
��������	�
����	�
�������������

������������������������������������ ����!����"��������
�������

�#
#��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved 90

ISSN No. 0976-5697

Mining Association Rules in Large Databases using localized pattern

Kanhaiya Lal*

Assistant Professor
Department of Computer S. & Engg.

B.I.T Patna , India
klal@bitmesra.ac.in

Dr. N.C.Mahanti
Professor & Head

Department of Applied Mathematics

B.I.T Mesra Ranchi, India
 ncmahanti@rediffmail.com

Abstract: Discovering association rules from very large databases is an important data mining problem. In this paper we propose an algorithm
which is applicable to large databases and can be used efficiently for discovering important rules. It discovers the large itemsets without multiple
passes over the database. In this paper we concentrate over the discovery of localized patterns in a sub-domain, which can be easily processed to
obtain large-itemsets and valid rules, consecutively. We present an efficient algorithm for mining association rules that is faster than the
previously proposed partition algorithms. The algorithm is also ideally suited for parallelization.

Keywords: Clustered-Domain; Localized-Pattern; Parallelizable Mining; Domain partitioning; Generalized Association Rule.

I. INTRODUCTION

Data mining has its applicability in many areas such as
decision support, market strategy, financial forecasts[3],
customer profiling, analysis of products, warranty claim
analysis, inventory analysis[��], etc. Many approaches have
been proposed to find out useful and invaluable information
from huge databases [1] and[10]. One of the most important
approaches is mining association rules, which was first
introduced in [3].The mining of association rules involves
the discovery of significant and valid correlations among
items that belong to a particular domain [7]. The
development of association-rule mining algorithms has
attracted remarkable attention during the last years [8],
where focus has been placed on efficiency and scalability
issues with respect to the number of records[9].

The information obtained as association rules may be
used to decide catalog design, store layout, product
placement, target marketing, webpage layout, etc. Many
algorithms have been proposed for discovering association
rules[3][7][2]. Association-rule mining algorithms based on
column enumeration can be severely impacted by a large
domain. BFS algorithms (Apriori-like) will produce an
excessive number of candidates, which drastically increase
the CPU and I/O costs (when the candidates do not fit in
main memory, they have to be divided into chunks and
numerous passes are performed for each chunk[3]). DFS
algorithms (e.g., FP-growth [5] and Éclat [4] use auxiliary
data structures that summarize the database (e.g., FP-tree),
which become less condensed when the domain size
increases, because of the many different items’
combinations. This affects the CPU and I/O costs and, more
importantly, disk thrashing may occur when the size of the
structures exceeds the available main memory.

We focus on mining databases with a very large
number of records and with a domain that has a very large
number of items. Initially, the algorithm partitions the
database in small chunks, which can be accommodated
easily in main memory. The partitioning method is adopted
from [2], but with a slight modification that items are not in
<TID, item> form. In second phase the correlations in the

partitions (i.e. sub-domains) are determined. This method is
based on the concept of localized-patterns in Ref [6]. In very
large database the items form a localized pattern and are not
uniformly distributed. Hence, with an assumption: for a

partition at random consists, at least, one localized pattern

within its domain. This method acts in second phase and
detects, very quickly and with low memory consumption,
the groups of items. Then, in a third phase, we propose the
separate mining of association rules within groups. The
separate mining of each partition is performed by focusing
each time on the relevant items.

A. Problem Description

Let I={i1, i2,…, im} be a set of distinct items and D be a
set of variable length transactions, where each transaction T
(a data case) is a set of items so that T I. In general, a set
of items is called an itemset. The number of items n an
itemset is called the length of an itemset. Itemsets of some
length k are referred as k-itemsets. An association rule is an
implication of the form, X�Y, where X I, Y I and
X�Y= . The rule X�Y holds in the transaction set T with
confidence c, if c% of transactions in T that support X also
support Y. The rule has support s in T if s% of the
transactions in T contains X Y. Here X is called the
antecedent and Y is called the consequent of the rule. For a
given set of transactions D (the database), the problem of
mining association rules is to discover all association rules
that have support and confidence greater than the user-
specified minimum support (called minsup) and minimum
confidence (called minconf).
The problem of mining association rules is to generate all
rules that have support and confidence greater than some
user specified minimum support and minimum confidence
thresholds, relatively. This problem can be decomposed into
the following sub problems [2]:
1. All itemsets that have support above the user specified

minimum support are generated. These itemsets are

called large itemsets.

