
DOI: http://dx.doi.org/10.26483/ijarcs.v13i4.6887

Volume 13, No. 4, July-August 2022

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2020-2022, IJARCS All Rights Reserved 14

ISSN No. 0976-5697

RELATIONSHIP BETWEEN CBS QUALITY PARAMETERS FOR ASSESSMENT

OF COMPUTATIONAL INTELLIGENCE TECHNIQUES

Shivani Yadav

Department of Computer Science and Application

Maharshi Dayanand University

Rohtak, India

Bal Kishan
Department of Computer Science and Application

Maharshi Dayanand University

Rohtak, India

Abstract: Software reliability plays a vital role in the emerging field of digitalization. Everyone wants cost and time-efficient software along with
reliability which is achieved using CBS. In CBS, if the individual components are computed for a large or complicated system, then integration
becomes complex which results in difficulty in predicting CBSR. To solve this problem several computational intelligence techniques such as
SVM, ACO, PSO, ABC, GA, Neural network, are used but in our paper, we have focused on optimization techniques Fuzzy, ACO, ABC, PSO.

These techniques help in estimating and predicting reliability models for CBS. Also, we have done, an assessment and comparat ive analysis
based on a literature review of ABC, ACO, and PSO that have also been presented, for choosing suitable parameters for software reliability
modeling.

Keywords: Reliability, ACO, ABC, PSO, assessment

1 INTRODUCTION

The evolution of technology has led to the increasing

complexity and size of software systems. As a consequence,

the earlier approach of designing software from scratch has

become inefficient from cost, quality, and productivity
perspective. This has necessitated the need for different

development methodologies that are reusable, flexible, and

reliable. One such methodology is Component-based

software development. It focuses on the creation and use of

individual components that are independent and reusable.

Individual components with different functionalities are

integrated to develop software. This approach offers the

advantages of cost efficiency, time efficiency, increased

reliability, modularity, and performance.

According to ISO/IEC 9126-1, the quality of software

systems is estimated parameters like functionality, efficiency,
testability, usability, reliability, etc. Reliability is one such

critical aspect and can be defined as the ability of software to

tolerate faults during the lifetime of its use. Apart from

ISO/IEC 9126-1, some other reliability evaluation models

like Boehm’s Model, FURPS model, and Dromey’s model

have also been developed. Most of these models focus on

common parameters like fault tolerance, reliability

compliance, recoverability, and maturity for reliability

estimation. Software reliability focuses on three main

activities:

1. Error prevention

2. Fault detection and removal

3. Other reliability increasing measures

The traditional reliability estimation methods focused on

software as a single monolithic structure. Hence, it is difficult

to apply the same principles as these ignore the interactions

between components of a software system in a Component-

Based Software (CBS) system. The traditional methods are

unable to incorporate the operational and integration
uncertainty of a CBS environment. This requires the

inclusion of factors like an individual component failure,

component behavior, and interaction between components.

The interdependencies between components increase system

complexity leading to difficulties in reliability estimation.

Hence, CBS systems emphasize on two major elements:

1. Individual component reliability

2. Integrated system reliability

1.1 Individual component selection and component

assembly

The process of component selection is used to determine the

‘fitness’ of an existing component for use in a new system.

This problem arises when some components with the same

functionality already exist and the developers need to choose

one that best suits their requirement. A systematic approach

for component selection was proposed by Wanyama and

Homayoun:

1. Defining the evaluation criteria, including

functionality and component interaction, after

incorporating stakeholder requirements.

2. Searching COTS products
3. Applying a filter to search results using the set of

stakeholder requirements to develop a list of suitable

COTS components.

4. Evaluating shortlisted COTS components in detail,

including their properties and other criteria-based

assessments

5. Analyzing evaluation results and selecting the

COTS components with the best fit

Component assembly

The process of component assembly involves the integration
of components according to a defined architecture. The

architecture defines how independently developed

components can be integrated to work coherently while

fulfilling requirements. Sometimes, the architect may not be

able to access the source code and needs to work with only

the interfaces supplied by the component developer. Hence,

assembly becomes a challenging task with uncertainties about

Shivani Yadav et al, International Journal of Advanced Research in Computer Science, 13(4), July-August 2022,14-22

© 2020-2022, IJARCS All Rights Reserved 15

interaction patterns, behaviors, and unexpected results arising

out of complex integration.

The architecture used for component assembly is one of the

most important factors while designing real-world
applications, as even best-designed components may not be

able to deliver a world-class system if the architecture isn’t

able to utilize them cohesively. However, the benefits offered

by reliable, reusable components are still helpful in reducing

the design, implementation, and deployment time for a

software system.

