
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 505

ISSN No. 0976-5697

Business Requirements - A Study on Requirement Solutions for Software Development

B. Dhanalaxmi
Asst Prof,

Institute of Aeronautical,
Hyderabad, India

dinnu18@gmail.com

Abstract - Requirement Engineering have become the mainstream of Software development due to their enriched practices. Commonly occurs
practices include collaborative, development, meeting evolving requirements with working software, simple design etc. It has been observed that
effective set of business requirements rely on expert opinion and historical data of project for estimation of cost, size and duration and also
observed that these methods do not consider the vital factors affecting the same of project for estimation.The main aim of the paper works on
analysis of requirements specifications and points to write effective business requirements which need to follow in development process and also
with agile process.Our analysis also improves the software quality assurance by using this set of business requirements which are effective from
existing system.

Keywords – Software Engineering, Requirement analysis, elicitation, functional, non-functional requirements

I. INTRODUCTION

Software systems requirements engineering is the
process of discovering by identifying stakeholders and their
needs, documenting these in a form that is amenable to
analysis, communication, and subsequent implementation.
There are a number of inherent difficulties in this process.
Stakeholders (including paying customers, users and
developers) may be numerous and distributed. Their goals
may vary and conflict, depending on their perspectives of
the environment in which they work and the tasks they wish
to accomplish. Their goals may not be explicit or may be
difficult to articulate, and, inevitably, satisfaction of these
goals may be constrained by a variety of factors outside
their control.

Software engineering seeks to address the problem of
ensuring that quality software gets delivered on time and on
budget by setting out a systematic and disciplined approach
to the development of software. The current software
engineering [1] ideas are based on the following principles.
a. A sound understanding of development processes,

project management and the ability to measure, monitor
and control software development;

b. A sound understanding of the problem to be solved, the
design methods required to solve it and the platforms
used to implement the solution;

c. A sound understanding of the range of tools and
techniques required to support the processes and how
they are to be used effectively to support problems.
Engineering approach to developing software – and this

comes from an engineering perspective – then there are
essentially three phases in the development of an artifact,
such as a computer program:

A. Analysis:
In which we must understand what exactly it is that we

must build and how it should work in order to be fit for
purpose,

B. Synthesis:

In which we must take our analysis and derive designs
for building a concrete artifact,

C. Realization:
In which we must make our product a reality, that is, we

must somehow build it and test that what we have built is fit
for purpose and meets the needs of our client.

Study of requirement analysis focus on the first of these
activities, that is, how to analyze a client’s problem and their
problem domain so that an understanding can be gained of
exactly what software needs to be created in order to solve
this problem. Such Requirements Analysis requires that we
determine all of the functions, constraints, qualifications,
and other information relevant to the system, and organize
all of the information in a clear and unambiguous manner
[2]. Requirements analysis may occur repeatedly during the
course of the development of a piece of software. There are
many possible paths to understanding requirements
engineering but time prohibits us from exploring them all.
Our path in this subject will be to view requirements
engineering a “problem understanding” and “domain
analysis” exercise. The set of requirements for the software
come from this analyses. Requirements engineering in these
notes begin with two related definitions and add to them as
the subject progresses by a requirement. Definition for
concreteness, but again, it will be added to as the subject
progresses [3].
a. A requirement mandates that something be

accomplished, transformed, produced or provided.
b. Requirements engineering is the discipline concerned

with understanding and documenting software
requirements.
If we adopt this definition then the aim of requirements

engineering is to uncover what the system must accomplish,
transform, produce or provide in order to meet a client’s
needs and that means developing an in depth understanding
of a client’s problem domain.

II. REQUIREMENT ENGINEERING:

The goal of the Requirements is to describe what the
system should do and allows the developers and the

B. Dhanalaxmi et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 505-509

© 2010, IJARCS All Rights Reserved 506

customer to agree on that description. To achieve this, we
elicit, organize, and document required functionality and
constraints; track and document tradeoffs and decisions.
Requirement Engineering is classified into following

A. Requirement Elicitation:
Using an elicitation method can help in producing a

consistent and complete set of security requirements.
However, brainstorming and elicitation methods used for
ordinary functional (end-user) requirements usually are not
oriented toward security requirements and do not result in a
consistent and complete set of security requirements. The
resulting system is likely to have fewer security exposures
when security requirements are elicited in a systematic way.

B. Requirement Analysis:
Requirements analysis involves frequent

communication with system users to determine specific
feature expectations, resolution of conflict or ambiguity in
requirements as demanded by the various users or groups of
users, avoidance of feature creep and documentation of all
aspects of the project development process from start to
finish. Energy should be directed towards ensuring that the
final system or product conforms to client needs rather than
attempting to mold user expectations to fit the requirements.

