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Abstract: Discovering association rules from very large databases is an important data mining problem. In this paper we propose an algorithm 
which is applicable to large databases and can be used efficiently for discovering important rules. It discovers the large itemsets without multiple 
passes over the database. In this paper we concentrate over the discovery of localized patterns in a sub-domain, which can be easily processed to 
obtain large-itemsets and valid rules, consecutively. We present an efficient algorithm for mining association rules that is faster than the 
previously proposed partition algorithms. The algorithm is also ideally suited for parallelization. 
 
Keywords: Clustered-Domain; Localized-Pattern; Parallelizable Mining; Domain partitioning;   Generalized Association Rule. 
 

I. INTRODUCTION  

Data mining has its applicability in many areas such as 
decision support, market strategy, financial forecasts[3], 
customer profiling, analysis of products, warranty claim 
analysis, inventory analysis[��], etc. Many approaches have 
been proposed to find out useful and invaluable information 
from huge databases [1] and[10]. One of the most important 
approaches is mining association rules, which was first 
introduced in [3].The mining of association rules involves 
the discovery of significant and valid correlations among 
items that belong to a particular domain [7]. The 
development of association-rule mining algorithms has 
attracted remarkable attention during the last years [8], 
where focus has been placed on efficiency and scalability 
issues with respect to the number of records[9]. 

The information obtained as association rules may be 
used to decide catalog design, store layout, product 
placement, target marketing, webpage layout, etc. Many 
algorithms have been proposed for discovering association 
rules[3][7][2]. Association-rule mining algorithms based on 
column enumeration can be severely impacted by a large 
domain. BFS algorithms (Apriori-like) will produce an 
excessive number of candidates, which drastically increase 
the CPU and I/O costs (when the candidates do not fit in 
main memory, they have to be divided into chunks and 
numerous passes are performed for each chunk[3]). DFS 
algorithms (e.g., FP-growth [5] and Éclat [4] use auxiliary 
data structures that summarize the database (e.g., FP-tree), 
which become less condensed when the domain size 
increases, because of the many different items’ 
combinations. This affects the CPU and I/O costs and, more 
importantly, disk thrashing may occur when the size of the 
structures exceeds the available main memory. 

We focus on mining databases with a very large 
number of records and with a domain that has a very large 
number of items. Initially, the algorithm partitions the 
database in small chunks, which can be accommodated 
easily in main memory. The partitioning method is adopted 
from [2], but with a slight modification that items are not in 
<TID, item> form. In second phase the correlations in the 

partitions (i.e. sub-domains) are determined. This method is 
based on the concept of localized-patterns in Ref [6]. In very 
large database the items form a localized pattern and are not 
uniformly distributed. Hence, with an assumption: for a 

partition at random consists, at least, one localized pattern 

within its domain. This method acts in second phase and 
detects, very quickly and with low memory consumption, 
the groups of items. Then, in a third phase, we propose the 
separate mining of association rules within groups. The 
separate mining of each partition is performed by focusing 
each time on the relevant items. 

A.   Problem Description 

Let I={i1, i2,…, im} be a set of distinct items and D be a 
set of variable length transactions, where each transaction T 
(a data case) is a set of items so that T I. In general, a set 
of items is called an itemset. The number of items n an 
itemset is called the length of an itemset. Itemsets of some 
length k are referred as k-itemsets.  An association rule is an 
implication of the form, X�Y, where X I, Y I and 
X�Y= . The rule X�Y holds in the transaction set T with 
confidence c, if c% of transactions in T that support X also 
support Y. The rule has support s in T if s% of the 
transactions in T contains X Y. Here X is called the 
antecedent and Y is called the consequent of the rule. For a 
given  set of transactions D (the database), the problem of 
mining association rules is to discover all association rules 
that have support and confidence greater than the user-
specified minimum support (called minsup) and minimum 
confidence (called minconf). 
The problem of mining association rules is to generate all 
rules that have support and confidence greater than some 
user specified minimum support and minimum confidence 
thresholds, relatively. This problem can be decomposed into 
the following sub problems [2]: 
1. All itemsets that have support above the user specified 

minimum support are generated. These itemsets are 

called large itemsets. 