The reliability of large software systems relies on

interconnection parameters like data translation, resource

sharing, and synchronization. As the size of software systems

grows, developers and architects need to identify and handle

these dependencies to resolve the complexity and
mismatches. Most programming languages haven’t

recognized these interconnection issues and the need to

separate functional and integration aspects of components.

Integration techniques should be able to handle software

reconfiguration dynamically and flexibly [1].

1.2 Factors affecting the reliability of CBS

The performance of a reliability estimation model is

contingent on its ability to consider the appropriate

parameters for measurement. Hence, we have curated a list of

relevant factors that affect the reliability of CBS systems,
after careful consideration of available research in the field

and unique characteristics of CBS systems.

1. Complexity: Complexity of an application is closely tied

to the complexity of individual components in CBS

systems and their interdependencies. It increases with

the increase in number of components invariably and it

becomes difficult to estimate reliability. This can lead to

unreliable, cumbersome systems and causes a drag on

operations of organizations that manage multiple

applications with a multi-layered infrastructure.

2. Reusability: As individual components are reused across

multiple systems with slight or no modifications, the
component becomes more reliable due to repeated

testing of the component throughout the development of

multiple systems. Components with high cohesion and

low coupling are highly recommended for reuse. It can

be concluded that higher reusability results in higher

quality and performance predictability.

3. Flexibility: This can be viewed as the software’s ability

to adapt to conditions and requirements and can be

measured as the number of changes that can be made

without altering the basic functionality of the software.

This plays a major role in CBS development as existing
components are often reused with slight modifications to

adapt to the requirements of different systems. The

higher the flexibility of a component, the lower is the

maintenance cost. Flexibility also safeguards against

future changes in architecture and requirements, thereby

increasing reliability.

4. Inter-operability: A component can communicate with

other components and share information without major

user intervention. As the technology industry develops

new tools and technologies at a rapid pace, this is

increasingly important for the seamless integration of
components. It is directly related to the cost of a system

and can be determined by the interfaces and

communication methods used for component

interactions [2].

From above, we can conclude that number of reusable

components is vital to Component-Based Software

Reliability (CBSR). In CBS systems, if the individual

components are computed for a large or complicated system,

then integration becomes complex which results in difficulty

in predicting CBSR. To solve this problem several

computational intelligence techniques such as SVM, ACO,

PSO, ABC, GA, Neural network, are used. These techniques

help in estimating and predicting reliability models for CBS.

The usefulness of a reliability model is dependent upon a

number of factors, including the methodology used and

parameters considered for evaluation. It is imperative to

identify what methodology is most effective for different

types of software systems. A reliability prediction model that

worked well for traditional monolithic development

approaches is not suited for reliability estimation of software

developed using component-based software development

approach. Soft computing based reliability estimation models

have shown promising results for small and large scale

systems in computer, medical and mechanical software.
Further, within models used for CBS reliability prediction,

there is a need to identify the right parameters that have a

larger impact.

A literature review of reliability prediction using soft

computing methods shows that it is being increasingly used

for CBS development. Soft computing algorithms like Ant

Colony Optimization (ACO), Particle Swarm Optimization

(PSO) and Fuzzy logic have shown promising results while

increasing response time and reducing errors. Further

research on estimating Component-based software reliability

(CBSR) using soft computing techniques may help in
improving the understanding of relationship between

software reliability and component-based factors like

complexity, reusability, dependency etc.

2 RELATED WORK

Section 2 is focused on review of previous work carried out

by researchers in the field of various optimization approaches

for the estimation of reliability. In the field of CBS, there is a

dearth of successful reliability prediction models, to get rid of

this problem, computational intelligence techniques are

introduced to get accurate results. Some of the previous work

of researchers is shown below based on computational
techniques like Fuzzy Logic, ACO, ABC, PSO, GA, etc.

Diwaker et al. [3] assessed different computational

techniques such as Neural-Network, Fuzzy Logic, Particle

Swarm Optimization, Genetic Algorithm, Support Vector

Machine, Ant Colony Optimization, and Artificial Bee

Colony and their ability to predict reliability using various

parameters. According to the author, the concepts discussed

can be used to predict the reliability of software as well as

hardware.

Diwaker et al. [4] suggested a new, soft computing based

model for predicting the reliability of Component-based
software using parallel and series reliability models. The

model is evaluated against Fuzzy Logic and Particle Swarm

Optimization. The authors show that their proposed model

Shivani Yadav et al, International Journal of Advanced Research in Computer Science, 13(4), July-August 2022,14-22

© 2020-2022, IJARCS All Rights Reserved 16

can predict reliability with a lower error rate than Fuzzy

Logic and Particle Swarm Optimization.

