
DOI: http://dx.doi.org/10.26483/ijarcs.v13i6.6918

Volume 13, No. 6, November-December 2022

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2020-2022, IJARCS All Rights Reserved 12

ISSN No. 0976-5697 ISSN No. 0976-5697

SOFTWARE QUALITY PREDICTION USING MACHINE LEARNING

TECHNIQUES AND

SOURCE CODE METRICS: A REVIEW

Santosh Saklani
Department of Computer Science

Himachal Pradesh University

Shimla, India

Dr. Anshul Kalia
Department of Computer Science

Himachal Pradesh University

Shimla, India

Dr. Sumesh Sood
Department of Computer Science

Himachal Pradesh University

Shimla, India

Kritika Kumari

Department of Computer Science

Himachal Pradesh University

Shimla, India

Abstract: Software quality prediction is the Machine Learning (ML) based technique in which ML models are trained using historical data.
Output from these quality models can be used by software experts in the early phase of software development for improving the quality of

software by controlling the various quality attributes like maintainability, reliability, security issues of software etc. In this study a systematic
review of studies from 2005 to 2021 is performed. Studies that use ML techniques and source code metrics for Software Quality Prediction
(SQP) are included for review. Study assesses the commonly used machine learning techniques and source code metric for SQP. Commonly
used datasets, feature selection techniques and commonly used performance measures in software quality prediction are also assessed. In this
paper 53 primary studies are selected for systematic review. Results of this study prove that Bayesian Learning (BL), Regression, Ensemble
Learning (EL), Decision Tree (DT) and Support Vector Machine (SVM) are most commonly ML techniques used for quality prediction which
comprises 58%, 52%, 41%, 32%, and 32% of the overall studies respectively. It is also assessed that NASA, PROMISE, Apache, Mozilla
Firefox and Eclipse are the most commonly used datasets for training and testing the SQP models. LOC, CC, CBO, RFC, WMC, LCOM, DIT

and NOC are among the most commonly used source code metrics in SQP. Based on the results from the selected studies it is concluded that ML
techniques and source code metrics have the ability to improve the overall quality of the software.

Keywords: machine learning, software quality prediction, software vulnerabilities, source code metrics

I. INTRODUCTION

Dependency on software is increasing rapidly in various

fields. Therefore, delivering quality software to user is very

important. Quality software must be bug or defect free.

ISO/IEC 9126-1 defines a quality model that comprises six

characteristics i.e., functionality, reliability, usability,
efficiency, maintainability and portability with 27 sub

characteristics of software product quality [1]. To measure

these characteristics, software metrics are used. Software

metric is a standard of degree to which system or process

have some properties. Software metric provides quantitative

values to the attributes involved in software development

process [2]. Source code metrics are the metrics extracted

from some source code, and their value help developer to

measure the quality attribute. Predicting various properties

and sub properties of software quality like defects,

vulnerability, change-proneness, maintainability, testability

and complexity are very important and essential activities in
order to improve software quality and reduce maintenance

effort. Assessing of important quality characteristics in the

early phases of software development help in reducing

effort, time and money [3].

 In this study a systematic review on the use of ML

techniques and source code metrics in software quality

prediction (SQP) is done. Software quality is determined by

a set of quality factors [4]. Here in this study SQP means

predicting the quality attributes/factors which includes

defects, vulnerabilities, change-proneness, maintainability,

complexity and testability of software. For example,

software defect prediction can be done by classifying the

modulus/classes as fault prone. Software defects and source

code metrics obtained from similar projects or previous
release can be used to construct software defect prediction

model. In the same way models for predicting software

vulnerabilities, software change proneness, maintainability,

software complexity, software testability may be developed

by using historical data and source code metrics to improve

the software overall quality.

 The rest of the paper is organized as follows: Section 2

provides the research questions which are addressed in this

review and inclusion & exclusion criteria applied for the

selection process of the studies. Section 3 presents results of

the study and discussion. Limitation of this work is provided
in section 4. Section 5 provides conclusions obtained from

the study and future directions.

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 13

II. METHOD

Design of systematic review carried out in this paper is

inspired from [5]and 0.2[6]. The work in this study is

divided into three steps: planning, conducting, and reporting

the review. Planning is done in the first step which include

identifying the need of systematic review, identifying the

research questions, and review protocol. Second step is

conducting the review which includes criteria for selecting
the studies, quality assessment criteria, and data extraction

and synthesis.

A. Planning the review

Planning is the first step to perform any important task.

Steps under the planning phase are described as below.

1) Identification of need
Machine Learning (ML) techniques have been used for

developing the prediction model in various fields and

software engineering is no exception. Source code metrics

are very important to measure the various process and

attributes of software development process. Source code

metrics using ML techniques have been proved important in

predicting fault, vulnerabilities, maintainability change-

proneness and complexity. It is very important to establish

the state of art of ML techniques and source code metrics

used for predicting the various quality attributes of software

by gathering the finding from current research. By
extracting, synthesis the data and finding from existing

empirical studies the current trends of predicting various

quality features/characteristics of software using ML

techniques and source code metrics can be obtained.