2. For each large itemsets, all the rule that have minimum 

confidence are generated as follows: 
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For a large itemset X and Y  X, if support (X) / 
support(X-Y) >= minimum confidence, then the rule X 
–Y � Y is a valid rule. 
For a set of items | I | the number of possible itemsets is 

2
m

. The problem is to identify which of these large numbers 
of itemsets has the minimum support for the given set of 
transactions. For very small values of m, it is possible to set 

up 2
m 

counters, one for each distinct itemset, and count the 
support for every itemset by scanning the database once. 
However for many applications m can be more than 1,000. 
Clearly, this approach is impractical.  To reduce the 
combinatorial search space, all algorithms exploits the 
following property: any subset of a large itemset must also 

be large [2]. 

II. PREVIOUS WORKS 

After the initial algorithms proposed by Agawam [7], the 
problem has been extensively studied by other researchers and 
a number of fast variants have been proposed. In a subsequent 
paper in [3], Agawam et. al. has discussed how the algorithm 
for finding large item sets may be sped up substantially by 
introducing a pruning approach which reduces the size of the 
candidate Ck. This algorithm uses the pruning trick that all 
subsets of a large item set must also be large. If some (k-1)-
subset of an itemset - 2 does not belongs to L

k-1
 then that 

itemset can be pruned from further consideration [17]. This 
process of pruning eliminates the need for finding the support 
of the candidate item set I. In the same paper [3], an efficient 
data structure known as the hash-tree was introduced for 
evaluating the support of an item set. 

Subsequent work on the large item set method has 
concentrated on the following aspects: 
(1) Improving the I/O costs by reducing the number of passes 

over the transaction database. 

(2) Improving the computational efficiency of the large item 

set generation procedure. 

(3) Finding efficient parallel algorithms for association rule 

generation. 

(4) Introducing sampling techniques for improving the I/O and 

computational costs of large item set generation. 

(5) Extensions of the large item set method to other problems 

such as quantitative association rules, generalized 

associations, and cyclic association rules. 

(6) Finding methods for online generation of association rules 

by using the pre-process-once-query-many paradigm of online 

analytical processing. 

A. Improvements 

A hash-based algorithm for efficiently finding large 
itemsets was proposed by Park et. al. in [12]. It was observed 
that most of the time was spent in evaluating and finding large 
2-itemsets. The algorithm in Park et. al. [12] attempts to 
improve this approach by providing a hash based algorithm for 
quickly finding large 2-itemsets.  
Brin et. al. proposed a method for large itemset generation 
which reduces the number of passes over the transaction 
database by counting some (k+1)-itemsets in parallel with 
counting k-itemsets. Inmost previously proposed algorithms 
for finding large itemsets, the support for a (k+1)-itemset was 
counted after k-itemsets have already been generated. In this 
work, it was proposed that one could start counting a (k + 1)-
itemset as soon as it was suspected that this itemset might be 

large. Thus, the algorithm could start counting for (k+1)-
itemsets much earlier than completing the counting of k-
itemsets. The total number of passes required by this algorithm 
is usually much smaller than the maximum size of a large 
itemset. 

A partitioning algorithm was proposed by Savasere et. al. 
[2] for finding large itemsets by dividing the database into n 
partitions. The size of each partition is such that the set of 
transactions can be maintained in main memory. Then, large 
itemsets are generated separately for each partition. This 
method requires just two passes over the transaction database 
in order to find the large itemsets.  
The approach described above is highly parallelizable, and has 
been used to generate large itemsets by assigning each 
partition to a processor. At the end of each iteration of the 
large item set method the processors need to communicate 
with one another in order to find the global counts of the 
candidate k-item sets. Often, this communication process may 
impose a substantial bottleneck on the running time of the 
algorithm. In other cases, the time taken by the individual 
processors in order to generate the processor-specific large 
itemsets may be the bottleneck.  

A common feature of most of the algorithms reviewed 
above and proposed in the literature is that most such research 
is are variations on the “bottom-up theme” proposed by the 
Apriori algorithm [3,7]. For databases in which the itemsets 
may be long, these algorithms may require substantial 
computational effort. Consider for example a database in 
which the length of the longest itemset is 40. In this case, there 
are 240 subsets of this single itemset, each of which would 
need to be validated against the transaction database. Thus, the 
success of the above algorithms critically relies on the fact that 
the length of the frequent patterns in the database is typically 
short. 

