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Abstract: Machine learning (ML) is increasingly being used in real-world applications, so understanding the uncertainty and robustness of a 

model is necessary to ensure performance in practice. This paper explores approximations for robustness which can meaningfully explain the 

behavior of any black box model. Starting with a discussion on components of a robust modelthis paper offers some techniques based on 

the Generative Adversarial Network (GAN) approach to improve the robustness of a model. The study concludes that a clear understanding of 

robust models for ML allows to improve information for practitioners, and helps to develop tools that assess the robustness of ML. Also, ML 

tools and libraries could benefit from a clear understanding on how information should be presented and how these tools are used.  
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INTRODUCTION 

Machine learning (ML) agents are increasingly deployed in 

the real world to make decisions and assist people in their 

daily lives. The classic definition of ML enables one to 

conceptualize ML as a growing resource of interactive, 

autonomous, and often self-learning agency, that can deal 

with tasks that would otherwise require human intelligence 

and intervention to be performed successfully. On the other 

hand,if a model is not robust, there will be a misalignment 

between the model and expectations of the human-beings. 

For example, how do models signal when they are likely to 

make a mistake? 

To address these concerns, it is valuable to quantify how 

robust ML models are. In particular: How likely are ML 

models to make false statements across a range of contexts 

and questions?  

This study aims to provide a clear understanding of robust 

models for ML in order toreduce variation as well as to 

develop tools that assess this robustness of ML. By 

exploring a hypothetical development model it also offers 

means to take a first step towards a theory of robust models 

in ML. 

 

REVIEW OF EXISTING STUDIES 

Machine learning (ML) is used to develop increasingly 

capable systems targeted at tasks like voice recognition, 

fraud detection, and the automation of vehicles. Yet, there is 

a shortage of such datasets as collecting high-quality labeled 

datasets is slow and expensive, requiring significant labor 

from skilled human annotators. Theoretical justification for 

almost all ML methods relies upon the equality of the 

distributions from which the training and test data are 

drawn, yet, in many real-world applications, this equality is 

violated. While some researchers proposed to use maximum 

softmax probability to detect misclassified examples others 

proposed to use ‘Trust Score’ to estimate the confidence in 

model predictions. Still, some other researchers suggested 

that the test accuracy of deep networks can be estimated by 

measuring disagreement rate between a pair of models 

independently trained via Stochastic Gradient Descent 

(SGD) and theoretically related this phenomenon to the 

well-calibrated nature of ensembles of SGD-trained models. 

When it comes to robustness,interpretability is important for 

a variety of reasons (Caruana et al., 2017; Doshi-Velez & 

Kim, 2017), including safety and trust. Shafto et al. 

formalizes this intuition in a recursive Bayesian model of 

human pedagogical reasoning (Shafto & Goodman, 2008; 

Shafto et al., 2012; 2014). In their model the probability a 

teacher selects an example e to teach a concept c is a soft 

maximization (with parameter α) over what the student’s 

posterior probability of c will be. The student can then 

update their posterior accordingly.  

 

Much recent work has focused on learning emergent 

communication protocols in deeplearning based agents 

(Foerster et al., 2016; Sukhbaatar et al., 2016). However, 

these emergent protocols tend to be uninterpretable (Kottur 

et al., 2017) which could affect robustness of a model. A 

number of techniques have been suggested to encourage 

interpretability, such as limiting symbol vocabulary size 

(Mordatch&Abbeel, 2017), limiting memorization 

capabilities of the speaker (Kottur et al., 2017), or 

introducing auxiliary tasks such as image labelling based on 

supervision data (Lazaridou et al., 2016). Despite these 

modifications, the protocols can still be difficult to interpret.  

 

One problem studied in the literature regarding robustness is 

finding a student-teacher pair such that the student can learn 

a set of concepts when given examples from the teacher 

(Jackson & Tomkins, 1992; Balbach&Zeugmann, 2009). 

However, it is difficult to formalize this problem in a way 

that avoids some turn-around solutions known as “coding 

tricks.” A coding trick refers to a solution in which the 

teacher and student simply “collude” on a pre-specified 

protocol for encoding the concept through examples. Many 

additional constraints to the problem have been proposed to 

try to rule out coding tricks such as requiring the student to 

be able to learn through any superset of the teacher’s 

https://slideslive.com/38935801/practical-uncertainty-estimation-outofdistribution-robustness-in-deep-learning
http://arxiv.org/abs/1406.2661
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examples (Goldman & Mathias, 1996), requiring the learned 

protocols to work for any ordering of the concepts or 

examples (Zilles et al., 2011), requiring the student to learn 

all concepts plus their images under primitive recursive 

operators (Ott & Stephan, 2002), and giving incompatible 

hypothesis spaces to the student and teacher 

(Angluin&Krik i̧s, 1997).  

