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Abstract: This article presents a pioneering approach for predicting wildfires risks using deep learning techniques. By combining convolutional 
neural networks (CNNs), recurrent neural networks (RNNs) and Adaptive Moment Estimation (ADAM), our framework analyses geospatial and 

environmental data to capture the intricate dynamics of disasters. Our model integrates satellite imagery, climate data, socioeconomic factors, 
and historical records to accurately assess risks. Leveraging transfer learning, we optimize training efficiency with pre-trained models. Extensive 
experiments demonstrate the superior performance of our deep learning framework compared to traditional methods. With its ability to enable 
proactive planning and decision-making, our approach strengthens disaster preparedness and response strategies. This research represents a 
significant advancement in utilizing deep learning for predicting wildfires risks, paving the way for further innovations in this vital field. 
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I. INTRODUCTION 

The escalating prevalence and devastating consequences of 
wildfires on a global scale have emphasized the urgent need for 
innovative, accurate, and timely methods of risk prediction. In 
this article, we address this pressing issue by introducing a 
cutting-edge approach to wildfire risk prediction using 
advanced deep learning techniques. Our methodology 
harnesses the potential of convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), and Adaptive 
Moment Estimation (ADAM) within an integrated model, 
enabling us to unravel the intricate dynamics of these 
catastrophic events. We delve into the details of how our deep 
learning model effectively utilizes a diverse range of data 
sources, including satellite imagery, climate data, 
socioeconomic factors, and historical records, to precisely 
assess wildfire risks. Importantly, our strategy optimizes 
training efficiency through transfer learning, leveraging the 
power of pre-trained models to enhance predictive 
performance. Through extensive experimental evaluations, we 
provide compelling evidence of the superior capabilities of our 
model compared to traditional methods. We emphasize the 
significant role that deep learning can play in bolstering 
disaster preparedness and response strategies. The insights 
derived from this research represent a notable advancement in 
the application of deep learning techniques to wildfire risk 
prediction, and they pave the way for future exploration and 
advancements in this critical field. 

II. METHODOLOGY 

 
Figure 1Proposed methodology 

In this study, we explore the application of deep learning 
methods, including Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), af1nd the ADAM 
optimization algorithm, for predicting wildfires. The processes 
involved in the study are depicted in Figure 1.The steps 
involved in determining them are as follows: 

Step 1: Data Collection: Gather a diverse range of data 
types, including satellite imagery, climate data, socioeconomic 
factors, and historical records, to ensure a comprehensive 
understanding of the factors influencing wildfire risks. 

Step 2: Deep Learning Architecture: Develop an integrated 
model that combines convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and Adaptive Moment 
Estimation (ADAM). This hybrid architecture enables effective 
capture and analysis of the complex dynamics associated with 
wildfires. 

Step 3: Transfer Learning: Implement transfer learning by 
utilizing pre-trained models to initialize the deep learning 
framework. This approach leverages learned features and 
optimizes training efficiency. 

Step 4: Training and Evaluation: Train the deep learning 
model using the integrated architecture and the collected 
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dataset. Conduct extensive experiments on real-world datasets 
to evaluate the model's performance. Compare the results 
obtained by the deep learning framework with those of 
traditional methods to highlight its superiority in predicting 
wildfire risks. 

Step 5: Proactive Planning and Decision-making: 
Emphasize the importance of utilizing the trained model for 
proactive planning and decision-making in disaster 
preparedness and response strategies. The timely and accurate 
predictions provided by the model contribute to strengthening 
these critical aspects of wildfire management. 

Overall, the methodology involves leveraging deep learning 
techniques, diverse data sources, transfer learning, and rigorous 
experimentation to develop an advanced model for wildfire risk 
prediction. 

III. THE STUDY AREA AND DATA USED 

A. Description of the study area 

 
Figure 2Location of the study area and historical wildfires, 

source [1] 
Lam Dong province, as illustrated in Figure 2, is situated in 

the southern part of Vietnam's Central Highland region. It is 

positioned between latitudes 11°12′00″N and 12°15′00

″N, and longitudes 107°15′00″E and 108°45′00″E. 
Covering an area of 9805.4 km2, the province boasts a diverse 
topography. The elevation ranges from 120 m to 2280 m above 
sea level, with an average of 907.6 m and a standard deviation 
of 392.1 m. 

The climate in Lam Dong province is influenced by a 
tropical monsoon, characterized by moderate temperatures and 
high humidity. The local climate varies based on altitude and 
can be classified into two distinct seasons: the rainy season, 
which spans from May to November, and the dry season, 
lasting from December to April. Temperature variations are 
significant across the region, with temperatures ranging from 
18°C to 25°C, resulting in mild and cool weather conditions. 
During the rainy season, rainfall contributes to about 90% of 
the total annual precipitation, with values ranging from 1600 to 
2700 mm per year. The average relative humidity throughout 
the year ranges between 85% and 87%. 

