
DOI: http://dx.doi.org/10.26483/ijarcs.v13i1.6801

Volume 13, No. 1, January-February 2022

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2020-2022, IJARCS All Rights Reserved 1

ISSN No. 0976-5697

RETHINKING ROBUSTNESS IN MACHINE LEARNING: USE OF GENERATIVE

ADVERSARIAL NETWORKS FOR ENHANCED ROBUSTNESS
AyseKok Arslan

Silicon Valley researcher,

Oxford Alumni- Northern California

Abstract: Machine learning (ML) is increasingly being used in real-world applications, so understanding the uncertainty and robustness of a

model is necessary to ensure performance in practice. This paper explores approximations for robustness which can meaningfully explain the

behavior of any black box model. Starting with a discussion on components of a robust modelthis paper offers some techniques based on

the Generative Adversarial Network (GAN) approach to improve the robustness of a model. The study concludes that a clear understanding of

robust models for ML allows to improve information for practitioners, and helps to develop tools that assess the robustness of ML. Also, ML

tools and libraries could benefit from a clear understanding on how information should be presented and how these tools are used.

Key words: ML, AI, robustness, safety, algorithm, software engineering, explainability interpretability

INTRODUCTION

Machine learning (ML) agents are increasingly deployed in

the real world to make decisions and assist people in their

daily lives. The classic definition of ML enables one to

conceptualize ML as a growing resource of interactive,

autonomous, and often self-learning agency, that can deal

with tasks that would otherwise require human intelligence

and intervention to be performed successfully. On the other

hand,if a model is not robust, there will be a misalignment

between the model and expectations of the human-beings.

For example, how do models signal when they are likely to

make a mistake?

To address these concerns, it is valuable to quantify how

robust ML models are. In particular: How likely are ML

models to make false statements across a range of contexts

and questions?

This study aims to provide a clear understanding of robust

models for ML in order toreduce variation as well as to

develop tools that assess this robustness of ML. By

exploring a hypothetical development model it also offers

means to take a first step towards a theory of robust models

in ML.

REVIEW OF EXISTING STUDIES

Machine learning (ML) is used to develop increasingly

capable systems targeted at tasks like voice recognition,

fraud detection, and the automation of vehicles. Yet, there is

a shortage of such datasets as collecting high-quality labeled

datasets is slow and expensive, requiring significant labor

from skilled human annotators. Theoretical justification for

almost all ML methods relies upon the equality of the

distributions from which the training and test data are

drawn, yet, in many real-world applications, this equality is

violated. While some researchers proposed to use maximum

softmax probability to detect misclassified examples others

proposed to use ‘Trust Score’ to estimate the confidence in

model predictions. Still, some other researchers suggested

that the test accuracy of deep networks can be estimated by

measuring disagreement rate between a pair of models

independently trained via Stochastic Gradient Descent

(SGD) and theoretically related this phenomenon to the

well-calibrated nature of ensembles of SGD-trained models.

When it comes to robustness,interpretability is important for

a variety of reasons (Caruana et al., 2017; Doshi-Velez &

Kim, 2017), including safety and trust. Shafto et al.

formalizes this intuition in a recursive Bayesian model of

human pedagogical reasoning (Shafto & Goodman, 2008;

Shafto et al., 2012; 2014). In their model the probability a

teacher selects an example e to teach a concept c is a soft

maximization (with parameter α) over what the student’s

posterior probability of c will be. The student can then

update their posterior accordingly.

Much recent work has focused on learning emergent

communication protocols in deeplearning based agents

(Foerster et al., 2016; Sukhbaatar et al., 2016). However,

these emergent protocols tend to be uninterpretable (Kottur

et al., 2017) which could affect robustness of a model. A

number of techniques have been suggested to encourage

interpretability, such as limiting symbol vocabulary size

(Mordatch&Abbeel, 2017), limiting memorization

capabilities of the speaker (Kottur et al., 2017), or

introducing auxiliary tasks such as image labelling based on

supervision data (Lazaridou et al., 2016). Despite these

modifications, the protocols can still be difficult to interpret.

One problem studied in the literature regarding robustness is

finding a student-teacher pair such that the student can learn

a set of concepts when given examples from the teacher

(Jackson & Tomkins, 1992; Balbach&Zeugmann, 2009).

