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Abstract: Operation Sequencing Problem (OSP) is a typical NP complete problem, of which the search space increases with the number of 
operations. Genetic Algorithm (GA) is an efficient optimization algorithm characterized with explicit parallelism and robustness, applicable to 
OSP. In this paper, we will solve a problem of operation sequencing using GA. But, we will not use simple GA; will use Greedy Crossover 
instead of simple crossover. Finally experimental results show that the new Greedy Crossover algorithms perform much better than the other 
techniques. 
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I. INTRODUCTION 

Genetic Algorithm (GA) is a kind of optimization 
algorithm which is based on the natural group evolution 
genetic mechanism; it depends on search algorithms [1][2]. 
It is very robust for problems of different types, with 
desirable characteristics such self-organization, self-learning 
and self adaption in optimization. Also, GAs have the 
advantages that do not need to describe all the 
characteristics of the problem in advance and thus can solve 
complex and unstructured problems [3]. Due to the 
advantages above, GA has attracted the interests of experts 
in various fields. Widely used for optimization problems in 
automatic, social and economic areas, GA has also 
infiltrated into many other disciplines, such as engineering 
design, aerospace, electronics and power systems. For the 
combinatorial optimization problems which are difficult to 
adopt traditional methods, such as the nonlinear, multi-
model, multi-objective function problems, GA method has 
become a significant alternative. It's popular to solve 
travelling Salesman Problem (TSP) with GA [4][5]. Given a 
set of N cities and each of the distance between two cities, 
we need to find a close journey to travel every city once and 
make the total distance shortest for a TSP. Usually the 
satisfactory solution for a combinatorial optimization 
problem may not be unique, which means, there might be a 
number of solutions meeting the conditions which make the 
objective function to achieve the optimal value larger than 
the predetermined threshold, but the largest (or smallest) 
value of the objective function is always unique[6][7]. The 
searching space of a TSP increases with the number of 
cities, N. And the combination number of all the road trips is 
(N-1)!. We will convert our problem into travel salesman 
problem. Different cities will be the different operations and 
the path of travel salesman will be the sequencing of the 
operations. In travel salesman problem we find an optimum 
path to reduce the cost of travel in operation sequencing will 
find an optimum sequence to reduce the cost of production. 

 
 

II. RELATED WORK 

A permutation of all operations is represented as a 
chromosome when solving OSP. Assuming there are n 
operations, a possible sequence can be encoded as an integer 
vector (1, 2, 3, 4, 5…..n,) with the length of n. Each integer 
in the vector just appears once in a path. For a TSP with n 
operations, this paper uses 0 ~ n-1 different integer encoding 
to express sequence of these n operations, a permutation of 
which is a possible solution. The data structure is as follows: 

       // the definition of Gene (a operation) 
                                     struct Gene 
                                   { 
                                    int ID󲐀 // the number of the 
opeartions 
              map<Gene*,float> linkCost //the overhead of cost 
of one operation to another 
                                  };                                                            
                              // the definition of Chrom (a permutation 
of all the operations) 
                               struct Chrom 
                                { 
                                 Vector <Gene*> chrom_gene󲐀 // the 
definition of 
                               chrom_gene (a sequence of all the 
operations) 
                               float varible󲐀 // the total cost overhead 
                               float fitness󲐀 // individual fitness 
                               }; 

This is one of the simplest expression methods logically 
corresponding to the operation sequencing, which meets 
restrictive conditions of OSP. It can not only guarantee that 
every operation is added into the sequence once and only 
once, but also ensure that any subset of these operations 
would not form a loop [8]. 