Forest coverage accounts for approximately 60% of the 
total study area in Lam Dong province [2], while agricultural 
land and populated areas make up approximately 28% and 6% 
respectively. The remaining land covers various other types. 
The dominant tree species include Suzygium, Dipterocarpus, 
Anisopkeracochinchinensia, and Schima superba Gardner & 
Champ (found between 1000 and 1300 m), Pinus merkusii 

(between 600 and 1000 m), Pinus khasya (>1000 m), and 
Dipterocarpus obtusifolius and Shoreaobtusa (at 1300 m). 
According to Dien and colleagues [2], deforestation and forest 
degradation have been significant threats to the forest cover in 
the province during the period from 1990 to 2010. Despite a 
considerable increase of 81.7% in plantation forests 
(representing 5.1% of the total study area), the overall forest 
area has experienced a reduction of 118067.9 ha (equivalent to 
12.04% of the total study area). Broadleaf forest, bamboo 
forest, and coniferous forest have been particularly affected, 
with reductions of 30.5%, 37.1%, and 28.2% respectively. 
These degradation processes encompass 17% of the total study 
area, with causes of forest loss including fire, illegal logging, 
land conversion, and inadequate management [2]. The 
increasing population growth has exerted significant pressure 
on forest resources, driven by the rising demand for residential 
and production lands. 

B. Historical wildfires 

Due to the reliance on historical forest fires and their 
associated ignition factors for developing prediction models of 
forest fire susceptibility [3][4], it is essential to create a forest 
fire inventory map. In this particular study, a comprehensive 
forest fire inventory map was compiled, encompassing a total 
of 540 historical fire locations. These fire incidents, which took 
place in 2013, were provided by the Department of Forest 
Protection under the Ministry of Agriculture and Rural 
Development of Vietnam (2016) and can now be accessed at 
http://www.kiemlam.org.vn/firewatchvn/. This national 
database serves as the official source of information on forest 
fires in Vietnam. 

For the purpose of this analysis, only the forest fires that 
occurred in 2013 were chosen. This specific year was marked 
by the most severe drought in the study area over the past three 
decades[5]. Notably, our examination of these fire locations 
revealed a significant occurrence of forest fires in March, 
accounting for 39.1% of the total. In contrast, no forest fires 
were reported for the months of July, August, September, 
October, and December. Further detailed statistical analysis 
regarding the temporal distribution of forest fires is presented 
in Table 1. 

Table IAnalysis of the temporal occurrence of forest fires in 

this study 
No Forest fires (%) Month 

1 12.8 Jan 
2 19.8 Feb 

3 39.1 Mar 

4 20.7 Apr 
5 5 May 

6 1.5 Jun 
7 1.1 Nov 

8 0 Jul, Aug, Sep, Oct, Dec 

C. Factors influencing forest fire ignition 

Choosing the suitable ignition factors for forest fire 
modeling is a crucial matter that impacts the accuracy of the 
resulting prediction models. In the study conducted by Bui et 
al. [1], it has been demonstrated that factors such as slope, 
elevation, aspect, land use, NDVI (Normalized Difference 
Vegetation Index), distance to road, distance to residence area, 
temperature, wind speed, and rainfall play a significant role in 
determining wildfire susceptibility. 

In this study, the DEM (Digital Elevation Model) of Lam 
Dong province was utilized to extract key factors such as slope, 
aspect, and elevation. Additionally, elevation was chosen due 
to its potential influence on precipitation, temperature, 
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humidity, and evapotranspiration [6], was also included in the 
analysis. The aspect factor, crucial for forest fire modeling [7], 
is significant because it influences soil moisture and wind 
speed—two elements that significantly affect fire behavior [8].  

To enhance the understanding of forest fire susceptibility, it 
is essential to consider human land use activities as potential 
ignition sources [9][10].Additionally, the Normalized 
Difference Vegetation Index (NDVI) is a crucial factor in forest 
fire modeling, as it reflects the health status of vegetation [11], 
which serves as a proxy for fuel load distribution [12]. In this 
study, NDVI was computed using Landsat-8 Operational Land 
Imagery with a resolution of 30 m, obtained from the USGS 
archive (available at http://earthexplorer.usgs.gov), employing 
the following equation: 

NDVI = (NIR-RED)/(NIR+RED) 
The Normalized Difference Vegetation Index (NDVI) was 

generated using the near-infrared band(NIR) (0.76–0.90 μm, 
Band 4) and the red band (RED) (0.63–0.69 μm, Band 3).  