Wolski et al. [5] proposed a quality measurement framework

based on Boehm and McCall models within GEANT research

and innovation project. The project was started and funded by
the EU to make it self-financing in the future. The framework

emphasizes the reuse of existing data and takes an innovative,

research-oriented perspective to projects while applying

specific characteristics of the networking environment.

Authors’ hybrid approach of combining process and product-

related measurements stems from basic quality models and

enables comparison between internal and external projects in

a broad view.

Singh et al. [6] used object-oriented (OO) metrics, given by

Chidamber and Kemerer, to examine ANN’s applicability for

software quality prediction. A testing effort was predicted

using ANN and publically available NASA data was used to
find testing effort’s relationship with object-oriented metrics.

In more than 72.5% of the cases, an estimated testing effort

was within 35% of actual effort, with a MARE of 0.25.

According to the author, studies with large data sets need to

be carried out to determine the model’s relevance.

Khoshgoftaar et al. [7] focused on neural network-based

software quality models by training two neural networks, one

with the set of components selected by multiple regression

model selection and other with the entire set of principal

components. A big commercial system was used to select

multiple regression quality models from principal
components of software metrics. According to the author, two

quality measures were selected from five software systems

for comparing the models and understanding the relationship

between software quality and complexity metrics.

Sedigh-Ali et al. [8] suggested a graph-based model for

component selection from a family of components. The

system formed from the selected components should satisfy

non-functional requirements. According to the author, it was

ensured by identifying the set of components which can

together provide the best tradeoff among desire metrics. It

was found to minimize uncertainty in the cost and quality of

component-based systems.
Feurer et al. [9] used Bayesian optimization to develop an

Automated Machine Learning (autoML) framework for data

and feature preprocessing, algorithm choice, and

hyperparameters tuning. Existing autoML methods were

refined for robustness using i) a meta-learning component

that uses past data sets for Bayesian optimization and ii) an

ensemble construction component for combining the most

suitable methods from Bayesian optimizer. The meta-learning

feature ensures that the system improves over time as the

number of datasets increases. According to the author, the

proposed framework outperformed an existing autoML
system in most cases and different variations of the

framework with and without the two key additions showed

that meta-learning had a bigger impact on optimization.

Mendoza et al. [10] developed AutoNet for providing feed-

forward neural networks that could tune itself automatically.

According to the author, results obtained from combining

Auto-sklearn and Auto-Net were better than when using each

of them alone.

Sagar et. al [11] defined reusability metrics for black-box

components in component-based development by identifying

relevant factors and their relationships. According to the
author, reusability was estimated using Fuzzy logic on real-

time applications. Developers can reduce maintenance efforts

by using highly reusable components.

Sangwan et al. [12] described a model based on soft

computing for measuring software reusability levels. They

used soft computing techniques like neural networks, fuzzy
logic, and neuro-fuzzy. The model used four parameters,

namely i) Interface Complexity, ii) Understandability of

software, iii) Documentation quality, and iv) Changeability.

According to the author, the model trained using the neuro-

fuzzy technique predicted good results with MARE 22% and

MRE 0.007% in comparison to purely fuzzy logic or purely

neural network-based techniques.

Diwaker and Tomar [13] used metrics like efficiency,

dependency, and density of components for an assessment of

the Ant Colony Optimization methodology to determine

reusable components that lead to increased reliability.

According to the author, MATLAB results showed that
increase in component efficiency was accompanied by

increase in component density.

Diwaker and Tomar [14] defined a Particle Swarm

Optimization based fitness function using functionality,

average execution time, interface complexity, which can be

considered as CBS system metrics. According to the authors,

sub-parameters like interaction among components,

reusability, and resource usage were also used.

Diwaker and Tomar [15] evaluated Artificial Bee Colony
(ABC), Ant Colony Optimization (ACO), and Particle Swarm

Optimization (PSO) based models, using CBS system

reusability metrics to determine the approach which yields

best results. According to the author, parameters like the

number of functions, lines, and reusable components were

used for evaluation using MATLAB.