2) Research questions

Research questions which are addressed in this study are

presented in the table below.
Table I: Research Questions

ID Research question Motivation

RQ1 Which ML techniques have been

used for training software

quality prediction (SQP) models

using source code metrics?

Identification of ML

techniques commonly used

for developing SQP model.

RQ2 Which source code metrics are

commonly used for SQP using

ML techniques?

Identification of source code

metrics commonly used for

SQP.

RQ3 What are the datasets used for

SQP?

Identify the commonly used

data set for SQP.

RQ4 Which techniques are commonly

used for feature reduction?

identify the commonly used

feature reduction techniques

for SQP

RQ5 Which performance measures

are used for SQP?

Assessment of performance

measures used for measuring

the performance of different

ML models for SQP.

RQ6 Which Programming languages

are currently used in developing

SQP model?

Identify the programming

languages commonly used for

SQP.

3) Review protocol

In the review protocol section, the search design is described

which includes search scope in terms of time period,

electronic databases, and overall search strategy.

Time period: In this review empirical study has been

selected from the years 2005 to 2021.

Electronic databases: The following five electronic

databases have been selected as a primary source for this

review: IEEE Xplore, ScienceDirect, ACM Digital Library,

Wiley Online Library, Google scholar. These electronic

databases provide a good source for journal/event papers.

Search strategy: Initial search is made to identify the

primary studies in which source code metrics and ML

techniques have been used for software quality prediction

(SQP). After performing an initial search relevant studies

are determined by following the inclusion and exclusion

criteria described as below.
Inclusion criteria:

 Empirical studies using source code metrics and

ML techniques for predicting software defects.

 Empirical studies using source code metrics and

ML techniques for predicting software

vulnerabilities.

 Empirical studies using source code metrics and

ML techniques for predicting change-proneness in

software.

 Empirical studies using source code metrics and

ML techniques for predicting software

maintainability, testing and complexity.

 Empirical studies from reputed publishers with

good citations.

Exclusion criteria:

 Studies which do not include source code metrics

and ML techniques.

 Studies using source code metrics and ML

techniques in context other than predicting SQP

(Which include prediction of software defects,

vulnerabilities, change-proneness, maintainability,

testing and complexity).

 Review studies.

After applying above inclusion and exclusion criteria 57

studies have been selected. The final selection is done by

following the quality assessment criteria (QAC) described in

the next section.

B. Conducting the review

This section defines quality assessment criteria, selection of

primary studies, and data extraction and synthesis.

1) Quality assessment criteria

In this section quality questions are formed to check the

quality and relevance of all the 57 primary studies (selected

after following inclusion/exclusion criteria). Following

questions are answered to measure the quality of selected

studies:

 Q1. Are the aims or objectives of research clearly

stated?

 Q2. Is the study peer reviewed?

 Q3. Are the independent and dependent variables

are clearly defined?

 Q4. Are source code metrics used are clearly

defined?

 Q5. Are ML techniques used in the study clearly

defined?

 Q6. Are the results and findings obtained are

clearly mentioned?

 Q7. Are the tools and datasets used clearly defined?

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 14

2) Selection of primary studies

In total 53 primary studies have been selected after

following quality assessment criteria mentioned in the above

section. Each study uses source code metrics and ML

techniques for SQP.

Table II: Selected Primary Studies

Category Study No. Paper Category Study No. Paper

Defect Prediction

S1 [7] Defect Prediction S28 [34]

S2 [8] S29 [35]

S3 [9] S30 [36]

S4 [10] Software

Vulnerability Prediction

S31 [37]

S5 [11] S32 [38]

S6 [12] S33 [39]

S7 [13] S34 [40]

S8 [14] S35 [41]

S9 [15] S36 [42]

S10 [16] S37 [43]

S11 [17] S38 [44]

S12 [18] S39 [45]

S13 [19] S40 [46]

S14 [20] S41 [47]

S15 [21]

Software Change Proneness

S42 [48]

S16 [22] S43 [49]

S17 [23] S44 [50]

S18 [24] S45 [51]

S19 [25] S46 [52]

S20 [26] S47 [53]

S21 [27] S48 [54]

S22 [28] S49 [55]

S23 [29] S50 [56]

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 15

S24 [30] Software Testing S51 [57]

S25 [31] Software Maintainability S52 [58]

S26 [32] Software Complexity S53 [59]

S27 [33]

III. RESULT AND DISCUSSIONS

This section presents results obtained from the selected

studies.

A. Description of primary studies

In this section we provide description of selected primary

studies. This section includes publication source and

publication year of all the primary studies selected for

review.