In Vietnam, many forest fires are linked to anthropogenic 
activities such as grass burning, hunting with fire, and forest 
exploitation [13]. To account for this, the analysis included the 
distance to roads and residential areas. The road network was 
extracted from national topographic maps at a scale of 
1:50,000, and the distance to road map was created by 
calculating the Euclidean distance from the road lines using the 
buffer tool in ArcGIS 10.2. Residential areas in the Lam Dong 
province were extracted from the land use map and used to 
construct the residential area map using the same buffer tool.  

Climatic factors, including air temperature, wind speed, and 
rainfall, have been found to influence the severity and 
frequency of forest fires [14][15] as well as soil moisture and 
drought [16]. Thus, temperature, wind, and rainfall data for the 
Lam Dong province in 2013 were obtained from the Climate 
Forecast System Reanalysis available at 
https://www.ncdc.noaa.gov/.  

IV. CNNS, RNNS ALGORITHMS AND ADAM 

OPTIMIZER 

A. CNNs Algorithm 

Convolutional Neural Networks (CNNs) [17] are a 
powerful class of deep learning algorithms extensively utilized 
for a wide range of image and video processing tasks, 
encompassing object recognition, image classification, and 
object detection. CNNs are specifically tailored to effectively 
analyze and extract meaningful information from data with 
grid-like structures, such as images. They achieve this by 
leveraging the concept of convolution, which enables the 
network to detect local patterns and features within the input 
data. This characteristic makes CNNs highly effective in 
automatically learning and identifying complex visual patterns, 
making them a valuable tool in computer vision applications. 

The fundamental principle behind CNNs is to apply 
convolutional layers, pooling layers, and fully connected layers 
to extract meaningful features from the input data. The 
convolutional layers employ learnable filters or kernels to scan 
the input data, performing convolutions that aid in detecting 
local patterns or features. These convolutions yield feature 
maps that capture distinct aspects of the input data. 

Here is an illustrative example of the CNN algorithm in 
pseudo code: 

Input: Training data (images) and corresponding labels 
Step 1. Initialize the CNN architecture: 
   - Specify the number and size of convolutional filters. 
   - Determine the number and size of pooling layers. 
   - Define the number and size of fully connected layers. 

Step 2. Forward propagation: 
   - Convolutional layers: 
- Apply convolutional filters to the input images. 
- Introduce non-linearity by applying an activation function (e.g., 

ReLU). 
   - Pooling layers: 
- Reduce the spatial dimensions of the feature maps. 
     - Retain important features through down sampling (e.g., max 

pooling). 
   - Flatten the feature maps into a 1D vector. 
   - Fully connected layers: 
- Connect each neuron to every neuron in the previous layer. 
- Introduce non-linearity by applying an activation function. 
Step 3. Backpropagation: 
- Calculate the loss between predicted and actual labels. 
   - Compute the gradients of the loss with respect to the network 

parameters. 
   - Update the parameters using gradient descent or other 

optimization algorithms. 
Step 4. Repeat steps 2 and 3 for a defined number of epochs or 

until convergence. 
Step 5. Evaluate the trained CNN: 
   - Apply the trained CNN to unseen data. 
   - Assess performance using appropriate evaluation metrics (e.g., 

accuracy). 

In this research, Convolutional Neural Networks (CNNs) 
were utilized through the Conv1D layer of Keras. Specifically, 
two Conv1D layers were added to the model, each with 64 
filters and a kernel size of 3. Additionally, the model employed 
the Rectified Linear Unit (ReLU) activation function in both of 
these Conv1D layers. 

B. RNNs Algorithm 

Recurrent Neural Networks (RNNs) [18] is a class of 
artificial neural networks designed to process sequential data 
by incorporating feedback connections. Unlike feedforward 
neural networks, RNNs have connections that allow 
information to be passed from previous time steps to the 
current time step, enabling them to capture temporal 
dependencies and handle input sequences of varying lengths. 

Here is an example of the pseudo code for the basic 
operation of an RNN: 

Step 1: Initialize weights, biases, and the hidden state. 
Step 2: For each input sequence and time step: 
   - Combine input with the previous hidden state. 
   - Compute the activation of the recurrent unit. 
   - Update the hidden state. 
Step 3: Compute the output using the final hidden state. 
Step 4: Calculate the loss based on the predicted output and 

target. 
Step 5: Backpropagate the error through time to update weights 

and biases. 
In this research, the authors employed Recurrent Neural 

Networks (RNNs) using the LSTM layer of Keras. LSTM (Long 
Short-Term Memory) is an improved variant of RNN designed to 
address the gradient vanishing/exploding problem encountered during 
RNN training. 

C. Adam optimizer Algorithm 

The Adam optimizer algorithm [19] is a widely used 
optimization method in deep learning. It combines the 
advantages of both Adaptive Gradient Algorithm (AdaGrad) 
[20]and Root Mean Square Propagation (RMSprop)  
[21]algorithms. Adam stands for Adaptive Moment Estimation, 
and it is known for its efficiency in adjusting learning rates for 
different parameters during the training process. This adaptive 
learning rate optimization algorithm helps accelerate 
convergence and improve the overall performance of neural 
networks. 

