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Abstract - Physiological and neural signal classification has many important applications in healthcare, including medical diagnosis and 

monitoring. For example, electrocardiogram (ECG) classification can be used to detect arrhythmias and other cardiac abnormalities; while EEG 

classification can be used to diagnose neurological disorders such as epilepsy and sleep apnea. This paper presents an LSTM model for the decoding 

of physiological and neural signals.  In this paper, an electroencephalography brain signal data which was gotten from Kaggle.com was used. The 

dataset was pre-processed so as to remove noise from the data. The pre-processed data was used in training the LSTM model.  The LSTM model 

was trained on fourteen (14) steps. The result of the LSTM model showed an accuracy of 85% at the first step and a validation (testing) accuracy 

of 90%. For the fourteenth step, the model achieved an accuracy result of 98% for training and 94% for validation (testing). We also evaluated the 

performance of the model using a classification report and confusion matrix. The result of the classification report showed an accuracy of 95%, 

which is implication that the performance of the model on the test data is efficient.  The confusion matrix was used to specify how well the 

proposed model classified the electroencephalography signal. The result of the confusion matrix showed that the model predicted the result 

correctly to be neutral 151 out of 153, positive to be 127 out of 142, and negative to be 128 out of 132. The result showed that the level of false 

positive and negative values is minimal (0.02% and 0.05%).  
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1.0 INTRODUCTION 

Physiological and neural signal classification is an important 

task in many areas of biomedical engineering and 

neuroscience. It involves processing and analyzing various 

types of signals generated by the human body, such as 

electroencephalograms (EEGs), electrocardiograms (ECGs), 

and electromyograms (EMGs), to extract meaningful 

information and identify patterns or anomalies. There are 

many approaches to signal classification, including statistical 

methods, machine learning, and deep learning. There is a 

wide variety of uses for these methods., including brain-

computer interfaces, medical diagnosis, and rehabilitation. 

One of the key challenges in physiological and neural signal 

classification is feature extraction, or identifying the most 

relevant aspects of the signal that can be used to differentiate 

between different classes or states. This can involve a 

combination of time-domain and frequency-domain analysis, 

as well as advanced signal processing techniques such as 

wavelet transforms and principal component analysis (PCA). 

Once features have been extracted, various classification 

algorithms can be applied, such as support vector machines 

(SVMs), k-nearest neighbor (KNN) classifiers, and artificial 

neural networks (ANNs) [1]. 

In recent years, deep learning techniques have become 

increasingly popular for physiological and neural signal 

classification, because they can do it without human 

intervention extract high-level features from raw data. 

Convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs) have been used for tasks such as EEG-

based emotion recognition, sleep stage classification, and 

motor imagery classification for brain-computer interfaces. 

These methods have shown promising results and are likely 

to become even more important in the future [2]. 

Another important aspect of physiological and neural signal 

classification is data preprocessing and cleaning. Since 

signals can be affected by various sources of noise and 

artifacts, it is important to remove these before classification. 

This can involve techniques such as filtering, artifact 

removal, and signal normalization. In addition, data 

augmentation can be used to increase the size of the training 

dataset and improve the robustness of the classifier [3]. 

Physiological and neural signal classification has many 

important applications in healthcare, including medical 

diagnosis and monitoring. For example, ECG classification 

can be used to detect arrhythmias and other cardiac 

abnormalities, while EEG classification can be used to 

diagnose neurological disorders such as epilepsy and sleep 

apnea. In addition, signal classification can be used in 

rehabilitation to monitor patients' progress and adjust 

treatment plans accordingly. In order to evaluate the 

performance of physiological and neural signal classifiers, 

various metrics can be used, such as: accuracy, sensitivity, 

and specificity. These metrics can be calculated using cross-

validation techniques to ensure that the classifier generalizes 
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well to unseen data. In addition, receiver operating 

characteristic (ROC) curves can be used to visualize the 

trade-off between true positive rate and false positive rate, 

and area under the curve (AUC) can be used as a summary 

metric [4]. 

Physiological and neural signal classification is a challenging 

but important task with many applications in biomedical 

engineering and neuroscience. A wide range of techniques are 

available, including statistical methods, machine learning, 

and deep learning. These methods can be used for tasks such 

as medical diagnosis, rehabilitation, and brain-computer 

interfaces. However, careful preprocessing and evaluation are 

essential to ensure that the classifier performs well on real-

world data [5]. 