 

Figure 1. Visualization of Interpretability in Machine 

Learning based on Teacher-Student (T-S) interaction 

 

Figure 1 includes a visualization of a student-teacher (S-T) 

interaction win the context of ML. At each step, the teacher 

T takes in the true concept and the student’s S’s last estimate 

of the concept and puts an example for S so that S outputs 

its new estimate. Some definitions of interpretability in the 

literature (Doshi-Velez & Kim, 2017; Weller, 2017; Lipton, 

2016) include, but are not limited to:  

 

1. Evaluating how similar a teacher’s strategies are to 

intuitive human-designed strategies in each task  

 

2. Evaluating the effectiveness of a teacher’s strategy at 

teaching human-beings.  

 

Interpretability of a model can capture a range of different 

types of concepts such as rule-based, probabilistic, boolean, 

and hierarchical concepts. It is often difficult to define 

naturally-occurring concepts via rules and some examples of 

a concept can seem more prototypical than others (e.g 

sparrow vs peacock) (Rosch &Mervis, 1975), and this is not 

captured by simply modeling the concept as a set of rules 

that must be satisfied. An alternative approach models 

concept learning as estimating the probability density of the 

concept (Anderson, 1991; Ashby & Alfonso-Reese, 1995; 

Fried &Holyoak, 1984; Griffiths et al., 2008). (Shafto et al., 

2014) investigate teaching and learning unimodal 

distributions. Moreover,an object can have many properties, 

but only a few of them may be relevant for deciding whether 

the object belongs to a concept or not. In this case, the 

purpose of a ML algorithm would be to see what strategy T 

learns to quickly teach S which properties are relevant to a 

concept. In addition to this,human-defined concepts are 

often hierarchical as human-beings are sensitive to 

taxonomical structure when learning how to generalize to a 

concept from an example (Xu & Tenenbaum, 2007). In such 

a case, the ML algorithm aims to test how T learns to teach 

when the concepts form a hierarchical structure.  

 

When it comes to ensuring robustness of a model, 

adversarial ML, and more generally the security and privacy 

of ML , encompasses a line of work that seeks to understand 

the behavior of models and learning algorithms in the 

presence of adversaries to ensure robustness. Adversarial 

examples are examples that are created by making small 

perturbations to the input designed to significantly increase 

the loss incurred by a machine learning model (Szegedy et 

al., 2014; Goodfellow et al., 2015).  

 

Carlini et al. (2019); Stock &Cissé (2018) define adversarial 

robustness as the minimum distance in the input domain 

required to change the model’s output prediction by 

constructing an adversarial attack. Carlini et al. (2019), 

states that easily attackable data are often outliers in the 

underlying data distribution and then use adversarial 

robustness to determine an improved ordering for 

curriculum learning.  

 

In another branch of research, neural networks are shown to 

lack adversarial robustness – small perturbations to the input 

can successfully fool classifiers into making incorrect 

predictions (Szegedy et al., 2014; Goodfellow et al., 2014; 

Carlini& Wagner, 2017b; Madry et al., 2017; Qin et al., 

2020b).  

 

A common misconception is that adversarial training is 

equivalent to training on noisy examples. Noise is actually a 

far weaker regularizer than adversarial perturbations. There 

are some previous works adding random noise to the input 

and hidden layer during training, to prevent overfitting (e.g. 

(Sietsma& Dow, 1991; Poole et al., 2013)). Adversarial and 

virtual adversarial training requires only one 

hyperparameter, and has a straightforward interpretation as 

robust optimization.  

Generative adversarial networks (GANs) are a recently 

proposed class of generative models in which a generator is 

trained to optimize a cost function that is being 

simultaneously learned by a discriminator. The 

discriminator is tasked with classifying its inputs as either 

the output of the generator, or actual samples from the 

underlying data distribution p(x). The goal of the generator 

is to produce outputs that are classified by the discriminator 

as coming from the underlying data distribution(Szegedy et 

al., 2014; Goodfellow et al., 2015).  