C. Requirement Validation:
Validation works with a final draft of the requirements

document i.e. with negotiated and agreed requirements

Figure 1 represents the validation of requirements document

a. Should be a complete version of the document, not an
unfinished draft. Formatted and organized according to
organizational standards

Organizational Knowledge
b. Knowledge, often implicit, of the organization which

may be used to judge the realism of the requirements
Organizational Standards
c. Local standards e.g. for the organization of the

requirements document
Problem list
d. List of discovered problems in the requirements

document
Agreed Actions
e. List of agreed actions in response to requirements

problems. Some problems may have several corrective
actions; some problems may have no associated actions

III. PROBLEM DOMAIN

Problem define in this article is how to analyze a set of
business requirements, first understanding the business
requirements in the manner in which they were intended can
be a very challenging proposition. If the requirements are
going to do their job well they need to be understood by
several target audiences, namely business analyst, project
managers and leaders, subject matter experts and quality

assurance experts and developers/testers. Each of these
groups needs to be able to read the business requirements
and extract what they need out of them to be able to
contribute to the end product.

 This article presents several requirements and phrases
that might be misunderstood by the various target audiences.
It assumes that to know how to write effective, measurable
business requirements or going to analyze other people’s
requirements. This technique will help to reduce the number
of incorrect and misunderstood business requirements.

A. Analyzing the Business Requirements

a. Identify Key Stakeholders
Identify the key people who will be affected by the

project. Start by clarifying exactly who the project's sponsor
is. This may be an internal or external client. Either way, it
is essential that you know who has the final say on what will
be included in the project's scope, and what won't.
Then, identify who will use the solution, product, or service.
These are your end-users. Your project is intended to meet
their needs, so you must consider their inputs.

We have several methods to understand and to capture
the requirements. Using stakeholder interview:
Communication with each stakeholder individually allows
to understand specific views and needs. Using Joint
interviews or groups: This will help to understand how
information flows between different divisions or
departments and ensure that hand-overs will be managed
smoothly.

Using “use-cases”: This technique walk through the
whole system or process step by step as user, it helps to
understand how the system or service would work. This is
good technique for gathering functional requirements but
may need multiple “use-cases” to understand the
functionality of the system.

Building Prototypes: Build a model of the system or
product to give users an idea of what the final product will
look like. Using this users can address feasibility issues and
they can help identify any inconsistencies problems. For
example after the interviews finalize the list of requirements
then can build a prototype of the system or product.

b. Categorize requirements:
Grouping of the requirements is classified into four

Functional Requirements that define those features of the
system that requirements will specifically satisfy a
Consumer need, or with which the consumer will directly
interact. Technical Requirements that identify the technical
constraints or Requirements define conditions under which
the system must perform. Operational Requirements that
define those “behind the scenes” Requirements functions
that are needed to keep the system operational over time.

Transitional Requirements that define those aspects of
the system that requirements must be addressed in order for
the system to be successfully implemented in the production
environment, and to relegate support responsibilities to the
Performing Organization.

c. Interpret and Record Requirements:
Once gathered or categorized all the requirements,

determine which requirements are achievable and how the
system or product can be deliver them. To interpret the

B. Dhanalaxmi et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 505-509

© 2010, IJARCS All Rights Reserved 507

requirements, consider the following in the analysis Define
requirements precisely – ensure that the requirements are:
 Not ambiguous or vague.
 Clearly worded.

Sufficiently detailed so that everything is known
(problems usually come from unknowns that were not
identified or sufficiently well-analyzed)
 Related to the business needs
 Listed in sufficient detail to create a
working system or product design

B. Decomposition of Requirements:
Once the actual problem is identified the next step in

analysis is to decompose the problem into smaller distinct
elements, and to further refine their individual
characteristics. The intent is to gain additional insights into
the problem, and subsequently, a better understanding of the
customer needs. Decomposition and refinement are
activities of Decomposition.

Decomposition involves a series of steps by means of
which a set of needs is obtained, from which the
requirements are derived. Like its predecessor,
Decomposition is an iterative process that begins with root
cause analysis. This presumes, of course, that the actual
problem has been identified and has a well-defined problem
statement. In addition, recommend that the analyst be
educated about the problem-specific aspects of the
customer’s domain and the environment within which the
new/modified system will eventually function. This
indoctrination either outlines or provides the basis for (a)
defining the solution boundaries and (b) identifying the
constraints to be imposed on the solution space, e.g.,
economic, political, technical, etcetera.