1) Publication

The details of publisher for journals and events are shown in
table III (a) and table III (b) respectively. The selected

studies are published across 28 journals and 25 different

events. Table III (c) presents the overall percentage of

different publishers

Table III (a): Publisher-wise distribution of journals

Name of Publisher Journal (s)

Elsevier 13

Springer 6

Wiley Online Library 2

ACM 2

IEEE 1

Korean Science 1

World Scientific 1

Blu Eye Intelligence Engineering & Science

Publication 1

SAI Organization 1

Hindawi 1

Table III (b): Publisher-wise distribution of events

Name of Publisher Event (s)

Elsevier 14

ACM 7

Springer 2

IET 1

Table III (c): Percentage distributions of studies

Name of Publisher Percentage

IEEE 28

Elsevier 24

ACM 17

Springer 15

Wiley Online Library 4

Korean Science 2

World Scientific 2

Blu Eye Intelligence Engineering & Science

Publication 2

IET 2

SAI Organization 2

Hindawi 2

Figure 1: Bar chart for percentage distributions of studies

2) Publication year

Figure 2 presents the distributions of studies from 2005 to

2021. It shows that from the year 2017 the highest number

of studies are included followed by 2021 and 2015. The

number of studies in the years 2015, 2016, 2017, 2018,

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 16

2019, 2020 and 2021 are 6, 3, 7, 3, 3, 4 and 6 respectively

accounting for 60% of the studies. This shows that

preference is given to studies published in recent years

Finally, complete content and organizational editing before

formatting. Please take note of the following items when

proofreading spelling and grammar:

Figure 2: Year-wise distribution of studies

B. RQ1: Which ML techniques have been used for

training software quality prediction (SQP) models

using source code metrics?

In this section details of ML techniques used in selected

studies for SQP are presented. In this study the ML

techniques used for SQP are classified in the following

categories:

 Bayesian Learning (BL)

 Regressions

 Ensemble Learning (EL)

 Decision Trees (DT)

 Support Vector Machines (SVM)

 Neural Networks (NN)

 Clustering

 Rule Based Learning (RBL)

Table IV: Classification of ML techniques for SQP

Category Method (s) Number of Occurrence

Bayesian Learning (BL) Naive Bayes (NB) 31

Regressions

Linear Regression (LR) 28

Zero Inflated Poisson Regression 4

Negative Binomial Regression 2

Ensemble Learning (EL)

Random Forest (RF) 22

AdaBoost (AB) 6

Gradient Boosting (GB) 5

Bagging 4

Decision Trees (DT)

J48 10

Quad Based Tree 3

Alternating Decision Tree (ADT) 2

Classification and Regression Tree (CART) 2

C4.5 1

Logistic Model Tree 1

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 17

AdTree 1

Support Vector Machines (SVM) Support Vector Machines (SVM) 17

Neural Networks (NN)

Artificial Neural Network (ANN) 9

Multilayer Perceptron (MLP) 6

Biological Neural Network (BNN) 4

Radial Basis Function (RBF) 4

Self-Organizing Maps (SOM) 1

Recurrent Neural Network (RNN) 1

 Clustering

K- mean 3

Hierarchal Clustering (HC) 2

Make Density Based Cluster (MDBC) 2

Rule Based Learning (RBL)
OneR 2

Neighbor With Generalization (Nnge) 1

Miscellaneous

IBK 3

K- Nearest Neighbor (KNN) 3

DeepJIT 2

Kstar 1

CC2Vec 1

EARL 1

 (a) (b)

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 18

 (c) (d) (e)

 (f) (g)

Figure 3: Distribution of sub categories in (a) Regressions (b) Ensemble Learning (c) Clustering (d) Rule Based Learning (e) Neural Network (f) DT (g)

Miscellaneous

Table V presents both the number and percentage of the

studies with respect to ML techniques. Table V shows that

among the different categories of ML techniques most

frequently used techniques are from the categories BL,

Regression, EL, DT, and SVM which covers 58.49%,

52.8%, 41.5%, 32% and 32% of studies, respectively.

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 19

Table V: Distribution of studies across ML techniques based on

classification

Machine Learning Method Number of Studies Percent

Bayesian Learning (BL) 31 58.49

Regression 28 52.8

Ensemble Learning (EL) 22 41.5

Decision Tree (DT) 17 32

Support Vector Machine (SVM) 17 32

Miscellaneous 15 28.03

Neural Network (NN) 10 18.86

Clustering 5 9.4

Rule Based Learning (RBL) 2 3.7

C. RQ2: Which source code metrics are commonly used

for SQP using ML techniques?

Number of source code metrics are used for quantifying the

characteristics of software. Table VI, VII, VIII and IX

define various types of source code metrics used under

different categories in selected primary studies. Table VI

presents source code metrics used for defect prediction.

Object oriented, complexity, size and Halstead’s metrics are
the commonly used metrics in this category