However, it is difficult to formalize this problem in a way

that avoids some turn-around solutions known as “coding

tricks.” A coding trick refers to a solution in which the

teacher and student simply “collude” on a pre-specified

protocol for encoding the concept through examples. Many

additional constraints to the problem have been proposed to

try to rule out coding tricks such as requiring the student to

be able to learn through any superset of the teacher’s

https://slideslive.com/38935801/practical-uncertainty-estimation-outofdistribution-robustness-in-deep-learning
http://arxiv.org/abs/1406.2661

AyseKok Arslan, International Journal of Advanced Research in Computer Science, 13 (1), Jan-Feb 2022,1-6

© 2020-2022, IJARCS All Rights Reserved 2

examples (Goldman & Mathias, 1996), requiring the learned

protocols to work for any ordering of the concepts or

examples (Zilles et al., 2011), requiring the student to learn

all concepts plus their images under primitive recursive

operators (Ott & Stephan, 2002), and giving incompatible

hypothesis spaces to the student and teacher

(Angluin&Krik i̧s, 1997).

Figure 1. Visualization of Interpretability in Machine

Learning based on Teacher-Student (T-S) interaction

Figure 1 includes a visualization of a student-teacher (S-T)

interaction win the context of ML. At each step, the teacher

T takes in the true concept and the student’s S’s last estimate

of the concept and puts an example for S so that S outputs

its new estimate. Some definitions of interpretability in the

literature (Doshi-Velez & Kim, 2017; Weller, 2017; Lipton,

2016) include, but are not limited to:

1. Evaluating how similar a teacher’s strategies are to

intuitive human-designed strategies in each task

2. Evaluating the effectiveness of a teacher’s strategy at

teaching human-beings.

Interpretability of a model can capture a range of different

types of concepts such as rule-based, probabilistic, boolean,

and hierarchical concepts. It is often difficult to define

naturally-occurring concepts via rules and some examples of

a concept can seem more prototypical than others (e.g

sparrow vs peacock) (Rosch &Mervis, 1975), and this is not

captured by simply modeling the concept as a set of rules

that must be satisfied. An alternative approach models

concept learning as estimating the probability density of the

concept (Anderson, 1991; Ashby & Alfonso-Reese, 1995;

Fried &Holyoak, 1984; Griffiths et al., 2008). (Shafto et al.,

2014) investigate teaching and learning unimodal

distributions. Moreover,an object can have many properties,

but only a few of them may be relevant for deciding whether

the object belongs to a concept or not. In this case, the

purpose of a ML algorithm would be to see what strategy T

learns to quickly teach S which properties are relevant to a

concept. In addition to this,human-defined concepts are

often hierarchical as human-beings are sensitive to

taxonomical structure when learning how to generalize to a

concept from an example (Xu & Tenenbaum, 2007). In such

a case, the ML algorithm aims to test how T learns to teach

when the concepts form a hierarchical structure.

When it comes to ensuring robustness of a model,

adversarial ML, and more generally the security and privacy

of ML , encompasses a line of work that seeks to understand

the behavior of models and learning algorithms in the

presence of adversaries to ensure robustness. Adversarial

examples are examples that are created by making small

perturbations to the input designed to significantly increase

the loss incurred by a machine learning model (Szegedy et

al., 2014; Goodfellow et al., 2015).

Carlini et al. (2019); Stock &Cissé (2018) define adversarial

robustness as the minimum distance in the input domain

required to change the model’s output prediction by

constructing an adversarial attack. Carlini et al. (2019),

states that easily attackable data are often outliers in the

underlying data distribution and then use adversarial

robustness to determine an improved ordering for

curriculum learning.

In another branch of research, neural networks are shown to

lack adversarial robustness – small perturbations to the input

can successfully fool classifiers into making incorrect

predictions (Szegedy et al., 2014; Goodfellow et al., 2014;

Carlini& Wagner, 2017b; Madry et al., 2017; Qin et al.,

2020b).

A common misconception is that adversarial training is

equivalent to training on noisy examples. Noise is actually a

far weaker regularizer than adversarial perturbations. There

are some previous works adding random noise to the input

and hidden layer during training, to prevent overfitting (e.g.

(Sietsma& Dow, 1991; Poole et al., 2013)). Adversarial and

virtual adversarial training requires only one

hyperparameter, and has a straightforward interpretation as

robust optimization.

Generative adversarial networks (GANs) are a recently

proposed class of generative models in which a generator is

trained to optimize a cost function that is being

simultaneously learned by a discriminator. The

discriminator is tasked with classifying its inputs as either

the output of the generator, or actual samples from the

underlying data distribution p(x). The goal of the generator

is to produce outputs that are classified by the discriminator

as coming from the underlying data distribution(Szegedy et

al., 2014; Goodfellow et al., 2015).