Problem Decomposition is an iterative process that
often involves numerous meetings with the customer. Prior
to each meeting the analyst needs to ensure that he/she has
identified the appropriate set of stakeholders (or meeting
participants), set a meeting agenda, and has outlined each
participant’s role and responsibilities prior to the meetings.
To support problem refinement, each meeting must have a
focused objective and employ structured activities that
support the achievement of that objective, e.g., recording
decomposition components and evolved needs, and
monitoring/controlling the meeting process. Finally, at the
end of each meeting, the identified “set of needs” are
evaluated relative to their correctness, completeness and
non-ambiguity. The final set of customer needs can be
“validated” (in a loose sense) against the Con-Ops document
or against the set of high-level requirements formed during
the systems engineering process. As illustrated in Figure 1,
the set of customer needs are then provided as input to the
requirements elicitation process and form the basis from
which the requirements (or solution specification) are
derived.

Figure 2 provides an illustration of the Problem analysis and decomposition

C. Business Requirement Verification:
All the requirements should be verifiable and test.

Verification method should be used instead (eg analysis
demonstration or inspection review of design) certain
requirements by their very structure are not verifiable. These
include requirements that say the system shall never or
always exhibit a particular property. Proper testing of these
requirements would require an infinite testing cycle. Such
requirements must be rewritten to be verifiable.

Non-functional requirements which are unverificable at
the software level must still be kept as a documentation of
customer intent, however they may be traced to process
requirements that are determined to be practical way of
meeting them. For example a non-functional requirement to
be free from backdoors may be satisfied by replacing it with
a process requirement to use pair programming

D. Prioritize Requirements:
Although many requirements are important, some are

more important than others and budgets are usually limited.
Therefore identify which requirements are the most critical
and which are nice-to-haves.

Analyze the impact of change – carry out the impact
analysis to make sure that fully understand the consequences
of the project will have existing product or project.

Resolve Conflicting issues – Communicate with the key
stakeholder and resolve any conflicting requirements issues.
Find scenario analysis helpful in doing this as it will allow
all those involved to explore how the proposed project
would work in different possible “futures”

Analyze Feasibility – Determine how reliable and easy-
to-use the new product or system will be. A detailed analysis
can help to identify any major problems.

Once everything is analyzed present the key results and
detailed report of the business needs is a written document.
Circulate this document among the key stakeholders, end-
users and developer teams with a realistic deadline for
feedback. This can help to resolve any remaining
stakeholder conflicts and can form part of a agreement
between analyst and stakeholders.

E. Requirement Tools:
Requirement Documentation Template, requirements

engineering tools used to develop requirements, however,
this flexibility requires programming in Software
Engineering.

IV. SYSTEM REQUIREMENT SPECIFICATION

The purpose of System Requirements Analysis is to
obtain a thorough and detailed understanding of the business

B. Dhanalaxmi et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 505-509

© 2010, IJARCS All Rights Reserved 508

need as defined in[6] Project Origination and captured in the
Business Case.

A. Functional Requirements:
Functional requirement defines a function of a Product

system or its component. A function is described as a set of
inputs, the behavior, and outputs. Functional requirements
may be calculations, technical details, data manipulation and
processing and other specific functionality that
define what a system is supposed to perform. Behavioral
requirements describing all the cases where the system uses
the functional requirements are captured in use-cases. In
requirements engineering, functional requirements specify
particular results of a system. This should be contrasted with
non- functional requirements which specify overall
characteristics such as cost and reliability. Functional
requirements drive the application architecture of a system,
while non-functional requirements drive the technical
architecture of a system.

B. Non-functional Requirements:
Non-Functional Requirements in software engineering

presents a systematic and pragmatic approach to building
quality into software systems. Systems must exhibit
software quality attributes, such as accuracy, performance,
security and modifiability. However such non-functional
requirements are difficult to address in many projects, even
though there are many techniques to meet functional
requirements in order to provide desired functionality.

C. Agile Process Business Requirements:
Agile process model launching new generation

products, adapts a highly flexible requirements. We propose
the business requirements for agile methodologies
Agile Unified Process for product development. This is a
combination of agile techniques of XP, Scrum, Lean. This
model enables us to model and document in an agile
manner, thereby giving us a flexible approach so that we can
easily adapt to the changing requirements.
Agile methodology enables us to release the entire product
in versions. There are two kinds of releases in this
methodology.

a. Development release:
Development releases are small releases and have the

potential of being released on the production server.
However, they have not undergone preproduction steps like
testing and deployment.

b. Production release:
These releases have been made on the production

server. Incremental releases are made by the development
releases, whereas major functionalities are released in every
production release. The first production release is greater in
time than others.