Table VI: Software metrics used in software defect prediction

Category Metric Type Studies Reference List of metrics

Defect

Prediction

1.Complexity metrics (15) S2, S3, S6, S7, S9, S11, S13, S17,

S19, S21, S23, S24, S25, S26,

S27

CC, Essential Complexity, Max. CC, Avg. CC,

Cyclomatic Density, Design Complexity, AMC, SDMC

2. Halstead (9)

S2, S3, S7, S8, S9, S19, S23, S26,

S27

N, V, D, I, E, B, L, T

3. Size (16) S1, S2, S3, S4, S5, S6, S7, S8,

S9, S17, S19, S21, S22, S23, S25,

S26

LOC, CLOC, BLOC, CCLOC, UNOD, UNOT, NOD,

NOT, LOC_Blank, LOC_Comment, LOC_Execute,

Branch_Count, Decision_Count

4. Object Oriented (13) S1, S4, S5, S6, S10, S11, S12,

S13, S20, S23, S24, S25, S34

CBO, LCOM, LOC, MOA, NOM, RFC, CA, CE, DAM,

SRFC, CAM, DIT, NOC, IC, CBM, MFA, WMC

5. Others S6, S28 Conditional Expression, ContinueStatement, DoStatement,

FieldAccess, Javadoc, LabeledStatement,

ParenthesizedExpression, PrefixExpression,

QualifiedName, ReturnStatement,

SuperMethodInvocation, SwitchStatement,

ThisExpression, ThrowStatement, CommitLevel metrics

Table VII: Software metrics for software vulnerability prediction

Category Metric Type Studies Reference List of metrics

Vulnerability Prediction

 Complexity (7) S32, S33, S34, S35, S36,

S38, S39

Cyclomatic, CyclomaticModified,

CyclomaticStrict, Essential

Cyclomatic Complexity, Nesting Complexity

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 20

CountLine (6)

S32, S33, S35, S36, S38,

S41

AltCountLineComment, CountLineComment,

CountInput, CountOutput, CountPath,

CountLine, CountLineCode,

CountLineInactive, CountLinePreprocessor,

CountSemicolon, CountStmt,

CountStmtExe, CountStmtDecl,

CountStmtEmpty

Coupling & cohesion

(5)

S31, S32, S37, S38, S39 SumFanIn, SumFanOut, MaxFanIn, MaxFanOut,

HK, WMC, DIT, NOC, CBC, RFC, CBO, LCOM

Comments (4)

S31, S37, S38, S41

AltCountLineComment, CountLineComment,

RatioCommentToCodE

Halstead (1)

S31

Halstead Volume

 Table VIII: metric classification for software change proneness prediction

 Category Metric Type Studies Reference List of metrics

Change Proneness

Object Oriented (9) S42, S43, S44, S45, S46, S47,

S48, S49, S50

WMC, DIT, CBO, RFC, Ca, NPM,

MOA, CAM, IC, CBM, AMC

only WMC, CBO, CA, NPM, CAM,

IC, CBM, AMC, LCOM

Size Metrics (4) S45, S46, S47, S49 LOC

Table IX: metrics classification for software maintainability and complexity prediction

Categories Metric Type Studies Reference List of metrics

software maintainability

and complexity

Object Oriented S52, S53 DIT, RFC, WMC,

 LOC, CBO, DIT, NOC,

NOM, LCOM,

Table VII shows, that in the selected studies complexity,

count, coupling & cohesion, and comment metrics are

commonly used source code metrics for software

vulnerability prediction. Table VIII shows the metrics used

to predict software change proneness. It is clear from the

table that object-oriented metrics and size metrics are the

commonly used metric for predicting software change

proneness. Metrics used for predicting software

maintainability and software complexity are listed in table

IX.

Table X: Popular metrics used in selected studies.

Metric
Total Occurrence

Cyclomatic Complexity (CC) 25

Line of Code (LOC) 21

Coupling Between Objects (CBO) 21

Response for a Class (RFC) 21

Weighted Methods per Class (WMC) 20

Lack of Cohesion in Methods (LCOM) 17

Depth of Inheritance Tree (DIT) 16

Number of Children (NOC) 16

Average Method Complexity (AMC) 14

Cohesion Among Methods (CAM) 13

Halstead Metrics (N, V, D, I, E, B, L, T)

10

IC 10

Table X presents popular metrics used in overall selected

studies with their total occurrence

D. RQ3: What are the datasets used for SQP?

This section analyzes the datasets used for SQP. Table XI

and figure 4 shows all the datasets used in different

prediction models (for software defect, vulnerability,

change-proneness, maintenance, testing and complexity

prediction) used in this study. Major datasets used are as

follow:

 NASA datasets: NASA’s Datasets are freely

available in NASA repository. 26% of our selected

studies used NASA datasets. Table XI shows that

they are the most common used datasets for SQP

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 21

 PROMISE datasets: these datasets are available in

PROMISE repository.15% of our selected primary

studies used PROMISE’s datasets.

 Apache datasets: these datasets are used in 13% of

the selected studies.

 Mozilla Firefox: used in 11% of the selected

studies.

 Eclipse: used in 9% of the selected studies.

 Turkish and Stanford datasets: both are used in

equal proportion that is 9% of each.

 Other open-source projects: 20% of the selected

studies use datasets from other open-source

projects.

Table XI: Classification of Datasets for SQP

Datasets Type

Number of

studies

Percentage of

Studies

NASA 14 26

PROMISE 8 15

Apache 7 13

Mozilla Firefox 6 11

Eclipse 5 9

Turkish Data Set 2 3

Stanford 2 3

Other open-source

projects
11 20

Figure 4 present datasets for SQP used by the selected

primary studies.

Figure 4: datasets used for SQP

1) Description of datasets used for Software

Vulnerability Prediction (SVP)

Security is one of the important characteristics to measure

the quality of software. Software vulnerabilities should be

handled carefully to avoid non-compensable damage to the

system. ML techniques are playing an important role in

predicting software vulnerabilities. Description of datasets

used for SVP in the selected primary studies (S31, S32, S33,

S34, S35, S36, S37, S38, S39, S40, and S41) is given in

table XII.