3 COMPUTATIONAL INTELLIGENCE

TECHNIQUES

Several computational techniques are used these days to get

an accurate and cost-efficient result with CBSE. For solving

large and complicated problems, optimization applications

are incorporated with optimization techniques such as Fuzzy

logic, SVM, ABC, ACO, and PSO. This paper mainly focuses

on the introduction of techniques fuzzy logic, ACO, ABC,

PSO, and their assessment concerning CBSRe

Fuzzy Logic

Fuzzy Logic when combined with mining helps in predicting

software reliability. The working of fuzzy logic is divided

into 4 four parts: “fuzzifier, inference engine, rules, and
defuzzifier”. Fuzzy logic represents the analytic result based

on faults depicted in failed software. The system takes faulty

data from faulty software as input data to predict faults in the

future as output. In predicting software reliability, fuzzy logic

plays a vital role as these models can be applied with ease at

different complex stages with varied failed data in the form

of sets [16].

Ant Colony Optimization

The ant colony algorithm was proposed by Dorigo[35] to

optimize the problems using a real example of ants. Ants’ life

was considered due to their extraordinary ability in searching
for food at the nearest location and they traverse that path

with releasing one chemical named as a pheromone.

Pheromone helps other ants to reach the same destination by

Shivani Yadav et al, International Journal of Advanced Research in Computer Science, 13(4), July-August 2022,14-22

© 2020-2022, IJARCS All Rights Reserved 17

traversing the same path. Using this concept, researchers

have applied many problems to get optimize solutions. Ant

colony algorithm is applied to many concepts like TSP,

network model problem, graph coloring problem, image

processing, VRP, etc [17,18,19].

Artificial Bee Colony Algorithm

Karaboga[20] introduced the concept of an artificial bee

colony algorithm that resembles a real bee's role in

“foraging”. ABC algorithm follows their own rule and duties

are provided to all the groups of bees which are classified

into employed, onlooker, and scout bees. All these bees

perform different tasks like, employed bees handle the

process after a new source identified by the scout bees and

the onlooker bees are attracted by employed bees through

dance to company them for food exploitation. These bees

change their duty intelligently according to the hive

condition. ABC algorithm uses the concept of fluctuation,
negative feedback, positive feedback, and multiple-

interactions. The location of food correlates to feasible

results to solve the problem of optimization. Hence, the

algorithm helps in achieving optimum results through

classified bees in search space and this algorithm is very

helpful in predicting software defects [21].

Particle Swarm Optimization (PSO)

Particle Swarm Optimization technique was proposed in

1995, by Doctor Eberhart and Kennedy. It is a heuristic

global optimization method based on bird and fish flock

movement behavior research.
In their search for food, birds travel from one place to

another, either as a group or in a scattered manner. The bird

with a good perception of food smell can locate the place

where food can be found and transmit it to the rest of the

flock, who converge at the food location. Applying the same

principles for developing the particle swarm optimization

algorithm, a model was developed, where bird movement
between spaces corresponds to the solution swarm. In such a

scenario, useful information is considered equivalent to

optimal local solution and food equals global optimal

solution. The solution swarm so obtained, is then compared

to bird swarm and global optimal solution is worked out

using PSO through cooperation of birds. PSO model has been

found useful in solving complex optimization problems in the

field of model classification, neural network training, signal

processing, vague system control, machine study, automatic

adaptation control etc., due to its ease of implementation and

relative simplicity [22].

Table 1 indicates the main computational intelligence

techniques which are used by researchers and practitioners

for predicting the reliability of CBS. As shown in Table 1,

ACO, PSO, ABC, and fuzzy logic are used for predicting

CBSRe due to the utilization of CBSE factors. Therefore,

there is a need to assess the optimization techniques such as

ACO, PSO, ABC, and Fuzzy logic. The assessment of these

techniques provides the component interface, components

integration, and reusability in Fuzzy logic, PSO, ACO, and

ABC.

Table 1 Assessment of Computational Intelligence Techniques to Predict CBSRe

S. No.
Computational Intelligence

Techniques
Parameters Used

1 Fuzzy Logic

KDLOC, effort multipliers, performance, fault density, usability,

serviceability, availability, adaptability, maintainability, capability,

interface complexity

2 PSO
Reliability, fitness value, component interface complexity, average

execution time, computational time

3 ACO
Probability, time interval, number of intervals, ants, failure rate, fitness

function

4 ABC Adaptability, computational time, waggle dance

The attributes like component interface, components

integration, reusability in any techniques provide an idea for
the suitability for predicting software reliability.

4 ASSESSMENT OF PSO

In this part, the evaluation of PSO is evaluated by utilizing

CBSE metrics. Numbers of cycles/iterations of elements are

produced or updated with considered fitness capacity that

assists in discovering optimal values. Few CBSE metrics are

contrasted that are well-matched for examining PSO with

new fitness capacity and Standard PSO assessment of

enhanced algorithm is done on MATLAB.