A. Selection 
The selection of individuals to produce successive 

generations plays an extremely important role in a GA. A 
probabilistic selection is performed based upon the 
individual’s fitness such that the better individuals have an 
increased chance of being selected. An individual in the 
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population can be selected more than once with all 
individuals in the population having a chance of being 
selected to reproduce into the next generation. Lee et al. 
(2001) [9] developed the roulette wheel, which was the first 
selection method. In addition, there are se-lection methods, 
such as roulette wheel’s extensions, scaling techniques, 
tournaments, elitist models, and ranking methods. These 
selection operators were presented for numerical 
optimization and the main objective is to reduce the 
sampling error and improve calculation precision. When 
using GAs for operations sequencing, the natural number is 
used for coding. The fitness value of individual is only a 
relative concept (only used for value comparing and the 
value itself is not concerned). So the problem of sampling 
error does not exist. Compared with other selection 
operators, the ‘‘tournament selection’’ is more suitable for 
the problem of operations sequencing. In order to guarantee 
the astringency of GAs, the optimal individual in one 
generation must be kept to the next generation. Other 
individuals in population are selected using the ‘‘tournament 
selection’’ operator. Suppose there are W individuals to be 
selected, selecting two individuals randomly from the 
population and keeping the better one for the next 
generation. Repeating this process W-1 times and then at 
last all individuals in the next generation are obtained [10]. 

B. Simple Crossover 
In this work, a partially mapped crossover (PMX) 

operator (Gorges-Schleuter, 1985) [11] is modified to 
produce offspring. After two parents are selected from the 
population, based on the string length (i.e., number of 
elements in the string), a crossover point is randomly 
generated and a segment of the string from that point to end 
of the string is selected. The offspring, child 1, is generated 
by arranging the elements of the selected segment in this 
parent according to the order in which they appear in the 
other parent with the order of the remaining elements the 
same as in the first parent [12]. The role of these parents is 
to generate another off- spring, namely, child 2. The 
crossover operator can be illustrated as follows: 
Select two strings from the current population and denote 
them as parent 1 and parent 2: 
Parent 1 : (1,4,6,3,5,2) Parent 2 : (4,5,6,1,2,3) 

Consider a random crossover site as X=2 and the 
segment from parent 1 from the crossover site till the end of 
the string (6, 3, 5, 2) 

Arrange the selected elements in the order of parent 2 
and obtain (5, 6, 2, 3). 
Then the offspring, child 1 from parent 1 is generated as: 
(1,4,5,6,2,3). 

a. Problems with Simple Crossover 
A portion of one parent’s string is mapped onto a 

portion of the other parents string and the remaining 
information is exchanged [13][14]. Consider for example 
the following two parent tours: 

          (12345678) and (37516824) 

 
Figure 1. Simple crossover 

First, it selects uniformly at random two cut points 
along the strings, which represent the parent’s tours. The sub 
strings between the cut points are called the mapping 
sections. In the above example they define the mapping 4-1, 
5-6, 6-8.Now the mapping section of the first parent is 
copied into the second offspring and the mapping section of 
the second parent is copied into the first offspring offspring1 
(xxx168xx) and offspring2: (xxx456xx) 

Then offspring ‘i’ (‘i’=1, 2) is filled up by copying the 
elements of the I-th parents. In case an operation is already 
present in the offspring it is replaced according to the 
mapping. For example the first element of offspring 1 would 
be a 1 like the first element of the first parent. However 
there is already a 1 present in offspring1. Hence, because of 
the mapping 1-4 we choose the first element of the offspring 
1 to be a 4.the second, third and seventh elements of 
offspring1 can be taken from the first parent. However, the 
last element of the offspring 1 would be an 8, which is 
already present. Because of the mapping 6-6 and 6-5, it is 
chosen to be a 5. Hence Offspring1=(42316875) similarly 
Offspring2=(37846521). Due to this problem we can’t use 
this simple crossover. For the solution of this problem we 
had used Greedy crossover. 

