)[1] 
It is important to note that in most cases of HMM use in 

bioinformatics a fictitious inversion occurs between causes 
and effects when dealing with emissions. For example, one 

can synthesize a (known) polymer sequence that can have 
different (unknown) features along the sequence. In an HMM 
one must choose as emissions the monomers of the sequence, 
because they are the only known data, and as internal states 
the features to be estimated. In this way, one hypothesizes that 
the sequence is the effect and the features are the cause, while 
obviously the reverse is true. An excellent case is provided by 
the polypeptides, for which it is just the amino acid sequence 
that causes the secondary structures, while in an HMM the 
amino acids are assumed as emissions and the secondary 
structures are assumed as internal states. States “emit” certain 
symbols according to these probabilities.  

A. Advantages of Hidden Markov Model: 
Statistical Grounding 

a. Statisticians are comfortable with the theory behind 
hidden Markov models 

b. Freedom to manipulate the training and verification 
processes  

c. Mathematical / theoretical analysis of the results and 
processes 

d. HMMs are still very powerful modeling tools – far more 
powerful than many statistical methods Modularity 

e. HMMs can be combined into larger HMMs 
Transparency of the Model 

f. Assuming an architecture with a good design 
g. People can read the model and make sense of it 
h. The model itself can help increase understanding 

Incorporation of Prior Knowledge 
i. Incorporate prior knowledge into the architecture 
j. Initialize the model close to something believed to be 

correct 
Use prior knowledge to constrain training process 

Example of HMM [1]. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Hidden Markov Model 
 

Probabilistic parameters of a hidden Markov model given 
in the above example. 
x — states 
y — possible observations 
a — state transition probabilities 
b — output probabilities 

B. Major Applications of HMM in Bioinformatics 
The HMMs are in general well suited for natural language 

processing, and have been initially employed in speech-
recognition and later in optical character recognition, and 
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melody classification. In bioinformatics, many algorithms 
based on HMMs have been applied to biological sequence 
analysis, as gene finding and protein family characterization.  
A detailed description of all applications would be, in our 
opinion, outside the scope and the size of a normal survey 
paper. Nevertheless, in order to give a feeling of how the 
models described in the first part are implemented in real-life 
bioinformatics problems, we shall describe in more detail, in 
what follows, a single application, i.e. the use, for multiple 
sequence alignment, of the profile HMM, which is a powerful, 
simple, and very popular algorithm, especially suited to this 
purpose.[13] 

C. Profile HMM 
Profile HMMs use position specific scoring for the 

matching & substitution of a residue and for the opening or 
extension of a gap. Profile hidden Markov models (HMMs) 
have several advantages over standard profiles. Profile HMMs 
have a formal probabilistic basis and have a consistent theory 
behind gap and insertion scores, in contrast to standard profile 
methods which use heuristic methods. HMMs apply a 
statistical method to estimate the true frequency of a residue at 
a given position in the alignment from its observed frequency 
while standard profiles use the observed frequency itself to 
assign the score for that residue. This means that a profile 
HMM derived from only 10 to 20 aligned sequences can be of 
equivalent quality to a standard profile created from 40 to 50 
aligned sequences. [14] In general, producing good profile 
HMMs requires less skill and manual intervention than 
producing good standard profiles. A profile HMM has several 
types of probabilities associated with it. One type is the 
transition probability -- the probability of transitioning from 
one state to another. In a simple ungapped model, the 
probability of a transition from one match state to the next 
match state is 1.0 and the path through the model is strictly 
linear, moving from the match state of node n to the match 
state of node n+1. 

There are also emissions probabilities associated with 
each match state, based on the probability of a given residue 
existing at that position in the alignment. For example, for a 
fairly well conserved column in a protein alignment, the 
emissions probability for the most common amino acid may 
be 0.81, while for each of the other 19 amino acids it may be 
0.01. If you follow a path through the model to generate a 
sequence consistent with the model, the probability of any 
sequence that is generated depends on the transition and 
emissions probabilities at each node. In order to model real 
sequences, we also need to consider the possibility that gaps 
might occur when a model is aligned to a sequence. Two types 
of gaps may arise. The first type occurs when the sequence 
contains a region that is not present in the model (an insertion 
in the sequence). The second type occurs when there is a 
region in the model that is not present in the sequence (a 
deletion in the sequence). To handle these cases, each node in 
the profile HMM must now have three states: the match state, 
an insert state, and a delete state. The model also needs more 
types of transition probabilities: match>match, match->insert, 
match->delete, insert- >match, etc.[1].  