In PSO, every element comprises of its nearby best cost and

locality cost figured by wellness capacity. An effort has been

prepared to determine the cost of elements of PSO by

utilizing CBSE measurements. The associated CBS reliability

measurement has already been discussed in the previous

section and metrics like Average Execution Time (AET) and

Degree of Reuse of Inheritance Methods (DRIM) can also be

utilized for assessment of PSO.

Table 2. A Comparison between Various CBSE Metrics w.r.t PSO

Metrics Used

Optimization Techniques

CICM AET CFM DRIM CRUM CSM CCM CRM

PSO √ √ √ X X X X √

Shivani Yadav et al, International Journal of Advanced Research in Computer Science, 13(4), July-August 2022,14-22

© 2020-2022, IJARCS All Rights Reserved 18

The utilization of AET is to discover the normal carrying out

time of elements cooperation [23]. The degree of Reuse of

Inheritance Methods/ the Proportion of Potential (PP): It

characterizes the proportion of potential techniques utilizes
factual reused techniques [24]. Table 2 shows a relative study

of different metrics that are well-suited with PSO. This

analysis is based on the work of different researchers

presented in their work. They provide various case studies for

the description of each metric. From Table 3 CICM, AET,

CFM is chosen by analyzing different real case studies for

analysis.

Table 3 shows the suitability of the interaction of elements

that support PSO. Various costs are monitored using the

imitation of PSO by using CICM, CFM, and AET metrics.

Table 3 Analysis of CBSE Metrics with Various Parameters

Metrics Used Reusability Interface of Components Complexity Resource Utilization

CICM High High High High

AET - Low High Medium

CFM - High High -

Table 4 presents the most select normal cost of these
measurements monitored for the above-mentioned

measurements. In Table 4, various costs of suitable metrics

have been purposed to determine the element interface based

on the past study made in this area.

Table 4 Evaluation of Modified PSO with CICM, CFM,

and AET Metrics

Metrics

Used

Standard

PSO

PSO utilizing new Fitness

Capacity

CICM 51% 58.5%

CFM 65.2% 74.8%

AET 73.3% 79.21%

Table 5 Values of Multiple Iterations of PSO

CICM Standard PSO PSO utilizing New Fitness
Capacity

Generation1 16000 16038

Generation 2 16800 17254

Generation 3 17025 18452

Generation 4 17078 18490

Generation 5 21410 21492

CICM: Table 5 presents the cost of Standard PSO and

modified PSO by using new wellness capacity with CICM

generations.

Figure 1 presents, when new wellness capacity is considered

for PSO, and then the amount of interface of elements is
improved, the outcome in raise in reliability.

Figure 1 CICM vs. Generation

CFM: Table 6 presents the cost of Standard PSO and changed

PSO utilizing new wellness with different CFM cycles.

Table 6 Different Cycles for CFM among Standard PSO

and Modified PSO using New Wellness Capacity

CFM Standard

PSO

PSO utilizing New Fitness

Capacity

Generation1 2999 3320

Generation 2 3292 3774

Generation 3 3345 4113

Generation 4 3398 4123

Generation 5 4112 4157

Figure 2 shows that the precision of elements interface is

soaring in the planned proposal, which assists in reliability
approximation.

Shivani Yadav et al, International Journal of Advanced Research in Computer Science, 13(4), July-August 2022,14-22

© 2020-2022, IJARCS All Rights Reserved 19

Figure 2 CFM vs. Generation

AET: Table 7 presents the cost of both Standard PSO and

changed PSO with modified wellness capacity utilizing AET

generations.

Table 7 Number of Generations for AET with Standard

PSO and Modified PSO using Modified Fitness Capacity

AET Standard PSO PSO utilizing

New Fitness

Capacity

Generation1 468.27 511.38

Generation 2 551.31 592.28

Generation 3 585.64 751.23

Generation 4 722.33 771.51

Generation 5 738.62 742.50

Figure 3 shows that AET provides a higher value when

modified PSO is evaluated. The execution time increases by

increasing accuracy.

PSO having a new wellness capacity utilizes few CBSE

measurements that hold up the interface between elements,
reusability of elements, and successful consumption of

resources by using new wellness capacity.

The outcome demonstrates that the changed proposal has

provides improved outcomes as contrasted with established

PSO, as CBSE measurements are utilized for evaluation. In

advance research, CBSE measurements can be utilized for

assessment of various soft computing methods for assessment

of CBS reliability.

Figure 3 AET vs. Generation

5 ASSESSMENT OF ACO

One of the challenges in Component-based Systems (CBS) is

finding an optimal path between the components. One such

method that has been used to determine optimal path between

components is a soft computing technique called Ant Colony
Optimization (ACO). Metrics like component dependency

and component density are pivotal in the assessment of ACO.