In recent years, deep generative models have dramatically

pushed forward the state-of-the-art in generative modelling

in terms of increased level of robustness (Zhu et al., 2016).

Many of the most successful approaches include variational

autoencoders (VAEs) (Kingma& Welling, 2014; Rezende et

al., 2014), generative adversarial networks (GANs)

(Goodfellow et al., 2014), generative moment matching

networks (GMMNs) (Li &Swersky, 2015; Dziugaite et al.,

2015), and nonlinear independent components estimation

(Dinh et al., 2014).

Ho et al. [10, 9] previously presented a GAN-like algorithm

for imitation learning, where the goal is to recover a policy

that matches the expert demonstrations. The proposed

algorithm, called generative adversarial imitation learning

(GAIL), has an adversarial structure.

AyseKok Arslan, International Journal of Advanced Research in Computer Science, 13 (1), Jan-Feb 2022,1-6

© 2020-2022, IJARCS All Rights Reserved 3

Chen and his colleagues (2019) introduce InfoGAN — an

extension of GAN that learns disentangled and interpretable

representations for images. A regular GAN achieves the

objective of reproducing the data distribution in the model,

but the layout and organization of the code space

is underspecified in terms of mapping the unit Gaussian to

images. The InfoGAN imposes additional structure on this

space by adding new objectives that involve maximizing

the mutual information between small subsets of the

representation variables and the observation.

Moreover, Bachman &Precup [1] suggested that in order to

increase robustness, data generation can be converted into a

sequential decision-making problem and solved with a

reinforcement learning method.

Pfau &Vinyals drew a connection between the optimization

problems in GANs and actor-critic methods in

reinforcement learning, suggesting how ideas for stabilizing

training in one domain could be beneficial for the other [19].

As the authors point out, these optimization tricks could also

be useful for imitation learning algorithms with the same

two-level optimization structure.

It should be emphasized that all of these sophisticated

algorithms and techniques can introduce new forms of

statistical abuses and while accounting for uncertainty in

results is not a panacea, it provides a strong foundation for

trustworthy results on which the community can build upon,

with increased confidence. As Agarwal et al (2021) assert,

ignoring the statistical uncertainty in deep RL results gives a

false impression of fast scientific progress in the field.

The next section elaborates on the suggested model more in

detail based on these results of existing studies.

IMPLEMENTATION MODEL

Data Generation

For the sake of practicality, the assumption is that there is

some large collection of images, such as the 1.2 million

images in the ImageNet dataset (bearing in mind that this

could eventually be a large collection of images or videos

from the internet or robots). If one were to resize each image

to have width and height of 256 (as is commonly done), the

dataset would result in one

large 1,200,000x256x256x3 (about 200GB) block of pixels.

These images could be referred to as “samples from the true

data distribution”. A generative model to train to generate

images like this from scratch can be constructed in this way.

As a result, the resulting generative model would be one

large neural network that outputs images and referred to

“samples from the model”.

One such recent model is the DCGAN network from

Radford et al. which takes as input 100 random numbers

drawn from a uniform distribution (referred to as a code,

or latent variables) and outputs an image. As the code is

changed incrementally, the generated images do too —

which shows the model has learned features to describe how

the world looks, rather than just memorizing

some examples.

DCGAN is initialized with random weights, so a random

code plugged into the network would generate a completely

random image. Yet, given the millions of parameters in the

network, the goal is to find a setting of these parameters that

makes samples generated from random codes look like the

training data. In other words, the aim is to make the model

distribution match the true data distribution in the space

of images.

Training a robust model

We assume that there is a newly-initialized network to

generate 200 images, each time starting with a different

random code. The question is: how should we adjust the

network’s parameters to encourage it to produce slightly

more believable samples in the future for the sake of

robustness? It should be taken into account that there is no

simple supervised setting and no explicit desired targets for

200 generated images; the aim is tomake them look real.

One clever approach around this problem is to follow

the GAN approach. One can introduce a

second discriminator network (usually a standard

convolutional neural network) that tries to classify if an

input image is real or generated. For instance, one could

feed the 200 generated images and 200 real images into the

discriminator and train it as a standard classifier to

distinguish between the two sources. Yet,one can

also backpropagate through both the discriminator and the

generator to find how to change the generator’s parameters

to make its 200 samples slightly more confusing for the

discriminator. So, while the discriminator is trying to

distinguish real images from fake images the generator is

trying to create images that make the discriminator think

they are real. In the end, the generator network is outputting

images that are indistinguishable from real images for

the discriminator.