Mozilla: Vulnerabilities dataset of Mozilla Firefox is used in

54% of the selected studies.

Apache: Apache Tomcat and Apache CXF accounts for

18% of the selected studies for SVP. These datasets are

freely available.

Ellipse, Stanford, and NIST: datasets from Ellipse, Stanford

and NIST repository are used in equal proportion that is 9%

of each for SVP.
Other open-source project: 27% of the selected studies for

SVP used open-source project like github, glib, Linux kernel

and other web application dataset.

Table XII: Datasets used in SVP

Dataset Type Percentage of Studies

Mozilla 54

Apache 18

Ellipse 9

Stanford 9

NIST 9

Other Open-source Project 27

Figure 5: Datasets for SVP

E. RQ4: Which techniques are commonly used for

feature reduction?

To reduce the dimensionality of features, number of feature

reduction techniques have been used over the years. There

are basically two types of feature reduction techniques:

feature selection and feature extraction. Feature selection

techniques help in selection of the most relevant feature in a

dataset while on the other hand, in feature extraction

technique a new feature is extracted by combining a set of

relevant features. Only 36% of the selected primary studies
clearly mentioned the use of feature reduction techniques.

The most commonly used feature selection techniques in the

selected studies are forward step method (used in S10, S11),

correlation-based feature selection (CFS) (used in S9, S19),

gain ratio (used in S27, S30), Pearson’s correlation (used in

S23, S29, S53) and information gain (used in S16, S49).

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 22

Some less commonly used feature selection techniques

include Spearman’s correlation (sued in S21), greedy

algorithm (used in S29), chi square (used in S49), fisher’s

criterion (used in S23), Binary genetic algorithms (used in

S13).

There are few studies which used principal component

analysis for feature extraction (used by S9, S4).

F. RQ5: Which performance measures are used for

SQP?

As shown in table XIII and figure 6 precision, accuracy,

ROC, recall, f- measure and specificity are the most

commonly used performance measures used in selected

studies for SQP. F1 score, absolute error, sensitivity, FP

rate, FN rate completeness, relative error, confusion metrics
MAE are among the less used performance measure in the

selected studies.

Table XIII: Percentage of occurrence of performance measures in selected

studies for SQP

Performance Measure
Percentage of

Occurrence

Precision 51

Accuracy 45

ROC 37

Recall 32

 F-measure 24

Specificity 18

F1 Score 11

absolute error 11

Sensitivity 9

FP rate 7

FN rate 5

Completeness 5

relative error 3

confusion matrix 3

MAE 3

Figure 6: Performance measures used for SQP

G. RQ6: Which Programming languages are currently

used in developing SQP models?

Figure 7: Programming language used for SQP.

Around 66% of the selected studies clearly specify the

programming language of source code. Some of the studies
uses only one language while some of the studies uses multi

language like C/C++, Java/C++, C/C++/Java. In this 66% of

the studies 62 % studies uses JAVA, 40% uses C++ and 28

% uses C as a source code language as shown in figure 7.

Therefore, from the above facts and figure it is observed that

most of the studies use object-oriented programming

paradigm.

IV. LIMITATIONS

In this systematic review, a number of primary studies are

evaluated to assess the source code metrics and ML

techniques for SQP. A limitation in this review is that only

studies which include source code metrics and ML

techniques for predicting software quality are included.

Important studies which include techniques other than

source code metrics are excluded in this review. For

example, there are other successful methods for predicting

vulnerabilities in source code but not includes in this review.

Though all the mentioned digital libraries have carefully

searched, there still may be the possibility that a suitable
study may be left out.

V. CONCLUSION AND FUTURE GUIDELINE

In this study a systematic review is performed in order to

analyze and assess the ML techniques, source code metrics,

datasets and performance measures used for SQP. In the

first step 53 primary studies (2005-2021) are identified to

meet research objectives. In the second step data is

collected, analyzed and assessed to answer the research
questions. In this study ML techniques and source code

metrics used for SQP are assessed. Datasets and

performance measures used in the selected studies for SQP

are also analyzed and assessed.

 Main finding obtained from the selected studies are:

 Most commonly used ML techniques for SQP are

bayesian learning (BL), regression, ensemble

learning (EL), decision tree (DT) and support

vector machine (SVM).

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 23

 Most frequently used source code metrics in the

selected studies are LOC, CC, CBO, RFC, WMC,

LCOM, DIT and NOC.

 Most commonly datasets used in the selected

studies are: NASA, PROMISE, Apache, Mozilla

Firefox and Eclipse.

 Precision, accuracy, ROC, recall and f-measure are

among the most commonly used performance

measures in SQP.

 Java, C++ and C are the most frequently used

programming language by researcher for SQP. In

the selected studies only 66% of the studies clearly.

 mentioned about the programming languages in

which 62% studies uses JAVA, 40% uses C++ and

28 % uses C as a source code language.