Results have shown the efficiency of component interaction

when ACO is used for optimization. Hence, it is suggested

that real data sets be used in the future for proposing a new

reliability framework.

The efficiency of Component: Efficiency can be represented

as the number of required components divided by total

number of components. The improvement achieved for

optimal selection of retrieved components, with target search,
by using ACO can be seen in Table 8 and Figure 4.

Table 8 Efficiency Value with and without ACO

S. No. Search Value Efficiency with ACO

Efficiency

without

ACO

1 5 75% 62%

2 8 71% 58%

3 9 55% 19%

4 4 31% 49%

5 10 24% 8%

Figure 4 Efficiency vs. Generations

The results predict that after applying ACO the efficiency of

interaction between components increases.

Component Density: It is the ratio of a definite number of

interfaces to access a number of interfaces.

Table 9 Component Density Values

S. No. Without using ACO With using ACO

1 0.2447 0.4264

2 0.2625 0.4626

3 0.2753 0.5101

4 0.2615 0.5589

5 0.2743 0.5327

Shivani Yadav et al, International Journal of Advanced Research in Computer Science, 13(4), July-August 2022,14-22

© 2020-2022, IJARCS All Rights Reserved 20

Table 9 and Figure 5, shows that the component density is

decreased when the interfaces between components is low.

Figure 5 Component Density vs. Generations

 Component Dependency: The dependency represents the

influence of one component interaction to another. An

individual component can be used as a function/module

which is needed at the time of component/system integration.

6 COMPARISON OF ASSESSMENT OF ACO, ABC

and PSO

Table 10 below shows the comparison between ACO, ABC

and PSO over different parameters

Table 10 Comparison of PSO, ACO, and ABC

Parameters
Optimization Techniques

PSO ACO ABC

Movement
Movement in search space for optimal

solution
Activities of ant colonies. Activities of bee colonies

Selection of Path

Global optimal value for each particle
is taken as the optimal solution.

Based on the quantity of
Pheromone on track. The path

with the highest quantity is

selected.

Waggle Dance (WD) provides
both quality and direction of

food.

Enrollment Methods
Indirect - Particle velocity is calculated

using fitness function
Indirect – Use of pheromones by

Ants based on food type and
quantity

Direct – WD gives target
direction and distance

Navigation Method
Random walk to the target and

collection of path details
Random walk while laying down

pheromones

Random walk and collection of
path details

Adaptability Less adaptive More adaptive Less adaptive

Computational Time Higher than ABC Higher than ABC Least out of the three

Steps Requirement for

Computing Result

Requires more Steps than ABC.

Requires more steps than ABC.

Least number of steps out of
the three

Scalability Least scalable. More scalable. More scalable.

Advantages

i) Less calculations vis-à-vis other
methods.

ii) Provides choice of fitness function

selection for minimization and
maximization.

i) robustness
ii) distributed

computation avoids premature
convergence

i) Natural parallelism.
ii) The quick finding of the good

quality result.
iii) Can be applied to components
with difficult to predict behavior

Team job: Scout and hunter
bees work jointly for getting

healthy food.

Limitations

i) Lower accuracy owing to difference
in particle motion and direction

ii) Difficult to use in non-coordinate
and contact scattered particle

environment

i) Early convergence
ii) identification of design

parameters is difficult

i) WD mapping to outcome is
complex

ii) Prior knowledge is required
about some factors

Applications

Telecom, Power Systems, Signal

Processing, Combinatorial
Optimization

 etc.

Scheduling problems, Assignment

problems, vehicle routing, TSP,
image processing, network model

problem

TSP, Planning, Spam

identification,
etc.

Each optimization technique comes with its own set of

costs, contingent upon factors like fitness functions,

iterations, number of interactions etc. A mathematical
solution to calculate this cost is [27]:

Cs=Cnr – Cr …. eq 1

Where,

Cs = saving cost or mean cost,

Cnr = software development cost without reusable
components, and

Cr = software development cost with reusable components

Shivani Yadav et al, International Journal of Advanced Research in Computer Science, 13(4), July-August 2022,14-22

© 2020-2022, IJARCS All Rights Reserved 21

Table 11 show data about lines of code (including duplicate

statements and multi-usage functions), functions which have

been used repeatedly and functions with single time usage.

Table 11 LOC and Function used in Optimization

Techniques using MATLAB

Optimization
Techniques

Line of
Code

Function
used

Repeatedly

Function not
used

Repeatedly

PSO 232 8 4

ACO 123 9 5

ABC 142 7 4

Table 12 summarizes the parameters that have been used for

comparison of ABC, ACO and PSO. Iterations can be

increased or decreased according to the requirements.