Aligning a sequence to a profile HMM is done by a 
dynamic programming algorithm that finds the most probable 
path that the sequence may take through the model, using the 
transition and emissions probabilities to score each possible 
path.  

D. Purpose of Profile HMM 
Profile HMMs are statistical tools that can model the 

commonalities of the amino acid sequences for a family of 
proteins. Considered to be more expressive than a standard 
consensus sequence or a regular expression, profile HMMs 
allow position dependent insertion and deletion penalties, as 
well as the option to use a separate distribution for inserted 
portions of the amino acid sequence. Once a model is trained 
on a number of amino acid sequences from a given family or 
group, it is most commonly used for three purposes: 
a. By aligning sequences to the model, one can construct 

multiple alignments. 
b. The model itself can offer insight into the characteristics 

of the family when one examines the structure and 
probabilities of the trained HMM. 

c. The model can be used to score how well a new protein 
sequence fits the family motif. For example, one could 
train a model on a number of proteins in a family, and 
then match sequences in a database to that model in order 
to try to find other family members. This technique is also 
used to infer protein structure and function. 

IV. PRESENT WORK 

Profile analysis has long been a useful tool in finding and 
aligning distantly related sequences and in identifying known 
sequence domains in new sequences. Basically, a profile is a 
description of the consensus of a multiple sequence alignment. 
It uses a position-specific scoring system to capture 
information about the degree of conservation at various 
positions in the multiple alignments. This makes it a much 
more sensitive and specific method for database searching 
than pair wise methods. Following are the steps followed in 
this research work: 

A. Align the sequences in the family:  
Initially, we will assume that there are no gaps in the 

alignment. We look at the alignment of N sequences of l 
positions as follows: 

   
 Table 1: Alignment of sequences 

       
Sequence Position 

1 2 3 4 … l 
1 a11 a12 a13 … … a1l 

2 a21 a122 a23 … … a2l 
3 a31      
-       

-       
N aN1 aN2 aN3 … … aNl 

 
where aij denotes the amino acid from the ith sequence at 

the jth position. 
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B. Use the alignment to create a profile:  
We build the profile as follows. We compute: 
fij = % of column j that is amino acid i 
bi = % of  background which is amino acid i 
The background" can be computed, for example, from a 

large sequence database, or from a genome, or from some 
particular protein family. 

Now compute the 20 x l array Pij , where 
Pij = fij/bi 

Intuitively, Pij is the “propensity" for amino acid i in the j 
position in the alignment. 
This gives us the following table: 

 
   Table 2: Alignment to compute the Profile 

 
Sequence Position 

1 2 3 4 5 … L 
L PL1 PL2 PL3 … …  PLl 

V PV1 PV2 PV3 … …  PVl 
F PF1       

.        

.        

.        

 
And we use this table to compute: 

Scoreij = log(Pij) 

C. Test new sequences against the profile:   
To use the profile to score a new sequence, we do the 

following: 
a) Slide a window of width l over the new sequence. 
b) The score of the window equals the sum of the scores of 

each position in the window. 
c) If the score of the window is higher than the cut off, 

which is determined empirically, we can conclude that 
the window is a member of the family. In addition, the 
higher the score, the more confident the prediction.  

V. CONCLUSION AND   FUTURE WORK 

Currently, one very promising approach for protein family 
related analysis of amino acid sequences is the application of 
so-called Profile Hidden Markov Models (Profile HMMs) as 
probabilistic target family models. Given a training set of 
protein data, discrete HMMs are estimated. These models are 
then evaluated for unknown query sequences which are 
aligned to the explicit protein family models. Such explicit 
target family models are favorable for sequence analysis since 
family specific data is incorporated into the analysis. One of 
the main purposes of developing profile HMMs is to use them 
to detect potential membership in a family. We can use either 
the Viterbi algorithm to get the most probable alignment or the 
forward algorithm to calculate the full probability of the 
sequence summed over all possible paths. 
The research can be extended to: 
A. Real user interface. 

B. Provision to include other sequences (i.e. with different 
accession numbers and their supported files) 
automatically. 

C. Provision to access the data from a database. 
D. Provision for choice of alignment technique 
E. Provision to incorporate various input formats 
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