2. For each large itemsets, all the rule that have minimum

confidence are generated as follows:

Kanhaiya Lal et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 90-94

© 2010, IJARCS All Rights Reserved 91

For a large itemset X and Y X, if support (X) /
support(X-Y) >= minimum confidence, then the rule X
–Y � Y is a valid rule.
For a set of items | I | the number of possible itemsets is

2
m

. The problem is to identify which of these large numbers
of itemsets has the minimum support for the given set of
transactions. For very small values of m, it is possible to set

up 2
m

counters, one for each distinct itemset, and count the
support for every itemset by scanning the database once.
However for many applications m can be more than 1,000.
Clearly, this approach is impractical. To reduce the
combinatorial search space, all algorithms exploits the
following property: any subset of a large itemset must also

be large [2].

II. PREVIOUS WORKS

After the initial algorithms proposed by Agawam [7], the
problem has been extensively studied by other researchers and
a number of fast variants have been proposed. In a subsequent
paper in [3], Agawam et. al. has discussed how the algorithm
for finding large item sets may be sped up substantially by
introducing a pruning approach which reduces the size of the
candidate Ck. This algorithm uses the pruning trick that all
subsets of a large item set must also be large. If some (k-1)-
subset of an itemset - 2 does not belongs to L

k-1
 then that

itemset can be pruned from further consideration [17]. This
process of pruning eliminates the need for finding the support
of the candidate item set I. In the same paper [3], an efficient
data structure known as the hash-tree was introduced for
evaluating the support of an item set.

Subsequent work on the large item set method has
concentrated on the following aspects:
(1) Improving the I/O costs by reducing the number of passes

over the transaction database.

(2) Improving the computational efficiency of the large item

set generation procedure.

(3) Finding efficient parallel algorithms for association rule

generation.

(4) Introducing sampling techniques for improving the I/O and

computational costs of large item set generation.

(5) Extensions of the large item set method to other problems

such as quantitative association rules, generalized

associations, and cyclic association rules.

(6) Finding methods for online generation of association rules

by using the pre-process-once-query-many paradigm of online

analytical processing.

A. Improvements

A hash-based algorithm for efficiently finding large
itemsets was proposed by Park et. al. in [12]. It was observed
that most of the time was spent in evaluating and finding large
2-itemsets. The algorithm in Park et. al. [12] attempts to
improve this approach by providing a hash based algorithm for
quickly finding large 2-itemsets.
Brin et. al. proposed a method for large itemset generation
which reduces the number of passes over the transaction
database by counting some (k+1)-itemsets in parallel with
counting k-itemsets. Inmost previously proposed algorithms
for finding large itemsets, the support for a (k+1)-itemset was
counted after k-itemsets have already been generated. In this
work, it was proposed that one could start counting a (k + 1)-
itemset as soon as it was suspected that this itemset might be

large. Thus, the algorithm could start counting for (k+1)-
itemsets much earlier than completing the counting of k-
itemsets. The total number of passes required by this algorithm
is usually much smaller than the maximum size of a large
itemset.

A partitioning algorithm was proposed by Savasere et. al.
[2] for finding large itemsets by dividing the database into n
partitions. The size of each partition is such that the set of
transactions can be maintained in main memory. Then, large
itemsets are generated separately for each partition. This
method requires just two passes over the transaction database
in order to find the large itemsets.
The approach described above is highly parallelizable, and has
been used to generate large itemsets by assigning each
partition to a processor. At the end of each iteration of the
large item set method the processors need to communicate
with one another in order to find the global counts of the
candidate k-item sets. Often, this communication process may
impose a substantial bottleneck on the running time of the
algorithm. In other cases, the time taken by the individual
processors in order to generate the processor-specific large
itemsets may be the bottleneck.

A common feature of most of the algorithms reviewed
above and proposed in the literature is that most such research
is are variations on the “bottom-up theme” proposed by the
Apriori algorithm [3,7]. For databases in which the itemsets
may be long, these algorithms may require substantial
computational effort. Consider for example a database in
which the length of the longest itemset is 40. In this case, there
are 240 subsets of this single itemset, each of which would
need to be validated against the transaction database. Thus, the
success of the above algorithms critically relies on the fact that
the length of the frequent patterns in the database is typically
short.

Since the size of the transaction database is typically very
large, it may often be desirable to use random sampling in
order to generate the large itemsets. The use of random
sampling to generate large itemsets may save considerable
expense in terms of the I/O costs. A method of random
sampling was introduced by Toivonen in [13]. The weakness
of using random sampling is that it may often result in
inaccuracies because of the presence of data skew. Data which
are located on the same page may often be highly correlated
and may not represent the overall distribution of patterns
through the entire database. As a result, it may often be the
case that sampling just 5% of the transactions may be as
expensive as a pass through the entire database.