Guideline for researchers and software practitioners for

carrying out research work in future on software quality

prediction using ML techniques are as following:

(1) More studies should be carried out to predicting

quality characteristics like functionality, reliability,

usability, efficiency, maintainability and portability

using ML techniques.

(2) Security of software is also one of the important

sub characteristics of software product quality.

More work needed to be done in predicting

software vulnerabilities to ensure software security

during software development.

VI. REFERENCES

[1] H.W. Jung, SG. Kim and C.S. Chung, “Measuring

software product quality: A survey of ISO/IEC 9126,”

IEEE software, vol. 21, Oct. 2004, pp. 88-92.

[2] T. Honglei, S. Wei and Z. Yanan, “The research on

software metrics and software complexity metrics,”

2009 International Forum on Computer Science-

Technology and Applications, IEEE, vol. 1, Dec. 2009

pp. 131-136.

[3] D. Azar, H. Harmanani and R. Korkmaz, “A hybrid

heuristic approach to optimize rule-based software

quality estimation models,” Information and Software

Technology, vol. 51, Sep. 2009, pp. 1365-76.

[4] M. Jørgensen, “Software quality measurement.

Advances in engineering software,” vol. 30, Dec. 1999,

pp. 907-12.

[5] A.S. Nuñez-Varela, H.G. Pérez-Gonzalez, F.E.

Martínez-Perez and C.Soubervielle-Montalvo, “Source

code metrics: A systematic mapping study,” Journal of

Systems and Software, vol. 128, Jun. 2017, pp. 164-97.

[6] R. Malhotra, “A systematic review of machine learning

techniques for software fault prediction,” Applied Soft

Computing, vol. 27, Feb, pp. 504-18.

[7] B. Khan, R. Naseem, M.A. Shah, K. Wakil, A. Khan,

M. I. Uddin and M. Mahmoud, “Software defect

prediction for healthcare big data: an empirical

evaluation of machine learning techniques,” Journal of

Healthcare Engineering,2021, Mar. 2021.

[8] M. Gayathri and A. Sudha, “Software defect prediction

system using multilayer perceptron neural network with

data mining,” International Journal of Recent

Technology and Engineering, vol. 3, May. 2014, pp. 54-

59.

[9] S. Agarwal and D. Tomar, “Prediction of software

defects using twin support vector machine,” 2014

international conference on information systems and

computer networks (ISCON), IEEE, Mar. 2014, pp.

128-132.

[10] R. Malhotra, “An empirical framework for defect

prediction using machine learning techniques with

Android software,” Applied Soft Computing, vol. 49,

Dec. 2016, pp. 1034-50.

[11] S.S. Rathore and S. Kumar, “A decision tree regression

based approach for the number of software faults

prediction,” ACM SIGSOFT Software Engineering

Notes, vol. 41, Feb. 2016, pp. 1-6.

[12] S. S. Rathore and S. Kumar, “An empirical study of

some software fault prediction techniques for the

number of faults prediction,” Soft Computing, vol. 21,

Dec. 2017, pp. 7417-434.

[13] Y. Jiang, B. Cuki, T. Menzie and N. Bartlow,

“Comparing design and code metrics for software

quality prediction,” Proceedings of the 4th international

workshop on Predictor models in software engineering,

vol. 12, May. 2008, pp. 11-18.

[14] I. Gondra, “Applying machine learning to software

fault-proneness prediction,” Journal of Systems and

Software, vol. 81, Feb. 2008, pp. 186-95.

[15] V. U. Challagulla, F. B. Bastani, I. L. Yen and R. A.

Paul, “Empirical assessment of machine learning based

software defect prediction techniques,”International

Journal on Artificial Intelligence Tools, vol. 17, Apr.

2008, pp. 389-400.

[16] Singh, Y., Kaur, A., & Malhotra, “Empirical validation

of object-oriented metrics for predicting fault proneness

models,” Software quality journal, vol. 18, 2010, pp. 3-

35.

[17] R. Malhotra and A. Jain, “Fault prediction using

statistical and machine learning methods for improving

software quality,” Journal of Information Processing

Systems, vol. 8, 2012, pp. 241-262.

[18] A. Janes, M. Scotto, W. Pedrycz, B. Russo,

M.Stefanovic and G.Succi, “Identification of defect-

prone classes in telecommunication software systems

using design metrics,” Information sciences, vol. 176,

Dec. 2006, pp. 3711-34.

[19] H. Turabieh, M. Mafarja and X. Li, “Iterated feature

selection algorithms with layered recurrent neural

network for software fault prediction,” Expert systems

with applications, vol. 122, May. 2019, pp.27-42.

[20] S. S. Rathore and S. Kumar, “Linear and non-linear

heterogeneous ensemble methods to predict the number

of faults in software systems,” Knowledge-Based

Systems, vol. 119, Mar. 2017, pp. 232-56.

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 24

[21] A. T. Haouari, L. Souici-Meslati, F. Atil and D.

Meslati, “Empirical comparison and evaluation of

Artificial Immune Systems in inter-release software

fault prediction,” Applied Soft Computing, vol. 96,

Nov. 2020, pp. 106686.

https://doi.org/10.1016/j.asoc.2020.106686

[22] H. Aljamaan and A. Alazba, “Software defect

prediction using tree-based ensembles,” Proceedings of

the 16th ACM international conference on predictive

models and data analytics in software engineering, Nov.