Figure 4. types of releases in the Agile process

Agile Requirements: Every requirement (including
change requirements) that needs to be implemented is
prioritized and stacked. Any new requirement is added into
this stack after prioritizing. An existing requirement can be
removed from the stack. In addition, the priorities can
change with time and therefore, the stack is reshuffled.
Every iteration implements those number of highest priority
task that can be implemented in the current iteration.
Four phases of Agile Mythologies

Inception
Technical Design - Elaboration
Construction - Coding
Transition

Figure 5. quality overview for agile process

c. Inception:
First phase of the life cycle where the initial scope of

the entire project is identified. Based on the initial
requirements analysis, proposes the potential architecture to
the client, come with an agreement and obtain the initial
funding for the project.

d. Elaboration:
Second phase of the life cycle consists of proving the

potential architecture of the system. Making the technical
design - both High Level Design and Low Level Design.
HLD will focus on laying the overall architecture and
framework for the project. It results in Project
Decomposition into modules/functions/entities/classes etc.
LLD incorporates the pseudo code and definition of all
technical interfaces of the project.

e. Construction:
Third phase consists of construction phase where we

build working software on a regular, incremental basis.
Hence, construction phase consists of series of development
releases. Development releases are small releases and have
the potential of being released on the production server.
However, they have not undergone pre-production steps like
testing and deployment.

f. Transition:
Last phase includes validation for quality assurance and

deployment to the production server. It differs from the
transition phase of unified process as instead of releasing the
entire product in one release, the product is released in
versions. The first production release is greater in time than
others. The entire life cycle of agile unified process is
repeated for every production release with few
modifications. After every production release, the business
requirements for the project are modified. Any new change
requirements, after prioritizing, are added in the stack. The

B. Dhanalaxmi et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 505-509

© 2010, IJARCS All Rights Reserved 509

stack may be reprioritized. Changes, if needed are made in
the technical designs. Then, the construction and the
transition phases follow, where every iteration implements
those number of tasks that can be implemented in the
current iteration.

Model - The business requirements are understood and
solution is identified to address problem domain.
Implementation The program source code is developed and
unit testing is done.

Test - This discipline ensures quality of the system
developed. It consists of finding bugs, ensuring that the
system works as per the design of the system and meets all
requirements mentioned in the specification documents
Deployment - This includes planning and executing delivery
of software and supporting documentations ready to be
deployed and making the system available to the user.

Configuration Management - This includes managing
baselines of the project, changing and delivering
configuration items and managing releases.
Project Management - This includes assigning tasks,
managing risks, tracking progress etc to ensure on time and
within budget delivery of the product.
Environment - This includes ensuring proper tools are
available when we require.

V. CONCLUSION

Requirement analysis stresses rapid iterations and
frequent releases and evolving processes facilitated by direct
user involvement in the development process. In this paper
Requirements analysis provides a method set of business
requirements to visualize scope, orchestrate and repetitive
development tasks and enforce process. Requirement
management phase has many activities which are elicitation,
analysis, validation and system requirements specifications

categorized into functional and non-functional requirements
are analyzed. My research business requirements steps
presents effective method to existing systems. Future work
to this article analyzes the metrics for our business
requirements.

VI. REFERNCES

[1] M. Cotterell and B. Hughes. Software Project
Management. International Thomson Press, 1995.

[2] Davis, A.M. Software Requirements: Objects,
Functions and States. Prentice Hall, 1993. Revised
Edition.

[3] D. Kulak and E. Guiney. Use Cases: Requirements in
Context. ACM Press, 2000.

[4] Barry W. Boehm, A Spiral Model of Software
Development and Enhancement, Computer, May 1988,
IEEE, pp.61-72

[5] Barry W. Boehm, Anchoring the Software Process,
IEEE Software, 13, 4, July 1996, pp. 73-82.

[6] Grady Booch, Object Solutions, Addison-Wesley, 1995.
[7] Grady Booch, Ivar Jacobson, and James Rumbaugh,

Unified Modeling Language 1.3, White paper, Rational
Software Corp., 1998.

[8] Alan W. Brown (ed.), Component-Based Software
Engineering, IEEE Computer Society, Los Alamitos,
CA, 1996, pp.140.

[9] Michael T. Devlin, and Walker E. Royce, Improving
Software Economics in the Aerospace and Defense
Industry, Technical paper TP-46, Santa Clara, CA,
Rational Software Corp., 1995

[10] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and
Gunnar Övergaard, Object-Oriented Software
Engineering—A Use Case Driven Approach,
Wokingham, England, Addison-Wesley, 1992, 582p.

	Identify Key Stakeholders