In both cases the samples from the generator start out noisy

and chaotic, and over time converge to have more plausible

image statistics.

Set-Up

Most generative models can have this basic setup, yet still

could differ in the details. Below are some common

examples of generative model approaches:

• Generative Adversarial Networks (GANs), pose the

training process as a game between two separate

networks: a generator network (as seen above) and

a second discriminative network that tries to

classify samples. Every time the discriminator

notices a difference between the two distributions

the generator adjusts its parameters slightly to

make it go away, until at the end (in theory) the

generator exactly reproduces the true data

distribution and the discriminator is guessing at

random, unable to find a difference.

https://en.wikipedia.org/wiki/Mutual_information
http://www.image-net.org/
https://github.com/Newmu/dcgan_code
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://github.com/Newmu/dcgan_code#walking-from-one-point-to-another-in-bedroom-latent-space
http://arxiv.org/abs/1406.2661
http://neuralnetworksanddeeplearning.com/chap2.html
http://arxiv.org/abs/1406.2661

AyseKok Arslan, International Journal of Advanced Research in Computer Science, 13 (1), Jan-Feb 2022,1-6

© 2020-2022, IJARCS All Rights Reserved 4

• Variational Autoencoders (VAEs) allow one to

formalize this problem in the framework

of probabilistic graphical models where one is

maximizing a lower bound on the log likelihood of

the data.

• Autoregressive models such as PixelRNN train a

network that models the conditional distribution of

every individual pixel given previous pixels (to the

left and to the top).

All of these approaches have their pros and cons. While

VAEs allow one to perform both learning and efficient

Bayesian inference in sophisticated probabilistic graphical

models with latent variables, their generated samples tend to

be slightly blurry. GANs currently generate the sharpest

images, yet they are more difficult to optimize due to

unstable training dynamics. PixelRNNs have a very simple

and stable training process (softmax loss) yet, they are

relatively inefficient during sampling and don’t easily

provide simple low-dimensional codes for images.

In addition to generating pretty pictures, one can also use an

approach for semi-supervised learning with GANs that

involves the discriminator producing an additional output

indicating the label of the input. This approach allows one to

obtain state of the art results on MNIST, SVHN, and

CIFAR-10 in settings with very few labeled examples.

The use case

One can give discriminator an entire minibatch of samples

as input, rather than just one sample. Thus, the discriminator

can tell whether the generator just constantly produces a

single image. With the collapse discovered, gradients will be

sent to the generator to correct the problem.

The next step is to prototype the idea

on MNIST and CIFAR-10. This requires prototyping a small

model as quickly as possible, running it on real data, and

inspecting the result. However, deep learning (and AI

algorithms in general) must be scaled to be truly impressive

— a small neural network is a proof of concept, but a big

neural network actually solves the problem and is useful.

Infrastructure

Software

The vast majority of code is written in Python, as engineers

mostly use TensorFlow (or Theano in special cases) for

GPU computing. Researchers also sometimes use higher-

level frameworks like Keras on top of TensorFlow. Below is

a sample of a TensorFlow code (Figure 2).

Figure 2. Sample TensorFlow code

Hardware

For an ideal batch job, doubling the number of nodes in a

cluster will halve the job’s runtime. Top performance also

requires top-of-the-line GPUs in addition to the use of a lot

of CPU for simulators, reinforcement learning

environments, or small-scale models (which run no faster on

a GPU).

Provisioning

Infrastructure should present a simple interface, and

usability is as important as functionality. It is suggested to

use a consistent set of tools to manage all ofexisting servers

and configure them as identically as possible.

https://arxiv.org/abs/1312.6114
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
http://arxiv.org/abs/1601.06759
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Semi-supervised_learning
http://yann.lecun.com/exdb/mnist/
http://ufldl.stanford.edu/housenumbers/
http://stackoverflow.com/questions/19170603/what-is-the-difference-between-labeled-and-unlabeled-data
https://www.coursera.org/learn/machine-learning/lecture/9zJUs/mini-batch-gradient-descent
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://keras.io/
https://github.com/openai/iaf/blob/master/tf_train.py#L51-L93
https://gym.openai.com/envs#box2d
https://gym.openai.com/envs#atari
https://gym.openai.com/envs#atari

AyseKok Arslan, International Journal of Advanced Research in Computer Science, 13 (1), Jan-Feb 2022,1-6

© 2020-2022, IJARCS All Rights Reserved 5

Figure 3. Sample Terraform config for managing Auto Scaling groups

One can use Terraform (Figure 3) to set up AWS cloud

resources (instances, network routes, DNS records, etc).