2. RELATED WORKS 

[6] used convolutional neural networks (CNNs) to classify 

electroencephalogram (EEG) signals for a motor imagery 

brain-computer interface (BCI).The proposed CNN-based 

approach outperformed other machine learning techniques 

and achieved high classification accuracy for motor-imagery 

BCI tasks. The study only considered a specific type of BCI 

task, and the performance may vary for other tasks or signal 

modalities. 

[7] proposed a support vector machine (SVM) based 

approach to classify sleep stages using single-channel EEG 

signals. The proposed approach achieved high classification 

accuracy for different sleep stages and outperformed other 

machine learning techniques. The study used a limited 

dataset, and the performance may vary for larger and diverse 

datasets. 

[8] used a hybrid Brain Computer Interface (BCI) system that 

combined features from EEG signals and electromyography 

(EMG) signals to classify motor imagery tasks. The proposed 

approach achieved high classification accuracy for motor 

imagery tasks and showed improved performance compared 

to using EEG signals alone. The study only considered a 

specific type of BCI task, and the performance may vary for 

other tasks or signal modalities. 

[9] used machine learning techniques, including SVM and k-

nearest neighbors (k-NN), to classify cognitive tasks based on 

functional near-infrared spectroscopy (fNIRS) signals. The 

proposed approach achieved high classification accuracy for 

different cognitive tasks, and the SVM-based approach 

outperformed other techniques. The study only considered a 

limited number of cognitive tasks, and the performance may 

vary for other tasks or signal modalities. 

[10] proposed a deep learning approach that combined CNNs 

and principal component analysis (PCA) to classify EEG 

signals. The proposed approach achieved high classification 

accuracy for different EEG tasks and outperformed other 

machine learning techniques. The study used a limited 

dataset, and the performance may vary for larger and diverse 

datasets. 

Decoding magnetoencephalography (MEG) signals with a 

deep convolutional neural network was proposed in [11]. 

(CNN). Using a large dataset of MEG recordings from eight 

participants performing different hand movements, we were 

able to achieve high decoding accuracies (above 80%) for all 

participants. It was not determined whether the proposed 

method would be applicable to other types of actions or 

people, and the sample size was inadequate. 

The use of support vector machines for decoding EEG signals 

in order to recognize hand gestures was described in [12]. The 

authors found that 90% or higher decoding accuracy could be 

achieved using EEG recordings of 12 participants while they 

made different hand gestures. There wasn't enough data to 

know if the proposed method would work with different 

people or different kinds of gestures, and the sample size was 

too small. 

[13] proposed using deep learning to decode EMG signals for 

hand gesture recognition. Using a dataset of EMG recordings 

from nine participants performing different hand gestures, 

high decoding accuracies (above 90 percent) were obtained 

for all participants. There wasn't enough data to know if the 

proposed method would work with different people or 

different kinds of gestures, and the sample size was too small. 

Decoding listener attention to natural sounds from EEG data 

is described as a machine-learning technique in [14]. EEG 

recordings of 20 participants listening to natural sounds were 

used to determine that all of them achieved decoding 

accuracies of 80% or higher. It is unclear how well the 

proposed method would work with other noises or people 

because of the limited sample size of the research. 

The authors of [15] used a variety of machine learning 

techniques to categorize EEG signals for use in a BCI system. 

Using a support vector machine (SVM) with a radial basis 

function (RBF) kernel, we were able to achieve a 92.9 percent 

accuracy. 

Classifying sleep apnea according to physiological signals 

was investigated by researchers using neural networks and 

random forest techniques in [16]. Researchers found that a 

neural network with two hidden layers improved accuracy 

over the random forest algorithm by 6.37 percentage points. 

Different machine learning approaches were compared in 

[17] for classifying myoelectric signals used to control 

prosthetic hands. A k-nearest neighbor (KNN) algorithm with 

a dynamic time warping (DTW) distance measure produced 

the best results (97.67 percent). 
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3. METHODOLOGY 

Physiological Signal Data Signal processing Feature Extraction Model Training

Model EvaluatonDecoding/Classification

 

Figure 1: Architectural Design 

EEG Brain Signal Data: Three minutes of data were 

collected from a male and female subject in each of the three 

states (happy, neutral, and unhappy). We recorded the EEG 

using dry electrodes placed at TP9, AF7, AF8, and TP10 with 

a Muse EEG headband. For six minutes of emotionally 

neutral data, the following stimuli were used: 

1. The Bad News About Marley and Me (Twentieth 

Century Fox) A Tragic Conclusion: A Death 

Occurs (Walt Disney Pictures) My girlfriend's 

initial death scene autopsy results were negative 

(Imagine Entertainment) 

2. An Emotional Funeral Scene in "La La Land" 

(Summit Entertainment) 

3. Prologue as Performance 

4. It's healthy to take things slowly (BioQuest 

Studios) 

5. The slow motion of nature 

6. Videos of Happy and Hilarious Dogs 

(MashupZone) 

7. Dogs in Hilarious Videos 

 Signal Pre-processing: Electroencephalography 

(EEG) brain data analysis relies heavily on signal 

pre-processing, which entails cleaning up the raw 

data by removing unwanted noise and artifacts. In 

this case, we normalized and preprocessed the 

dataset using the StandardScaler method. Where x is 

the original value of the feature, the Standard Scaler 

formula reads: x scaled = (x - mean) / standard 

deviation. 