Since the size of the transaction database is typically very 
large, it may often be desirable to use random sampling in 
order to generate the large itemsets. The use of random 
sampling to generate large itemsets may save considerable 
expense in terms of the I/O costs. A method of random 
sampling was introduced by Toivonen in [13]. The weakness 
of using random sampling is that it may often result in 
inaccuracies because of the presence of data skew. Data which 
are located on the same page may often be highly correlated 
and may not represent the overall distribution of patterns 
through the entire database. As a result, it may often be the 
case that sampling just 5% of the transactions may be as 
expensive as a pass through the entire database.  

B. Generalizations of the association rule problem 

Initially, the association rule problem was proposed in the 
context of supermarket data. The motivation was to find how 
the items bought in a consumer basket related to each other. A 
number of interesting extensions and applications have been 
proposed. The problem of mining quantitative association 
rules in relational tables was proposed in [14]. In such cases 
association rules are discovered in relational tables which have 
both categorical and quantitative attributes. Thus, it is possible 
to find rules which indicate how a given range of quantitative 
and categorical attributes may affect the values of other 
attributes in the data. The algorithm for the quantitative 
association rule problem discretizes the quantitative data into 
disjoint ranges and then constructs an item corresponding to 
each such range. Once these pseudo-items have been 
constructed, a large itemset procedure can be applied in order 
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to find the association rules. Often a large number of rules 
may be produced by such partitioning methods, many of 
which may not be interesting. An interest measure was defined 
and used in [14] in order to generate the association rules. In 
[15], an algorithm for clustering quantitative association rules 
was proposed. The aim of this algorithm was to generate rules 
which were more natural in terms of the quantitative clusters 
with which individual rules were associated. A closely related 
issue to finding quantitative association rules is the problem of 
finding profile association rules in which it is desirable to tie 
together rules which tie together user profiles with buying 
patterns. An algorithm for finding profile association rules was 
discussed in [16]. A method for finding optimized quantitative 
association rules has been discussed in [15]. This paper 
discusses how to choose the quantitative ranges in an optimal 
way so as to maximize the strength of the given association 
rules. An interesting issue is that of handling taxonomies of 
items. For example, in a store, there may be several kinds of 
cereal, and for each individual kind of cereal, there may be 
multiple brands. Rules which handle such taxonomies are 
called generalized associations. The motivation is to generate 
rules which are as general as possible and also as general as 
possible while taking such taxonomies into account. Savasere 
et. al.[2] also discuss how to find interesting negative 
association rules in the context of taxonomies of items. The 
focus of this work is to find rules which negatively correlate 
with rules which are discovered at higher levels of the 
taxonomy. Another useful extension of association rules which 
has been recently been proposed is the concept of cyclic 

association rules. It may often be the case that when 
association rules are computed for data which have a time 
component, periodic seasonal variations may be observed. For 
example, the monthly sales of goods correlate with each other 
differently on a seasonal basis.  

III. ALGORITHM 

The algorithm starts in its first phase by partitioning the 
database (D), which is similar to the partitioning method 
introduced in [2]. The major difference in this algorithm is that 
it does not use TID list for representing items and the mining 
process uses graphs to generate localized patterns within a 
partition (Pi  P). This method is completely different from 

the frequent itemset  mining algorithm used in [2], which was 
based on Apriori. Localized patterns are much easier to 
discover and without counting the support for an itemset  
various times in a serialized manner. Instead, it directly 
computes the support  for 2-itemsets and represents them as  
adjacent vertices (i, j) of an undirected graph.  

 A. The algorithm can be represented as: 

 

B. Localized patterns 

Frequent items in a partition form a localized pattern. It 
is illustrated in the figure as, let the nodes represent all the 
frequent 1-itemsets and edge between two items (i.e. vertices 
i  and j) implies that the support is greater than the minimum 

suport.  

 
Figure 1: Localized pattern 

This is the second phase of the algorithm in which it finds the 
localized patterns within a partition and then merges the 
obtained pattern with any other pattern of same size. Thus, 
the output is a heavy itemset which consists of all the valid 
rules. 

The algorithm for finding localized patterns can be 
represented as:  
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The algorithm find_loclized_pattern has a maximum 

space requirement of  O(gs2), where g is the size used by one 
graph node and s is the size for  counter needed to count the 
support of the 2-itemset. 
Proof:  
Step 1:  For a given set A = {x1,x2,………….,xn} the total 

number of pairs generated is n(n-1)/2 [ 7].  Formally, this can 
be represented as: 

|A| = n(n-1)/2 = 0.5 * (n2 – n); 

which can be expressed  as O(n2). As the total number of 
the elements in one partition (i.e. the domain size in the 

partition) is s, the space requirement is O(s2).  
Step 2: Assuming that the support of all the pairs generated is 
greater than the minimum support threshold. Then the total 
number of nodes needed to represent the graph is equal to the 
size of domain. In our case the domain size is s. Hence, the 
space required to represent this graph structure in memory is 

s2 * g , where g is the space needed to represent one node. 