2020, pp. 1-10.

[23] P.S. Bishnu and V. Bhattacherjee, “Software fault

prediction using quad tree-based k-means clustering

algorithm,” IEEE Transactions on knowledge and data

engineering, vol. 24, Jul. 2011, pp. 1146-150.

[24] A. Hammouri, M. Hammad, M. Alnabhan and F.

Alsarayrah, “Software bug prediction using machine

learning approach,” International Journal of Advanced

Computer Science and Applications, vol. 9, 2018.

[25] K. O. Elish and M. O. Elish, “Predicting defect-prone

software modules using support vector machines,”

Journal of Systems and Software, vol. 81, May. 2008,

pp. 649-60.

[26] P. Singh and S. Verma, “Empirical investigation of

fault prediction capability of object oriented metrics of

open source software,” 2012 Ninth International

Conference on Computer Science and Software

Engineering (JCSSE), IEEE, May. 2012, pp. 323-327.

[27] S.S. Rathore and A. Gupta, “Investigating object-

oriented design metrics to predict fault-proneness of

software modules,” 2012 CSI Sixth International

Conference on Software Engineering (CONSEG),

IEEE, Sep. 2012, pp. 1-10.

[28] G. Abaei, A. Selamat and H. Fujita, “An empirical

study based on semi-supervised hybrid self-organizing

map for software fault prediction,” Knowledge-Based

Systems, vol. 74, Jan. 2015 Jan, pp. 28-39.

[29] I. H. Laradji, M. Alshayeb, L. Ghouti, “Software defect

prediction using ensemble learning on selected feature,”

Information and Software Technology, vol. 58, Feb.

2015, pp. 388-402.

[30] Y. Zhou, B. Xu and H. Leung, “On the ability of

complexity metrics to predict fault-prone classes in

object-oriented systems,” Journal of Systems and

Software, vol. 83, Apr. 2010, pp. 660-674.

[31] P. He P, B. Li, X. Liu, J. Chen and Y. Ma, “An

empirical study on software defect prediction with a

simplified metric set,” Information and Software

Technology, vol. 59, Mar. 2015, pp. 170-90.

[32] A. Chug and S. Dhall, “Software defect prediction

using supervised learning algorithm and unsupervised

learning algorithm,” 2013.

[33] J. Li, P. He, J. Zhu and M.R. Lyu, “Software defect

prediction via convolutional neural network,” 2017

IEEE international conference on software quality,

reliability and security (QRS), IEEE, Jul. 2017, pp.

318-328.

[34] C. Pornprasit C and C.K. Tantithamthavorn, “Jitline: A

simpler, better, faster, finer-grained just-in-time defect

prediction,” 2021 IEEE/ACM 18th International

Conference on Mining Software Repositories (MSR),

IEEE, May. 2021, pp. 369-379.

[35] S. Mehta and K.S. Patnaik, “Improved prediction of

software defects using ensemble machine learning

techniques,” Neural Computing and Applications, vol.

33, Aug. 2021, pp. 10551-562.

[36] S.S. Rathore and S. Kumar, “An empirical study of

ensemble techniques for software fault prediction,”

Applied Intelligence, vol. 51, Jun. 2021 pp. 3615-44.

[37] Y. Zhang, D. Lo,X. Xia,B. Xu B, J. Sun and S. Li,

Combining software metrics and text features for

vulnerable file prediction,” 2015 20th International

Conference on Engineering of Complex Computer

Systems (ICECCS), IEEE, Dec. 2015, pp. 40-49.

[38] I. Chowdhury and M. Zulkernine, “Can complexity,

coupling, and cohesion metrics be used as early

indicators of vulnerabilities?,” Proceedings of the 2010

ACM Symposium on Applied Computing, Mar, 2010,

pp. 1963-1969.

[39] H. Alves, B. Fonseca and N. Antunes, “Experimenting

machine learning techniques to predict vulnerabilities,”

2016 Seventh Latin-American Symposium on

Dependable Computing (LADC), IEEE, Oct. 2016, pp.

151-156.

[40] Y. Shin and L. Williams, “An empirical model to

predict security vulnerabilities using code complexity

metrics,” Proceedings of the Second ACM-IEEE

international symposium on Empirical software

engineering and measurement, Oct. 2008, pp. 315-317.

[41] K.Z. Sultana, V. Anu, T.Y. Chong, “Using software

metrics for predicting vulnerable classes and methods in

Java projects: A machine learning approach,” Journal of

Software: Evolution and Process, vo.l 33, Mar. 2021,

e2303.

[42] A. Gupta, B. Suri, V. Kumar and P. Jain, “Extracting

rules for vulnerabilities detection with static metrics

using machine learning,” International Journal of

System Assurance Engineering and Management, vol.

12, Feb. 2021, pp. 65-76.

[43] Y. Shin and L. Williams, “An initial study on the use

of execution complexity metrics as indicators of

software vulnerabilities, Proceedings of the 7th

International workshop on software engineering for

secure systems, May. 2011, pp. 1-7.