b.  Greedy Crossover 
In the design of the crossover operator, we first 

absorbed ideas from two previous studies. One was by 
Grefenstetts et al. (1985) [15] who used a heuristic 
crossover which constructs an offspring by choosing the 
better of two parental edges [16]. Another was by 
Starkweather et al. (1991) [17] who designed the edge 
recombination operator. One of their findings was that it is 
very important to preserve common edges between the two 
parents [18]. After studying the above work, we developed 
the following crossover operator, which is different from the 
previous two algorithms but combines the good ideas from 
both. Given two parent tours in the normalized path 
representation, P1 and P2, the first offspring is constructed 
as follows: start with a random city c, then check whether 
either the edge leading to c or from c (i.e., the edge <c, 
C,ight> or <cleft, c>) is used in both P1 and P2. If so, the 
common edge is chosen. Otherwise, we compare c’s right 
side edge in each of P1 and P2. The shorter one is chosen, 
unless it would introduce a cycle, in which case the longer 
one is chosen. If the longer one would also introduce a 
cycle, then we extend the tour by a carefully selected edge 
(details later). The second offspring will be constructed in a 
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similar way, but we compare c’s two left side edges instead 
of its right side edges. 
 
 parent 1: 1 3 4 2 5 6 
 parent 2: 1 2 3 6 5 4 
 
 Offspring 1: (if randomly starting from city 6) 
                                                        
                 6 5 4 2 3 1             1 3 2 4 5 6 
 
Offspring 2: (if randomly starting from city 3) 
 
                3 2 1 6 5 4              1 6 5 4 3 2 

 
Figure. 2. An example of greedy crossover 

 
Figure 1 shows a simple example of our crossover 

operation. Assume that we have two parents as shown in 
Figure 1. To generate the first offspring, we randomly start 
from city 6. The two right side edges are <6,1> in P1 and 
<6,5> in P2. The distance table shows that <6,1> and <6,5> 
have exactly the same length. In this situation, the edge in 
P1 would normally be selected first for offspring 1; the edge 
in P2 for offspring 2. However, in our example, edge <6,5> 
is a common edge between the two parents, so <6,5> is 
chosen. Next, from city 5, we have two right side edges: 
<5,6> and <5,4>. This time, we choose <5,4> because the 
common edge <5,6> would create a cycle. From city 4, the 
edges are <4,2> and <4,1>: the shorter one <4,2> is chosen. 
Then from city 2, there are <2,5> and <2,3>: the shorter one 
<2,3> is chosen. Finally, we only have city 1 left, which has 
to be the last one in the tour. The second offspring is 
generated starting from a different random city, 3. This time, 
the left edges are compared. Luckily, all of the best edges in 
P1 and P2 have been inherited by offspring 2. The criterion 
of selecting a new edge to prevent a cycle is based on the 
same idea as used in our selective initialization. That is, 
edges not belonging to the k-nearest neighbor sub graph are 
most likely to be excluded from the optimal tour. Thus, we 
try to select from the k-nearest neighbor list first; (only if 
they are all used do we select randomly from the other, 
longer, edges. The actual selection rule implemented is a bit 
more sophisticated in how to choose from the k-nearest 
neighbour list. Assuming that c is the current city, we 
examine all unused cities in e’s k-nearest neighbour list, 
then choose the one which has the fewest k-nearest  
neighbour cities available. The idea behind this is that the 
fewer k-nearest-neighbours c has, the more likely it is to 
become an isolated city in the knearest neighbour subgraph. 
So we should choose it, to avoid the danger of using a non-
k-nearest-neighbour city [19]. 