Table 12 Simulation Parameters

No. of Iterations 150

Optimization Techniques ABC, ACO and PSO

Simulation Time 25000 seconds

Fitness Function Used Y= x1
2- 3x2+10 Where 0<=x1,

x2<=8

Operating System Windows 10

Platform Matrix Laboratory 2009 v2

6.1 Evaluating the Best Cost of PSO and ACO algorithm

The following work compares the performance of PSO,

ACO, and ABC by simulating these techniques w.r.t the best

cost and number of iterations.

The best cost presents the mean cost as mentioned in the

reusability metric that is estimated using a line of code and
functions used in the program for several iterations as shown

in Table 12. From the analysis, it can be observed that ACO

shows higher reusability factor as compared to PSO and

ABC. The MATLAB output shows the relationship between

iteration and cost. It can vary depending upon the analysis

required to obtain optimal results.

It depends on the user fitness function and user requirement

that whether ACO is better or PSO is better. When it is

necessary to complete the problem or solve a problem
within the time then ACO may be chosen but it affects the

reliability of components. If the problem is on a large scale

then the PSO algorithm can show better performance

compared to other techniques. CBSE reliability factors can

be utilized using PSO. The momentum effect on particle

movement in Particle Swarm Optimization (PSO) provides

variety in search trajectories along with faster convergence.

It has been observed that Fuzzy Logic and PSO provide

minimum error results when the space is small, and may be

used for further research in reliability prediction. Other

techniques like GA, NN, ACO, and SVM can be used for

optimization in large spaces.

Software reliability prediction is an important research area

due to the challenges associated with it. This study reviews
different computational intelligence techniques, considering

various parameters, for reliability prediction in Component-

Based Systems (CBS).

7 CONCLUSION

This paper focuses on factors affecting the reliability of CBS

and importance of CBS using computational intelligence

techniques for optimization. There are many computational

techniques such as NN, GA, SVM, Cuckoo, Tabu search, etc

but we focused on Fuzzy logic, ABC, ACO, and PSO. It is

analyzed that optimization techniques PSO, ACO, ABC, and
Fuzzy rationale have been utilized for anticipating CBSRe.

These advancement methods utilized those components that

influence the CBS framework. This paper presents the

examination and evaluation of ACO, ABC, and PSO

methods dependent on an audit of the writing. It is seen that

PSO and Fuzzy rationale might be used where a reaction is

quick and yield with fewer mistakes is required. ACO might

be utilized where the shortest path’s length is processed. In

the future, further research on these techniques may yield a

model for improving CBS reliability prediction using CBS

specific parameters.

REFERENCES

[1] Vijayalakshmi K and Ramaraj N (2014) Modeling for

component selection Assembly and quality assurance of

Component based software. PhD Thesis, Anna University.
[2] Dubey, S.K., Jasra, B. Reliability assessment of component

based software systems using fuzzy and ANFIS
techniques. Int J Syst Assur Eng Manag 8, 1319–1326 (2017).
https://doi.org/10.1007/s13198-017-0602-z.

[3] Diwaker, C., Tomar, P., Poonia, R.C. et al. Prediction of
Software Reliability using Bio Inspired Soft Computing
Techniques. J Med Syst 42, 93 (2018).

https://doi.org/10.1007/s10916-018-0952-3
[4] Diwaker, C., et al. A New Model for Predicting Component-

Based Software Reliability Using Soft Computing. IEEE
Access,7:147191-147203 (2019). doi:
10.1109/ACCESS.2019.2946862.

[5] Wolski Marcin, Walter Bartosz, Kupiński Szymon and
Chojnacki Jakub. Software quality model for a

research‐driven organization—An experience report. Journal
of Software: Evolution and Proces 30(5), 1-14(2017).
doi:10.1002/smr.1911. e1911.

[6] Singh Y., Kaur A., and Malhotra R. Predicting Testing Effort
using Artificial Neural Network. Proceedings of the World
Congress on Engineering and Computer Science (WCECS),
1-6, 2008, ISBN: 978-988-98671-0-2

[7] Khoshgoftaar T. M., Szabo R. M. and Guasti P. J. Exploring the
behaviour of neural network software quality models,
Software Engineering Journal, 10(3), 89-96
(1995). doi:10.1049/sej.1995.0012

[8] Sedigh-Ali S., and Ghafoor A. A Graph-Based Model for
Component-Based Software Development. Proceedings of the
10th IEEE International Workshop on Object-Oriented Real
Time Dependable Systems, IEEE, 1-6 (2005).