Terraform creates, modifies, or destroys the running cloud

resources to match configuration files.

Orchestration

As scalable infrastructure often ends up making the simple

cases harderequal effort should be put onto the infrastructure

for small- and large-scale jobs.

One can provide a cluster of SSH nodes (both with and

without GPUs) for ad-hoc experimentation, and

run Kubernetes as the cluster scheduler for physical and

AWS nodes.Kubernetes requires each job to be a Docker

container, which results in dependency isolation and code

snapshotting. However, building a new Docker container

can add precious extra seconds to a researcher’s iteration

cycle, so one can also provide tooling to transparently ship

code from a researcher’s laptop into a standard image

(Figure 4).

Figure 4. Sample model learning curves in TensorBoard

One can expose Kubernetes’s flannel network directly to

researchers’ laptops, allowing users seamless network

access to their running jobs. This is especially useful for

accessing monitoring services such as TensorBoard.

The Kubernetes ecosystem provides low-friction tooling,

logging, monitoring, ability to manage physical nodes

separately from the running instances.

Release of kubernetes-ec2-autoscaler includes a batch-

optimized scaling manager for Kubernetes. It runs as a

normal Pod on Kubernetes and requires only that worker

nodes are in Auto Scaling groups.The autoscaler works by

polling the Kubernetes master’s state, which contains

everything needed to calculate the cluster resource ask and

capacity. If there’s excess capacity, it drains the relevant

nodes and ultimately terminates them. If more resources are

needed, it calculates what servers should be created and

increases Auto Scaling group sizes appropriately (or

simply uncordons drained nodes, which avoids new node

spinup time).

‘kubernetes-ec2-autoscaler’ handles multiple Auto Scaling

groups, resources beyond CPU (memory and GPUs), and

fine-grained constraints on jobs such as AWS region and

instance size. Additionally, bursty workloads can lead to

Auto Scaling Groups timeouts and errors, so that even AWS

does not have infinite capacity. In these cases, kubernetes-

ec2-autoscaler detects the error and overflows to a

secondary AWS region.

Such an infrastructure aims to maximize the productivity of

deep learning researchers, allowing them to focus on the

science of building robust ML models.

https://www.terraform.io/
http://kubernetes.io/
https://en.wikipedia.org/wiki/Learning_curve
https://coreos.com/flannel/docs/latest/
https://www.tensorflow.org/versions/r0.10/how_tos/summaries_and_tensorboard/index.html
https://github.com/openai/kubernetes-ec2-autoscaler
http://kubernetes.io/docs/user-guide/pods/
http://kubernetes.io/docs/user-guide/kubectl/kubectl_uncordon/

AyseKok Arslan, International Journal of Advanced Research in Computer Science, 13 (1), Jan-Feb 2022,1-6

© 2020-2022, IJARCS All Rights Reserved 6

CONCLUSION AND FUTURE WORK

A clear understanding of robust models for ML allows to

improve information for practitioners, and helps to develop

tools that assess the robustness of ML. However, a wide

range of subsequent research towards an encompassing

theory of robust models in ML might still be required. This

includes how ML models are shared or documented as well

as work on threat specific taxonomies. Also, ML tools and

libraries could benefit from a clear understanding on how

information should be presented and how these tools are

used.

REFERENCES

1. Andrychowicz, M., Wolski, F., Ray, A., Schneider, J.,

Fong, R., Welinder, P., McGrew, B., Tobin, J.,

Abbeel, O. P., and Zaremba, W. Hindsight Experience

Replay. In Advances in Neural Information Processing

Systems, pp. 5048–5058, 2017.

2. Bahdanau, D., Hill, F., Leike, J., Hughes, E., Kohli, P.,

and Grefenstette, E. Learning to Follow Language

Instructions with Adversarial Reward Induction.

arXiv:1806.01946, 2018.

3. Brockman, G., Cheung, V., Pettersson, L., Schneider,

J., Schulman, J., Tang, J., and Zaremba, W. OpenAI

Gym. arXiv:1606.01540, 2016.