In recent years, deep generative models have dramatically 

pushed forward the state-of-the-art in generative modelling 

in terms of increased level of robustness (Zhu et al., 2016). 

Many of the most successful approaches include variational 

autoencoders (VAEs) (Kingma& Welling, 2014; Rezende et 

al., 2014), generative adversarial networks (GANs) 

(Goodfellow et al., 2014), generative moment matching 

networks (GMMNs) (Li &Swersky, 2015; Dziugaite et al., 

2015), and nonlinear independent components estimation 

(Dinh et al., 2014).  

 

Ho et al. [10, 9] previously presented a GAN-like algorithm 

for imitation learning, where the goal is to recover a policy 

that matches the expert demonstrations. The proposed 

algorithm, called generative adversarial imitation learning 

(GAIL), has an adversarial structure.  
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Chen and his colleagues (2019) introduce InfoGAN — an 

extension of GAN that learns disentangled and interpretable 

representations for images. A regular GAN achieves the 

objective of reproducing the data distribution in the model, 

but the layout and organization of the code space 

is underspecified in terms of mapping the unit Gaussian to 

images. The InfoGAN imposes additional structure on this 

space by adding new objectives that involve maximizing 

the mutual information between small subsets of the 

representation variables and the observation.  

Moreover, Bachman &Precup [1] suggested that in order to 

increase robustness, data generation can be converted into a 

sequential decision-making problem and solved with a 

reinforcement learning method.  

 

Pfau &Vinyals drew a connection between the optimization 

problems in GANs and actor-critic methods in 

reinforcement learning, suggesting how ideas for stabilizing 

training in one domain could be beneficial for the other [19]. 

As the authors point out, these optimization tricks could also 

be useful for imitation learning algorithms with the same 

two-level optimization structure. 

 

It should be emphasized that all of these sophisticated 

algorithms and techniques can introduce new forms of 

statistical abuses and while accounting for uncertainty in 

results is not a panacea, it provides a strong foundation for 

trustworthy results on which the community can build upon, 

with increased confidence. As Agarwal et al (2021) assert, 

ignoring the statistical uncertainty in deep RL results gives a 

false impression of fast scientific progress in the field. 

 

The next section elaborates on the suggested model more in 

detail based on these results of existing studies. 

IMPLEMENTATION MODEL 

Data Generation 

For the sake of practicality, the assumption is that there is 

some large collection of images, such as the 1.2 million 

images in the ImageNet dataset (bearing in mind that this 

could eventually be a large collection of images or videos 

from the internet or robots). If one were to resize each image 

to have width and height of 256 (as is commonly done), the 

dataset would result in one 

large 1,200,000x256x256x3 (about 200GB) block of pixels. 

These images could be referred to as “samples from the true 

data distribution”. A generative model to train to generate 

images like this from scratch can be constructed in this way. 

As a result, the resulting generative model would be one 

large neural network that outputs images and referred to 

“samples from the model”. 

One such recent model is the DCGAN network from 

Radford et al. which takes as input 100 random numbers 

drawn from a uniform distribution (referred to as a code, 

or latent variables) and outputs an image. As the code is 

changed incrementally, the generated images do too — 

which shows the model has learned features to describe how 

the world looks, rather than just memorizing 

some examples. 

DCGAN is initialized with random weights, so a random 

code plugged into the network would generate a completely 

random image. Yet, given the millions of parameters in the 

network, the goal is to find a setting of these parameters that 

makes samples generated from random codes look like the 

training data. In other words, the aim is to make the model 

distribution match the true data distribution in the space 

of images. 

Training a robust model 

We assume that there is a newly-initialized network to 

generate 200 images, each time starting with a different 

random code. The question is: how should we adjust the 

network’s parameters to encourage it to produce slightly 

more believable samples in the future for the sake of 

robustness? It should be taken into account that there is no 

simple supervised setting and no explicit desired targets for 

200 generated images; the aim is tomake them look real. 

One clever approach around this problem is to follow 

the GAN approach. One can introduce a 

second discriminator network (usually a standard 

convolutional neural network) that tries to classify if an 

input image is real or generated. For instance, one could 

feed the 200 generated images and 200 real images into the 

discriminator and train it as a standard classifier to 

distinguish between the two sources. Yet,one can 

also backpropagate through both the discriminator and the 

generator to find how to change the generator’s parameters 

to make its 200 samples slightly more confusing for the 

discriminator. So, while the discriminator is trying to 

distinguish real images from fake images the generator is 

trying to create images that make the discriminator think 

they are real. In the end, the generator network is outputting 

images that are indistinguishable from real images for 

the discriminator. 