 This feature's mean value in the training set is 

denoted by mean. 

 The feature's standard deviation in the training set is 

represented by standard deviation. 

 The result of applying Standard Scaler to x is 

denoted by x scaled. 

Feature Extraction: To determine which aspects of the 

dataset were most crucial, Principal Component Analysis 

(PCA) was employed. In this case, we'll assume that X is a 

matrix with n rows and p columns, where each row is an 

observation and each column is a variable. The following 

procedures make up PCA: 

Sort the information by removing the mean: 

Z = X - mu 
2. where the averages of the variables are stored in a p-

dimensional vector denoted by mu. 

3. Determine Z's covariance matrix by these steps: 

C = (1/n) * Z^T * Z 

where "T" represents a matrix transpose. 

3. The eigenvectors and eigenvalues of C must be 

calculated. 

V, lambda = eig(C) 

lambda is a p-dimensional vector containing the 

eigenvalues, and V is a p-by-p matrix containing the 

eigenvectors (loadings). 

4. To create a projection matrix, take the top k 
eigenvectors (corresponding to the top k 

eigenvalues).: 

P = [v1, v2, ..., vk] 

5. the ith eigenvector is denoted by vi (loading). 

6. Using the chosen eigenvectors as projection axes, 

map the centered data onto the k-dimensional space. 

Y = Z * P 

where the principal components are stored in a 

matrix of size n by k called Y. 

To perform PCA on dataset X and derive the k 

principal components shown in matrix Y, the above 
equation represents the mathematical formula. 

 

Model Training: Here, we used both CNN and LSTM in 

building our hybrid model. The CNN model was used for 

extracting the most important features and LSTM  layer was 

used for building a model for decoding/classifying 

physiological and neural data. The mathematical expression 

can be seen as follows: 

1. Convolutional layer: 

 Input: x 
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 Convolution operation: y = W * x + b, 

where W represents the weights, b 

represents the biases, and * denotes the 

convolution operation. 

 Activation function: a = f(y), where f is a 

nonlinear activation function such as ReLU 

or sigmoid. 

2. Pooling layer: 

 Input: x 

 Pooling operation: y = Pool(x), where Pool 

represents the pooling operation, such as 

max pooling or average pooling. 

3. LSTM layer: 

 Input: x 

 LSTM equations: 

 Input gate: i(t) = sigmoid(W_i * 

x(t) + U_i * h(t-1) + b_i) 

 Forget gate: f(t) = sigmoid(W_f * 

x(t) + U_f * h(t-1) + b_f) 

 Output gate: o(t) = sigmoid(W_o 

* x(t) + U_o * h(t-1) + b_o) 

 Cell state: c(t) = f(t) * c(t-1) + i(t) 

* tanh(W_c * x(t) + U_c * h(t-1) 

+ b_c) 

 Hidden state: h(t) = o(t) * 

tanh(c(t)), where x(t) represents 

the input at time step t, h(t) 

represents the hidden state at time 

step t, and * denotes the matrix 

multiplication. 

4. Loss function: 

 Define the loss function based on the task, 

such as mean squared error (MSE) for 

regression or categorical cross-entropy for 

classification. 

5. Optimization: 

 Define the optimizer, such as stochastic 

gradient descent (SGD), Adam, or 

RMSprop, and specify the learning rate. 

 

Model Evaluation: The model performance was evaluated 

using classification report and confusion matrix. This 

factored into how well the model worked overall. 

4. RESULTS 

There are two parts to the experimental findings. The first 

stage involves decoding an EEG signal, while the second 

stage involves exploratory data analysis of stock market 

prices. 

4.1. Exploratory Data Analysis 

We decided to perform exploratory data analysis on the 

dataset to get a better feel for it. The analysis performed here 

allowed us to visualize the dataset in a number of ways, 

including histograms and plots of positive and negative 

signals. Figure 2 depicts a histogram showing the distribution 

of positive, negative, and null signals. The positive, negative, 
and neutral signals are depicted graphically in Figures 3, 4, 

and 5

. 