C. Mutation. 
A mutation operator is used to investigate some of the 

unvisited points in the search space, and also to avoid 
premature convergence of the entire feasible space caused 
by sequences GAs, and only the main compulsive 
constraints are given in the formula [20]. Other constraints 
can be also added behind it. The explanation of each item in 
the formula is shown in the following section: some super 
chromosomes. This operator makes random changes in one 
or more elements of the string. Mutation is done with a 
small probability, called mutation probability or rate. This is 
done to protect loss of some potentially useful strings. Some 

individuals of the next generation, which are obtained 
through the two above-mentioned operators, are selected 
and then the positions of two codes in each individual are 
exchanged randomly to realize the mutation operation. For 
example, if the third and sixth positions are the selected 
mutation positions in individual O1, new individual O2 will 
be obtained as follows: 
 O1 : (1,4,5,6,2,3)                    O2 : (1,4,3,6,2,5) 

The chromosomes resulting from these operators are 
often known as offspring or children and these form the next 
generation’s population. This process is repeated for 
generating feasible solutions. A feasible solution is a 
sequence of operations that considers all of the compulsive 
constraints. The fitness value for a feasible solution is zero. 
Therefore, when the fitness value for some of solutions is 
zero, the genetic algorithm stops and selects these solutions 
as feasible solutions [21]. This process is repeated until the 
enough feasible solutions are generated. 

D.  List Of Operations with Codes 

Table 1. List and coding of operations 

Serial No. Code for 
Operation 

Name of 
Operation 1. 1 Rough Turning 

2. 2 Finish Turning 

3. 3 External Groove 
Cutting 

4. 4 External Threading 

5. 5 Internal Threading 

6. 6 Drilling 

7. 7 Boring 

 
E. Fitness Function 

The fitness function, which is a measure function used 
to express the adaptability of a string, is used to connect the 
problem and the algorithm. The adaptability is expressed by 
the fitness value. In this stage, additive constraints can be 
implemented. The optimization constraint is often 
considered as an additive constraint. This constraint means 
that some target functions should be met in the technological 
sequence decision, such as minimum processing times, 
minimum production cost and soon. In this research, the 
minimum production cost is employed to calculate the 
fitness of each operation sequence, and to measure the 
efficiency of a manufacturing system.  

F. Cost Matrix 
To make cost matrix, as shown below in the matrix, 

write the cost of operations in the matrix, if we perform 
operation 2 after operation 1 than its cost is 10 rupees, we 
will write this in box 1,2. The cost of operation 3 after 1 is 
rupees 7, so it is written into the box 1,3. All the costs will 
be written in corresponding boxes as shown below. 
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Table 2. Cost Matrix 
 

Operations 1 2 3 4 5 6 7 

1 ∞ 10 7 9 5 4 3 

2 2 ∞ 7 4 6 9 2 

3 4 ∞ ∞ 5 7 9 2 

4 8 ∞ ∞ ∞ 6 4 7 

5 9 4 6 5 ∞ 8 3 

6 2 7 4 5 8 ∞ 6 

7 4 3 5 5 ∞ 2 ∞ 

 

a. Fitness Function in our Problem (α)  
Where α is a positive number as large as it can be. The 

value of this fitness is calculated by adding the values of 
production cost of different operations (from cost matrix) 
according to operation sequence string generated by GA. 
Example: 
     String:              3-4-5-2-1-6-7.     

   Cost (boxes):(5)(6)(4)(2)(4)(6)=27(α)    

Figure.3. Calculation of Fitness function. 
The chromosomes resulting from the three operators, 

namely selection, crossover and mutation, are often known 
as off spring or children and these form the next 
generation’s population. This process is repeated for a 
desired number of generations, usually up to a point where 
the system converges to significant well-performing 
sequences and the value of fitness function is minimum. 

G. Methodology 
a. First randomly create 20 strings with the given 

operations.  
b. Carry on top 10 sequences to the next generation 

leaving the other 10 sequences.  
c. From the best 10 tours randomly select parents and 

producing 10 more children by performing the all three 
steps of GA.  

d. Append these 10 children’s to the previous best 10 
parents to make them to total 20 strings.  

e. Again sort the strings and take best 10 strings among 
them for next generation  

f.  Repeat the above operations to create 10 more 
children’s and again sorting the combined 20 tours.  

g. Repeat these steps until the value of fitness function get 
constant and it do not decreases further by more 
iteration. 
III. RESULTS AND DISCUSSIONS 

For the described example, the operation information is 
shown in Table 1. The cost of Operations is given into Table 
2. According to first step of the genetic algorithm randomly 
created 10 strings are shown in Table 3.  