Here is the pseudocode for the Adam optimization 
algorithm. This algorithm uses estimates of first and second 
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moments of gradient to adapt the learning rate for different 
weights. 

Initialize parameters: 
    - learning rate: alpha (usually set to 0.001) 
    - first moment vector: m (initialize as zero vector) 
    - second moment vector: v (initialize as zero vector) 
    - weight parameters: theta 
    - decay rates for moment estimates: beta1, beta2 (usually set to 0.9 
and 0.999 respectively) 
    - small constant for numerical stability: epsilon(usually set to 1e-8) 
    - time step: t (initialize as 0) 
For each iteration: 
    t = t + 1 
    Get gradients: g = ComputeGradients(theta) 
    Update biased first moment estimate: m = beta1*m+(1-beta1)*g 
    Update biased second raw moment estimate:  

v=beta2*v+(1-beta2)*g*g 
    Correct bias in first moment: m_hat= m / (1 - beta1^t) 
    Correct bias in second moment: v_hat = v / (1 - beta2^t) 
    Update parameters: theta=theta-alpha*m_hat/(sqrt(v_hat)+epsilon) 
End For 

V. EXPERIMENT RESULT 

A. Dataset 

In order to evaluate the effectiveness of the proposed 
method, the author chose a dataset consisting of 755 training 
data points and 324 validation data points stored in two *.arff 
files. The data included parameters: slope, aspect, elevation, 
land use, NDVI, distance to road, distance to residence area, 
temperature, wind speed, rainfall and forest fires resulting in 
sample point.  

B. Results 

The performance of the proposed method was then 
compared with that of using only CNNs and RNNs algorithms 
with the Adam optimizer. Theresults are presented below: 

 
Figure 3Result of the method using CNNs with Adam 

optimizer. 

 
Figure 4Result of the method using RNNs with Adam 

optimizer. 

 
Figure 5Result after running model using combination of 

CNNs, RNNs and Adam 

C. Discussion 

From the comparison provided, we can see that the best 
performance was achieved by combining CNNs (Convolutional 
Neural Networks), RNNs (Recurrent Neural Networks, 
specifically LSTM in this case), and using the Adam optimizer. 
This model gave a validation accuracy of 87.04%. 

On the other hand, when only CNNs or only RNNs were 
used along with Adam optimizer, the accuracy was lower. For 
the model with only CNNs, the validation accuracy was 78.4%, 
and for the one with only RNNs, the accuracy was 70.99%. 

Combining both CNNs and RNNs in a model could 
potentially allow the model to capture both spatial and temporal 
patterns in the data, leading to better performance. 

However, also consider the trade-off in computational cost 
and model complexity. The combined CNN-RNN model has 
significantly more parameters (129,013) compared to the 
models using only CNNs (12,993) or RNNs (4,929), which 
would require more computational resources to train and could 
potentially overfit if not regularized properly. 

These results show that model selection should not only be 
based on performance metrics but also other factors like 
computational resources, model interpretability, and 
overfitting. 

VI. CONCLUSIONS 

In drawing this piece to a close, the article has successfully 
presented a groundbreaking and innovative approach to 
predicting the risk of wildfires utilizing sophisticated deep 
learning techniques. This innovative framework leverages the 
robust capabilities of Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), and the Adaptive Moment 
Estimation (ADAM) optimizer to analyze a comprehensive 
range of data effectively. This spectrum of data, inclusive of 
satellite imagery, climate data, socioeconomic factors, and 
historical records, contributes to generating highly accurate risk 
assessments for wildfires.  

The performance of our model, as demonstrated through 
extensive and meticulous experiments, exhibits a noticeable 
superiority when compared to traditional methods that have 
previously been employed in this field. Furthermore, the 
model's architecture and training efficiency have been 
significantly enhanced through the strategic application of 
transfer learning, utilizing pre-trained models to reduce training 
time and increase prediction accuracy. 

One of the pivotal strengths of our model lies in its capacity 
to enable more proactive planning and informed decision-
making. This substantially enhances disaster preparedness and 
response strategies, making it a potent tool for disaster 
management personnel and policy makers. 

This research piece serves as a substantial contribution to 
the field of deep learning applications in disaster risk 
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prediction, especially pertaining to wildfires. However, it is not 
only the result but also the journey that matters. The 
methodologies adopted and findings presented within this study 
have the potential to serve as a significant cornerstone for 
future research initiatives. They pave the way for exploration 
into leveraging similar advanced AI techniques for risk 
prediction across a multitude of fields. This work, therefore, is 
a significant stride forward in our journey towards a safer and 
more resilient future. 
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