In both cases the samples from the generator start out noisy 

and chaotic, and over time converge to have more plausible 

image statistics.  

Set-Up 

Most generative models can have this basic setup, yet still 

could differ in the details. Below are some common 

examples of generative model approaches: 

• Generative Adversarial Networks (GANs), pose the 

training process as a game between two separate 

networks: a generator network (as seen above) and 

a second discriminative network that tries to 

classify samples. Every time the discriminator 

notices a difference between the two distributions 

the generator adjusts its parameters slightly to 

make it go away, until at the end (in theory) the 

generator exactly reproduces the true data 

distribution and the discriminator is guessing at 

random, unable to find a difference. 

https://en.wikipedia.org/wiki/Mutual_information
http://www.image-net.org/
https://github.com/Newmu/dcgan_code
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://github.com/Newmu/dcgan_code#walking-from-one-point-to-another-in-bedroom-latent-space
http://arxiv.org/abs/1406.2661
http://neuralnetworksanddeeplearning.com/chap2.html
http://arxiv.org/abs/1406.2661
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• Variational Autoencoders (VAEs) allow one to 

formalize this problem in the framework 

of probabilistic graphical models where one is 

maximizing a lower bound on the log likelihood of 

the data. 

• Autoregressive models such as PixelRNN train a 

network that models the conditional distribution of 

every individual pixel given previous pixels (to the 

left and to the top).  

All of these approaches have their pros and cons. While 

VAEs allow one to perform both learning and efficient 

Bayesian inference in sophisticated probabilistic graphical 

models with latent variables, their generated samples tend to 

be slightly blurry. GANs currently generate the sharpest 

images, yet they are more difficult to optimize due to 

unstable training dynamics. PixelRNNs have a very simple 

and stable training process (softmax loss) yet, they are 

relatively inefficient during sampling and don’t easily 

provide simple low-dimensional codes for images.  

In addition to generating pretty pictures, one can also use an 

approach for semi-supervised learning with GANs that 

involves the discriminator producing an additional output 

indicating the label of the input. This approach allows one to 

obtain state of the art results on MNIST, SVHN, and 

CIFAR-10 in settings with very few labeled examples.  

The use case 

One can give discriminator an entire minibatch of samples 

as input, rather than just one sample. Thus, the discriminator 

can tell whether the generator just constantly produces a 

single image. With the collapse discovered, gradients will be 

sent to the generator to correct the problem. 

The next step is to prototype the idea 

on MNIST and CIFAR-10. This requires prototyping a small 

model as quickly as possible, running it on real data, and 

inspecting the result. However, deep learning (and AI 

algorithms in general) must be scaled to be truly impressive 

— a small neural network is a proof of concept, but a big 

neural network actually solves the problem and is useful.  

Infrastructure 

Software 

The vast majority of code is written in Python, as engineers 

mostly use TensorFlow (or Theano in special cases) for 

GPU computing. Researchers also sometimes use higher-

level frameworks like Keras on top of TensorFlow. Below is 

a sample of a TensorFlow code (Figure 2). 

 
Figure 2. Sample TensorFlow code 

 

Hardware 

For an ideal batch job, doubling the number of nodes in a 

cluster will halve the job’s runtime. Top performance also 

requires top-of-the-line GPUs in addition to the use of a lot 

of CPU for simulators, reinforcement learning 

environments, or small-scale models (which run no faster on 

a GPU). 

Provisioning 

Infrastructure should present a simple interface, and 

usability is as important as functionality. It is suggested to 

use a consistent set of tools to manage all ofexisting servers 

and configure them as identically as possible. 

 

https://arxiv.org/abs/1312.6114
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
http://arxiv.org/abs/1601.06759
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Semi-supervised_learning
http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/
http://stackoverflow.com/questions/19170603/what-is-the-difference-between-labeled-and-unlabeled-data
https://www.coursera.org/learn/machine-learning/lecture/9zJUs/mini-batch-gradient-descent
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://keras.io/
https://github.com/openai/iaf/blob/master/tf_train.py#L51-L93
https://gym.openai.com/envs#box2d
https://gym.openai.com/envs#atari
https://gym.openai.com/envs#atari
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Figure 3. Sample Terraform config for managing Auto Scaling groups 

 
One can use Terraform (Figure 3) to set up AWS cloud 

resources (instances, network routes, DNS records, etc). 