Table 3. (10 strings selected from the randomly selected 20 strings) 

String No. String Fitness 
value 

1 1-2-4-3-6-7-5 29 

2 1-4-6-2-7-3-5 34 

3 1-6-4-7-3-5-2 32 

4 4-3-1-2-6-7-5 29 

5 4-1-6-2-7-5-3 27 

6 4-6-1-2-3-7-5 25 

7 4-1-6-2-3-7-5 28 

8 6-4-7-5-1-3-2 28 

9 6-1-4-7-2-3-5 35 

10 6-1-4-7-5-3-2 24 

 

After performing the all three steps on these 10 strings 
or parents, we will get 10 new strings or children and got 
new value of fitness function according to these new 
children as shown in Table 4.  In Table 3. ,the least value of 
fitness function is 24 for the string 6-1-4-7-5-3-2. In Table 
4., least value of fitness function is 16 for string 6-4-3-1-7-
5-2. 

Table 4. String generated by GA. 

String No. String Fitness 
value 

1 6-4-3-1-7-5-2 16 

2 6-4-3-1-7-2-5 21 

3 1-6-4-7-5-3-2 22 

4 4-6-1-2-7-5-3 24 

5 6-1-4-7-5-3-2 24 

6 4-6-1-2-3-7-5 25 

7 1-6-4-7-3-2-5 27 

8 4-1-6-2-7-5-3 27 

9 1-4-6-2-7-5-3 28 

10 6-4-7-5-1-3-2 28 

 
Since the performance of GAs is not guaranteed and 

can never be assessed on the basis of a single run, in this 
case, the program will be repeatedly run for 10 times, and 
the production cost or fitness function of every optimal 
process plan is generated and it can be seen that the 
production cost varies from 35 to 11 and it can not be 
reduced more by further iterations, so final least cost is 11 
and the most optimal sequence is 1-6-4-3-2-7-5. As shown 
in Table 5.  
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Table 5. String generated by GA after 10 iterations. 
 

String No String Fitness 
Value 

1 1-6-4-3-2-7-5 11 

2 1-6-4-3-7-5-2 15 

3 4-6-1-7-5-3-2 15 

4 6-4-3-1-7-5-2 16 

5 4-6-3-1-7-5-2 19 

6 1-6-4-3-7-2-5 20 

7 6-4-3-17-2-5 21 

8 6-4-3-1-2-7-5 21 

9 4-6-3-1-2-7-5 24 

10 4-6-3-1-7-2-5 24 

 
 

In this work, we used a different genetic algorithm for 
the OSP. The algorithm applies a greedy crossover and 
mutation. A selective initialization operator is also proposed. 
The results show that combining the greedy crossover and 
genetic algorithms is a promising approach for solving the 
large OSP. Two concluding remarks are as follows.  

From the point of view of genetic algorithms, by 
Combination of greedy crossover with GA it becomes a very 
effective tool to solve the problem of OSP. Moreover, it 
makes small population sizes sufficient to solve large 
problems.  

From the point of view of this method, by incorporating 
the genetic algorithms technique, we can escape from local 
optima in many cases, so that much better results can be 
obtained than by using heuristic methods alone. We can also 
achieve very high stability. 

IV. CONCLUSION & FUTURE SCOPES 

There are two interesting directions for future work. 
One is to further improve the algorithm by introducing a 
simplified form of the Lin-Kernighan heuristic.  Another 
direction is to parallelize the algorithm. We would like to 
investigate whether the algorithm can be factorized 
efficiently. We are also interested in modifying the 
algorithm to a coarse-grained parallel genetic algorithm. 
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