 

Figure 2: Histogram of EEG signal 

A count plot of positive and negative signals is displayed in the histogram. 

Using a countplot, we can see that our data set is well-split up. That there are 700 total signals (positive, negative, and neutral). 
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Figure 3: Graphical representation of happy signals analysis. 

According to the graph, the range of the negative signals is 600+/-600. 

 

Figure 4: Mixed-signal graphical analysis. 

According to the graph, the majority of the negative signals fall into the range from -600 to 600. 

 

 

Figure 5: Sad Signals, Analyzed Graphically. 

It appears that most Neutral Signals fall within the range of -250 to +250 on the graph. 
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Figure 6: Graphical Analysis of Surprised Signal 

 

4.2:  Model Training of LSTM Model 

The use of Long Short-Term Memory for decoding EEG 

signals was discussed. Training and test sets were created 

from the standard data. To train the model, we used 80% of 

the data, and to test it, we used 20%. Long-term memory 

(LSTM) is used in the training process to construct a highly 

accurate model (LSTM). The model was educated with the 

help of LSM. The four-layer LSTM model was used for 

training. Twenty input neurons are present in the first layer, 

and relu was used as the activation function. The activation 
function in the second layer is tanh, and the input neuro has a 

value of 10. The activation function relu is used in the third-

layer input neuron, while sigmoid is employed in the fourth-

layer output neuron. Loss=categorical crossentropy, 

optimizer=adma, epoch=14, batch size=32, and a total of 32 

training samples were used to train the model. Both the 

training and validation loss and accuracy values are shown in 

the training result. Figure 6 depicts this. Classification 
reports, confusion matrices, and accuracy scores were used to 

assess the model's performance after training was complete. 

The model's training and validation accuracy and loss are 

displayed in Figure 7 and Figure 8, respectively. Both the 

LSTM classification report (Figure 9) and the confusion 

matrix (Figure 10) are displayed.

 

 

 

Figure 6: Mean Squared Error for assessing matrices. 
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Figure 7: Training Accuracy Vs Epoch 

In Figure 7, we can see the model's achieved accuracy across 

all training iterations. The model was 85% accurate after the 

first stage, and 90% accurate after validation (testing). In the 

fourteenth iteration, the model's accuracy was 98% in training 

and 94% in validation (testing). 

 

Figure 8: Training Loss Vs Epoch 

The model's final loss value during each training iteration is 

displayed in Figure 8. The model's validation (testing) 
accuracy was 0.37 percent, while the loss value was 0.80 

percent. In the fourteenth iteration, the model achieved a 

training loss of 0.03 percent and a validation loss of 0.014 

percent (testing). 

 

 

Figure 9: Report on the LSTM Classifier 

Figure 9 displays the LSTM model's classification report on 

the test data. The 95 percent accuracy found in the 

classification report is very satisfying. As a result, the model's 

efficiency on the test data has been confirmed. 
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Figure 10: Confusion matrix 

The results of the LSTM model on the test data are displayed 

in the confusion matrix. This displays the model's success or 

failure on the test data, broken down by correct and incorrect 

classifications. The confusion matrix shows that the model 

correctly predicted that 151 out of 153 outcomes would be 

neutral, 127 out of 142 outcomes would be positive, and 128 

out of 132 outcomes would be negative. The findings 

demonstrate low rates of false positives and false negatives. 

5. CONCLUSION 

In order to decode neural and physiological signals, this paper 

introduces a long short-term memory (LSTM) model. In this 

study, brain signals were recorded using 

electroencephalography. Noise in the data was reduced 

through preprocessing of the dataset. In order to train the 

LSTM model, the pre-processed data was utilized. The 
LSTM model was developed over fourteen (14) training 

iterations. The LSTM model's output demonstrated 85% first-

step accuracy and 90% validation (testing) accuracy. The 

model's training accuracy for the fourteenth step was 98%, 

and its validation accuracy was 94%. (testing). We used a 

classification report and confusion matrix to assess the 

model's accuracy. The 95 percent accuracy found in the 

classification report is very satisfying. As a result, the model's 

efficiency on the test data has been confirmed. To 

demonstrate how accurately the model categorized the 

electroencephalography signal, we used a confusion matrix. 
The confusion matrix shows that the model correctly 

predicted that 151 out of 153 outcomes would be neutral, 127 

out of 142 outcomes would be positive, and 128 out of 132 

outcomes would be negative. As demonstrated by the 

findings, the rate of false positive and false negative values is 

extremely low at 0.02 and 0.05 percent, respectively. 
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