Terraform creates, modifies, or destroys the running cloud 

resources to match configuration files. 

 

Orchestration 

As scalable infrastructure often ends up making the simple 

cases harderequal effort should be put onto the infrastructure 

for small- and large-scale jobs.  

One can provide a cluster of SSH nodes (both with and 

without GPUs) for ad-hoc experimentation, and 

run Kubernetes as the cluster scheduler for physical and 

AWS nodes.Kubernetes requires each job to be a Docker 

container, which results in dependency isolation and code 

snapshotting. However, building a new Docker container 

can add precious extra seconds to a researcher’s iteration 

cycle, so one can also provide tooling to transparently ship 

code from a researcher’s laptop into a standard image 

(Figure 4). 

 
Figure 4. Sample model learning curves in TensorBoard 
 

One can expose Kubernetes’s flannel network directly to 

researchers’ laptops, allowing users seamless network 

access to their running jobs. This is especially useful for 

accessing monitoring services such as TensorBoard. 

The Kubernetes ecosystem provides low-friction tooling, 

logging, monitoring, ability to manage physical nodes 

separately from the running instances.  

Release of kubernetes-ec2-autoscaler includes a batch-

optimized scaling manager for Kubernetes. It runs as a 

normal Pod on Kubernetes and requires only that worker 

nodes are in Auto Scaling groups.The autoscaler works by 

polling the Kubernetes master’s state, which contains 

everything needed to calculate the cluster resource ask and 

capacity. If there’s excess capacity, it drains the relevant 

nodes and ultimately terminates them. If more resources are 

needed, it calculates what servers should be created and 

increases Auto Scaling group sizes appropriately (or 

simply uncordons drained nodes, which avoids new node 

spinup time). 

‘kubernetes-ec2-autoscaler’ handles multiple Auto Scaling 

groups, resources beyond CPU (memory and GPUs), and 

fine-grained constraints on jobs such as AWS region and 

instance size. Additionally, bursty workloads can lead to 

Auto Scaling Groups timeouts and errors, so that even AWS 

does not have infinite capacity. In these cases, kubernetes-

ec2-autoscaler detects the error and overflows to a 

secondary AWS region. 

Such an infrastructure aims to maximize the productivity of 

deep learning researchers, allowing them to focus on the 

science of building robust ML models. 

https://www.terraform.io/
http://kubernetes.io/
https://en.wikipedia.org/wiki/Learning_curve
https://coreos.com/flannel/docs/latest/
https://www.tensorflow.org/versions/r0.10/how_tos/summaries_and_tensorboard/index.html
https://github.com/openai/kubernetes-ec2-autoscaler
http://kubernetes.io/docs/user-guide/pods/
http://kubernetes.io/docs/user-guide/kubectl/kubectl_uncordon/
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CONCLUSION AND FUTURE WORK  

 

A clear understanding of robust models for ML allows to 

improve information for practitioners, and helps to develop 

tools that assess the robustness of ML. However, a wide 

range of subsequent research towards an encompassing 

theory of robust models in ML might still be required. This 

includes how ML models are shared or documented as well 

as work on threat specific taxonomies. Also, ML tools and 

libraries could benefit from a clear understanding on how 

information should be presented and how these tools are 

used.  

 

REFERENCES  

 

1. Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., 

Fong, R., Welinder, P., McGrew, B., Tobin, J., 

Abbeel, O. P., and Zaremba, W. Hindsight Experience 

Replay. In Advances in Neural Information Processing 

Systems, pp. 5048–5058, 2017.  

2. Bahdanau, D., Hill, F., Leike, J., Hughes, E., Kohli, P., 

and Grefenstette, E. Learning to Follow Language 

Instructions with Adversarial Reward Induction. 

arXiv:1806.01946, 2018.  

3. Brockman, G., Cheung, V., Pettersson, L., Schneider, 

J., Schulman, J., Tang, J., and Zaremba, W. OpenAI 

Gym. arXiv:1606.01540, 2016.  

4. Christiano, P., Leike, J., Brown, T., Martic, M., Legg, 

S., and Amodei, D. Deep Reinforcement Learning 

from Human Preferences. In Advances in Neural 

Information Processing Systems, pp. 4299–4307, 

2017.  