[9] Feurer M., Klein A., Eggensperger K., Tobias Springenberg J.,
Blum M., and Hutter F. Efficient and Robust Automated
Machine Learning. Advances in Neural Information
Processing Systems 28 (NIPS), 1-9 (2015).

Shivani Yadav et al, International Journal of Advanced Research in Computer Science, 13(4), July-August 2022,14-22

© 2020-2022, IJARCS All Rights Reserved 22

[10] Mendoza H., Klein A., Feurer M., Tobias Springenberg J. and
Hutter F. Towards Automatically-Tuned Neural Networks.
JMLR: Workshop and Conference Proceedings, ICML 2016
AutoML Workshop, 58–65 (2016).

[11] Sagar S., Nerurkar N.W. and Sharma A. A soft computing

based approach to estimate reusability of software
components. ACM SIGSOFT Software Engineering Notes
35(4): 1-5 (2010). doi:10.1145/1811226.1811235

[12] Sangwan O. P., Bhatia P. K. and Singh Y. Software reusability
assessment using soft computing techniques. ACM SIGSOFT
Software Engineering Notes 36(1): 1-7(2011).
doi:10.1145/1921532.1921548

[13] Diwaker C., and Tomar P. Assessment of Ant Colony using

Component-Based Software Engineering Metrics. Indian
Journal of Science and Technology 9(44):1–5(2016).
DOI:10.17485/ijst/2016/v9i44/105159

[14] Diwaker C., and Tomar P. Optimization and appraisal of PSO
for CBS using CBSE metrics. 3rd International Conference on
Computing for Sustainable Global Development
(INDIACom), IEEE, 1024–1028 (2016).

[15] Diwaker C., and Tomar P. Evaluation of swarm optimization

techniques using CBSE reusability metrics. IJCTA 2(22):
189–197 (2016).

[16] Rana, S. and Yadav, R. K. A Fuzzy Improved Association
Mining Approach to Estimate Software Quality International
Journal of Computer Science and Mobile Computing 2(6)
116-122(2013).

[17] Dorigo M. (1992) Optimization, learning, and natural
algorithms. Ph. D. Thesis, Politecnico di Milano, Italy

[18] Zheng T. (2019) Automatic Test Case Generation Method
of Parallel Multi-population Self-adaptive Ant Colony
Algorithm. In: Patnaik S., Jain V. (eds) Recent
Developments in Intelligent Computing, Communication
and Devices. Advances in Intelligent Systems and
Computing, vol 752. Springer, Singapore

[19] Dahiya O., Solanki K., Dalal S., and Dhankhar A. An
Exploratory Retrospective Assessment on the Usage of Bio-
Inspired Computing Algorithms for Optimization.
International Journal of Emerging Trends in Engineering
Research 8(2): 414-434 (2020).

[20] Karaboga D. An idea based on honey bee swarm for numerical
optimization. Technical report-tr06, Erciyes University,
Computer Engineering Department, 200, 2005.

[21] Akay R., Akay B. (2020) Artificial Bee Colony Algorithm
and an Application to Software Defect Prediction. In:
Bennis F., Bhattacharjya R. (eds) Nature-Inspired Methods
for Metaheuristics Optimization. Modeling and
Optimization in Science and Technologies, vol 16.

Springer, Cham
[22] Bai Q. Analysis of Particle Swarm Optimization Algorithm.

Computer and Information Science 3(1): 180-184 (2010).
[23] Caldiera G., and Basili V. R. Identifying and Qualifying

Reusable Software Components. Computer 24(2): 61-70
(1991). DOI: 10.1109/2.67210

[24] Caballero R.E., Demurjian S.A. (2002) Towards the
Formalization of a Reusability Framework for Refactoring.

In: Gacek C. (eds) Software Reuse: Methods, Techniques,
and Tools. ICSR 2002. Lecture Notes in Computer
Science, vol 2319. Springer, Berlin, Heidelberg

[25] Rumbaugh J., Blaha M., Premerlani W., Eddy F., and
Lorensen W. E. Object-Oriented Modeling and Design,
199(1). Englewood Cliffs, NJ: Prentice-hall, 1991.

[26] International Organization for Standardization. ISO/IEC 9126-
1: Software engineering - product quality - part 1: Quality

model, 2001.
[27] ISO/IEC 25010:2011 Systems and Software Engineering --

Systems and Software Quality Requirements and Evaluation
(SQuaRE) -- System and software quality models, 2011.

https://doi.org/10.17485/ijst%2F2016%2Fv9i44%2F105159
https://doi.org/10.1109/2.67210