[44] S. Moshtari, A. Sami and M. Azimi, “Using

complexity metrics to improve software security,”

Computer Fraud & Security, vol. 5, May. 2013 May,

pp. 8-17.

[45] I. Chowdhury and M. Zulkernine, “Using complexity,

coupling, and cohesion metrics as early indicators of

vulnerabilities,” Journal of Systems Architecture, vol.

57, Mar. 2011, pp. 294-313.

[46] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi,

K. Rieck, S. Fahl and Y. Acar, “Vccfinder: Finding

potential vulnerabilities in open-source projects to assist

code audits,” Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications

Security, Oct. 2015, pp. 426-437.

Santosh Saklani et al, International Journal of Advanced Research in Computer Science, 13 (6), November-December 2022,12-25

© 2020-2022, IJARCS All Rights Reserved 25

[47] J. Ren, Z. Zheng, Q. Liu, Z. Wei and H. Yan, “A buffer

overflow prediction approach based on software metrics

and machine learning,” Security and Communication

Networks, Mar. 2019.

[48] L. Kumar, S. K. Rath and A. Sureka, “Empirical

analysis on effectiveness of source code metrics for

predicting change-proneness,” Proceedings of the 10th

Innovations in Software Engineering Conference, Feb.

2017, pp. 4-14.

[49] L. Kumar, S. K. Rath and A. Sureka, “Using source

code metrics to predict change-prone web services: A

case-study on ebay services,” 2017 IEEE workshop on

machine learning techniques for software quality

evaluation (MaLTeSQuE), IEEE, Feb. 2017, pp. 1-7.

[50] D. Romano and M. Pinzger, “Using source code

metrics to predict change-prone java interfaces,” 27th

IEEE international conference on software maintenance

(ICSM), IEEE, Sep. 2011, pp. 303-312.

[51] C. Liu, D. Yang, X. Xia, M. Yan M and X. Zhang,

“Cross-project change-proneness prediction,” 2018

IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC), IEEE, vol. 1,

jul. 2018, pp. 64-73.

[52] L. Kumar, S. Lal, A. Goyal and N.B. Murthy,

“Change-proneness of object-oriented software using

combination of feature selection techniques and

ensemble learning techniques,” Proceedings of the 12th

Innovations on Software Engineering Conference

(formerly known as India Software Engineering

Conference), Feb. 2019, pp. 1-11.

[53] G. Catolino and F. Ferrucci, “Ensemble techniques for

software change prediction: A preliminary

investigation,” In2018 IEEE Workshop on Machine

Learning Techniques for Software Quality Evaluation

(MaLTeSQuE), IEEE, Mar. 2018, pp. 25-30.

[54] E. Giger, M. Pinzger and H.C. Gall, “Can we predict

types of code changes? an empirical analysis,” 2012 9th

IEEE working conference on mining software

repositories (MSR), IEEE, Jun. 2012, pp. 217-226.

[55] R. Abbas, F. A. Albalooshi and M. Hammad,

“Software change proneness prediction using machine

learning,”2020 International Conference on Innovation

and Intelligence for Informatics, Computing and

Technologies (3ICT), IEEE, Dec. 2020, pp. 1-7.

[56] R. Malhotra and M. Khanna, “Investigation of

relationship between object-oriented metrics and

change proneness,” International Journal of Machine

Learning and Cybernetics, vol. 4, Aug. 2013, pp. 273-

86.

[57] F. Toure, M. Badri and L. Lamontagne, “Investigating

the Prioritization of Unit Testing Effort using Software

Metrics,” ENASE, Apr. 2017 Apr, pp. 69-80.

[58] L. Kumar, S.K. Rath and A. Sureka, “Using source

code metrics and multivariate adaptive regression

splines to predict maintainability of service oriented

software,” 2017 IEEE 18th international symposium on

high assurance systems engineering (HASE), IEEE,

Jan. 2017, pp. 88-95.

[59] S.R. Moshin, M. Rahman, H. Parvez, O. Badreddin and

S. Al Mamun, “Performance analysis of machine

learning approaches in software complexity prediction,”

Proceedings of International Conference on Trends in

Computational and Cognitive Engineering, Springer,

2021 pp. 27-39.

	I. Introduction
	II. METHOD
	A. Planning the review
	1) Identification of need
	2) Research questions
	3) Review protocol

	B. Conducting the review
	1) Quality assessment criteria
	2) Selection of primary studies

	III. RESULT AND DISCUSSIONS
	A. Description of primary studies
	1) Publication
	2) Publication year

	B. RQ1: Which ML techniques have been used for training software quality prediction (SQP) models using source code metrics?
	C. RQ2: Which source code metrics are commonly used for SQP using ML techniques?
	D. RQ3: What are the datasets used for SQP?
	1) Description of datasets used for Software Vulnerability Prediction (SVP)

	E. RQ4: Which techniques are commonly used for feature reduction?
	F. RQ5: Which performance measures are used for SQP?
	G. RQ6: Which Programming languages are currently used in developing SQP models?

	IV. LIMITATIONS
	V. CONCLUSION AND FUTURE GUIDELINE
	VI. REFERENCES