5. Co-Reyes, J., Gupta, A., Sanjeev, S., Altieri, N., 

DeNero, J., Abbeel, P., and Levine, S. Guiding 

Policies with Language via Meta-Learning. 

arXiv:1811.07882, 2018.  

6. Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., 

Plappert, M., Radford, A., Schulman, J., Sidor, S., Wu, 

Y., and Zhokhov, P. OpenAI Baselines. https://github. 

com/openai/baselines, 2017.  

7. Fu, J., Singh, A., Ghosh, D., Yang, L., and Levine, S. 

Variational Inverse Control with Events: A General 

Framework for Data-Driven Reward Definition. In 

Advances in Neural Information Processing Systems, 

pp. 8538–8547, 2018.  

8. Hermann, K. M., Hill, F., Green, S., Wang, F., 

Faulkner, R., Soyer, H., Szepesvari, D., Czarnecki, W. 

M., Jaderberg, M., Teplyashin, D., et al. Grounded 

Language Learning in a Simulated 3D World. 

arXiv:1706.06551, 2017.  

9. Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., 

and Amodei, D. Reward learning from human 

preferences and demonstrations in Atari. In Advances 

in Neural Information Processing Systems, pp. 8022–

8034, 2018.  

10. Lakkaraju, S. H. Bach, and J. Leskovec. Interpretable 

decision sets: A joint framework for description and 

prediction. In KDD, 2016. 

11. Mohan Zhou, Yalong Bai, Wei Zhang, Tiejun Zhao, 

and Tao Mei. Look-into-object: Self-supervised 

structure modeling for object recognition. In CVPR, 

2020. 

12. Muhammad Abdullah Jamal, Matthew Brown, Ming-

Hsuan Yang, Liqiang Wang, and Boqing Gong. 

Rethinking class-balanced methods for long-tailed 

visual recognition from a domain adaptation 

perspective, 2020. 

13. Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., and 

Levine, S. Visual reinforcement learning with 

imagined goals. In Advances in Neural Information 

Processing Systems, pp. 9208–9219, 2018.  

14. Pomerleau, D. Efficient Training of Artificial Neural 

Networks for Autonomous Navigation. Neural 

Computation, 3(1):88–97, 1991.  

15. Reddy, S., Dragan, A. D., and Levine, S. Shared 

Autonomy via Deep Reinforcement Learning. 

arXiv:1802.01744, 2018.  

16. Ross, S., Gordon, G., and Bagnell, D. A Reduction of 

Imitation Learning and Structured Prediction to No-

Regret Online Learning. In Proceedings of the 

Fourteenth International Conference on Artificial 

Intelligence and Statistics, pp. 627–635, 2011.  

17. Sadigh, D., Dragan, A., Sastry, S., and Seshia, S. 

Active Preference-Based Learning of Reward 

Functions. In Robotics: Science and Systems, 2017. 

Human Interaction and Interpretability Paper  

18. Schaul, T., Horgan, D., Gregor, K., and Silver, D. 

Universal Value Function Approximators. In 

International Conference on Machine Learning, pp. 

1312–1320, 2015.  

19. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., 

and Klimov, O. Proximal Policy Optimization 

Algorithms. arXiv:1707.06347, 2017.  

20. Singh, A., Yang, L., Hartikainen, K., Finn, C., and 

Levine, S. End-to-End Robotic Reinforcement 

Learning without Reward Engineering. arXiv preprint 

arXiv:1904.07854, 2019.  

21. Sutton, R., Precup, D., and Singh, S. Between MDPs 

and semi-MDPs: A framework for temporal 

abstraction in reinforcement learning. Artificial 

intelligence, 112(1-2): 181–211, 1999. 

22. Yuliang Zou, Zizhao Zhang, Han Zhang, Chun-Liang 

Li, Xiao Bian, Jia-Bin Huang, and Tomas Pfister. 

Pseudoseg: Designing pseudo labels for semantic 

segmentation. ICLR, 2021. 

23. Zhao, X., Robu, V., Flynn, D., Salako, K., Strigini, L.: 

Assessing the safety and reliability of autonomous 

vehicles from road testing. In: the 30th Int. Symp. on 

Software Reliability Engineering. pp. 13–23. IEEE, 

Berlin, Germany (2019). 

 