4. Christiano, P., Leike, J., Brown, T., Martic, M., Legg,

S., and Amodei, D. Deep Reinforcement Learning

from Human Preferences. In Advances in Neural

Information Processing Systems, pp. 4299–4307,

2017.

5. Co-Reyes, J., Gupta, A., Sanjeev, S., Altieri, N.,

DeNero, J., Abbeel, P., and Levine, S. Guiding

Policies with Language via Meta-Learning.

arXiv:1811.07882, 2018.

6. Dhariwal, P., Hesse, C., Klimov, O., Nichol, A.,

Plappert, M., Radford, A., Schulman, J., Sidor, S., Wu,

Y., and Zhokhov, P. OpenAI Baselines. https://github.

com/openai/baselines, 2017.

7. Fu, J., Singh, A., Ghosh, D., Yang, L., and Levine, S.

Variational Inverse Control with Events: A General

Framework for Data-Driven Reward Definition. In

Advances in Neural Information Processing Systems,

pp. 8538–8547, 2018.

8. Hermann, K. M., Hill, F., Green, S., Wang, F.,

Faulkner, R., Soyer, H., Szepesvari, D., Czarnecki, W.

M., Jaderberg, M., Teplyashin, D., et al. Grounded

Language Learning in a Simulated 3D World.

arXiv:1706.06551, 2017.

9. Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S.,

and Amodei, D. Reward learning from human

preferences and demonstrations in Atari. In Advances

in Neural Information Processing Systems, pp. 8022–

8034, 2018.

10. Lakkaraju, S. H. Bach, and J. Leskovec. Interpretable

decision sets: A joint framework for description and

prediction. In KDD, 2016.

11. Mohan Zhou, Yalong Bai, Wei Zhang, Tiejun Zhao,

and Tao Mei. Look-into-object: Self-supervised

structure modeling for object recognition. In CVPR,

2020.

12. Muhammad Abdullah Jamal, Matthew Brown, Ming-

Hsuan Yang, Liqiang Wang, and Boqing Gong.

Rethinking class-balanced methods for long-tailed

visual recognition from a domain adaptation

perspective, 2020.

13. Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., and

Levine, S. Visual reinforcement learning with

imagined goals. In Advances in Neural Information

Processing Systems, pp. 9208–9219, 2018.

14. Pomerleau, D. Efficient Training of Artificial Neural

Networks for Autonomous Navigation. Neural

Computation, 3(1):88–97, 1991.

15. Reddy, S., Dragan, A. D., and Levine, S. Shared

Autonomy via Deep Reinforcement Learning.

arXiv:1802.01744, 2018.

16. Ross, S., Gordon, G., and Bagnell, D. A Reduction of

Imitation Learning and Structured Prediction to No-

Regret Online Learning. In Proceedings of the

Fourteenth International Conference on Artificial

Intelligence and Statistics, pp. 627–635, 2011.

17. Sadigh, D., Dragan, A., Sastry, S., and Seshia, S.

Active Preference-Based Learning of Reward

Functions. In Robotics: Science and Systems, 2017.

Human Interaction and Interpretability Paper

18. Schaul, T., Horgan, D., Gregor, K., and Silver, D.

Universal Value Function Approximators. In

International Conference on Machine Learning, pp.

1312–1320, 2015.

19. Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,

and Klimov, O. Proximal Policy Optimization

Algorithms. arXiv:1707.06347, 2017.

20. Singh, A., Yang, L., Hartikainen, K., Finn, C., and

Levine, S. End-to-End Robotic Reinforcement

Learning without Reward Engineering. arXiv preprint

arXiv:1904.07854, 2019.

21. Sutton, R., Precup, D., and Singh, S. Between MDPs

and semi-MDPs: A framework for temporal

abstraction in reinforcement learning. Artificial

intelligence, 112(1-2): 181–211, 1999.

22. Yuliang Zou, Zizhao Zhang, Han Zhang, Chun-Liang

Li, Xiao Bian, Jia-Bin Huang, and Tomas Pfister.

Pseudoseg: Designing pseudo labels for semantic

segmentation. ICLR, 2021.

23. Zhao, X., Robu, V., Flynn, D., Salako, K., Strigini, L.:

Assessing the safety and reliability of autonomous

vehicles from road testing. In: the 30th Int. Symp. on

Software Reliability Engineering. pp. 13–23. IEEE,

Berlin, Germany (2019).