This can be represented as O(gs2). 
From above we can see the space requirement of this 

complete algorithm is   max {O(s2) , O(gs2)} = O(gs2) 
 for g >= 1      

C.  Final Phase 

 This phase proceeds further with the output 
generated by the second phase. The localized patterns 

obtained from different partitions are merged  to form a 
potential large itemset of size-k.  This itemset is the first 
appropriate domain which can be mined efficiently for 
generation of valid association rules. The approach proposed 
is primarily focused on condensing the size of domain.  
 The largest item set derived from the entire domain 
can be processed for obtaining rules according to some 
traditional approach.  

IV. SPACE REQUIREMENT OF PARTITIONING 

ALGORITHM AND COMPARISON BETWEEN PARTITIONING 

AND FIND_LOCALIZED_PATTERN  (PROPOSED ALGORITHM) 

Let s be the size of domain in a partition. i.e. total 
number of items representing the Universe of Discourse All 
possible number of subsets than can be generated from these s 

elements is 2s – 1. The number of counters is exponential and 

can be estimated as O(2s).   
Comparing the requirement of space for partitioning 

algorithm and the proposed algorithm: 

Space requirement for the proposed method: O(gs2) 

Space requirement o partitioning approach: O(2s) 
The proposed method shows a space requirement of 
polynomial order whereas the older approach has a space 
complexity of exponential order. 

V. CONCLUSION 

This algorithm is primarily focused on reducing the size 
of a large domain. It seems unmanageable to deal with a very 
large domain since, the number of frequent item sets 
generated increases exponentially with every element added 
to the domain. This approach is much similar to the 
partitioning algorithm but differs primarily in the approach 
used for finding the item set inside the partition [2] as it 
adopts the approach of localized pattern. In pure partitioning 
algorithm the item sets generation was purely apriori in nature 
as a result for large domain size it is simply not feasible. This 
fact is supported from the above section which compares the 
traditional approach of partitioning the database and the 
proposed method which partitions the domain inside a 
partitioned database. 

VI. APPENDIX 

The Apriori algorithm  
In mining association rules the two important 

measures are the support and the confidence. A large item 

set is an item set with support larger than the support 
threshold. The common algorithm to compute large item set 
is the Apriori algorithm. The Apriori algorithm [3] has 
become a data mining classic and most data mining 
algorithms are based upon it. The algorithm is depicted 
below. The most important step of this algorithm is step 3 in 
the prune step in apriori-gen function, which makes sure 
that all subsets of a candidate item set are frequent. The 
basic idea is that any subset of a large item set must be 
large. Therefore, the candidate item sets having k items can 
be generated by joining large item sets having k − 1 items, 
and deleting those that contain any subset that is not large. 
The algorithm works as follows:  
L1 = {large 1-itemsets} 
for (k = 2; Lk−1 � ; k++) do begin  
Ck = apriori-gen (Lk−1) //New candidates 
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for all transactions t in database do begin  
Ct = subset (Ck, t) //Candidates contained in t 
 for all candidates c  Ct do begin  
c.count++; 
end 

Lk = {c  Ck c.count   minsup} 
end 
Answer = kLk 

     The apriori-gen function takes as argument Lk−1, the 
set of all large (k − 1)-item sets. It returns a superset of the 
set of all large k-item sets. The function works as follows. 
First, the join step joins Lk−1 with Lk−1:  
1. insert into Ck 
2. select p.item1, p.item2, p.itemk−1, q.itemk−1 
3. from Lk−1p, Lk−1q 
4. where p.item1 = q.item1, p.itemk−2 = q.itemk−2, 
p.itemk−1 < q.itemk−1; 
Next, the prune step deletes all item sets c  Ck such that 
some (k − 1)-subset of c is not in Lk−1:  
1. forall item sets c  Ck do 
2.  forall (k − 1)-subsets s of c do 
3.   if (s  Lk−1) then 
4.    delete c from Ck 
5.   end 
6.  end 
7. end 
This can be easily illustrated from the example given below: 
 

 
Figure 2: Example 
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