B. Generalizations of the association rule problem

Initially, the association rule problem was proposed in the
context of supermarket data. The motivation was to find how
the items bought in a consumer basket related to each other. A
number of interesting extensions and applications have been
proposed. The problem of mining quantitative association
rules in relational tables was proposed in [14]. In such cases
association rules are discovered in relational tables which have
both categorical and quantitative attributes. Thus, it is possible
to find rules which indicate how a given range of quantitative
and categorical attributes may affect the values of other
attributes in the data. The algorithm for the quantitative
association rule problem discretizes the quantitative data into
disjoint ranges and then constructs an item corresponding to
each such range. Once these pseudo-items have been
constructed, a large itemset procedure can be applied in order

Kanhaiya Lal et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 90-94

© 2010, IJARCS All Rights Reserved 92

to find the association rules. Often a large number of rules
may be produced by such partitioning methods, many of
which may not be interesting. An interest measure was defined
and used in [14] in order to generate the association rules. In
[15], an algorithm for clustering quantitative association rules
was proposed. The aim of this algorithm was to generate rules
which were more natural in terms of the quantitative clusters
with which individual rules were associated. A closely related
issue to finding quantitative association rules is the problem of
finding profile association rules in which it is desirable to tie
together rules which tie together user profiles with buying
patterns. An algorithm for finding profile association rules was
discussed in [16]. A method for finding optimized quantitative
association rules has been discussed in [15]. This paper
discusses how to choose the quantitative ranges in an optimal
way so as to maximize the strength of the given association
rules. An interesting issue is that of handling taxonomies of
items. For example, in a store, there may be several kinds of
cereal, and for each individual kind of cereal, there may be
multiple brands. Rules which handle such taxonomies are
called generalized associations. The motivation is to generate
rules which are as general as possible and also as general as
possible while taking such taxonomies into account. Savasere
et. al.[2] also discuss how to find interesting negative
association rules in the context of taxonomies of items. The
focus of this work is to find rules which negatively correlate
with rules which are discovered at higher levels of the
taxonomy. Another useful extension of association rules which
has been recently been proposed is the concept of cyclic

association rules. It may often be the case that when
association rules are computed for data which have a time
component, periodic seasonal variations may be observed. For
example, the monthly sales of goods correlate with each other
differently on a seasonal basis.

III. ALGORITHM

The algorithm starts in its first phase by partitioning the
database (D), which is similar to the partitioning method
introduced in [2]. The major difference in this algorithm is that
it does not use TID list for representing items and the mining
process uses graphs to generate localized patterns within a
partition (Pi P). This method is completely different from

the frequent itemset mining algorithm used in [2], which was
based on Apriori. Localized patterns are much easier to
discover and without counting the support for an itemset
various times in a serialized manner. Instead, it directly
computes the support for 2-itemsets and represents them as
adjacent vertices (i, j) of an undirected graph.

 A. The algorithm can be represented as:

B. Localized patterns

Frequent items in a partition form a localized pattern. It
is illustrated in the figure as, let the nodes represent all the
frequent 1-itemsets and edge between two items (i.e. vertices
i and j) implies that the support is greater than the minimum

suport.

Figure 1: Localized pattern

This is the second phase of the algorithm in which it finds the
localized patterns within a partition and then merges the
obtained pattern with any other pattern of same size. Thus,
the output is a heavy itemset which consists of all the valid
rules.

The algorithm for finding localized patterns can be
represented as:

Kanhaiya Lal et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 90-94

© 2010, IJARCS All Rights Reserved 93

The algorithm find_loclized_pattern has a maximum

space requirement of O(gs2), where g is the size used by one
graph node and s is the size for counter needed to count the
support of the 2-itemset.
Proof:
Step 1: For a given set A = {x1,x2,………….,xn} the total

number of pairs generated is n(n-1)/2 [7]. Formally, this can
be represented as:

|A| = n(n-1)/2 = 0.5 * (n2 – n);

which can be expressed as O(n2). As the total number of
the elements in one partition (i.e. the domain size in the

partition) is s, the space requirement is O(s2).
Step 2: Assuming that the support of all the pairs generated is
greater than the minimum support threshold. Then the total
number of nodes needed to represent the graph is equal to the
size of domain. In our case the domain size is s. Hence, the
space required to represent this graph structure in memory is

s2 * g , where g is the space needed to represent one node.

This can be represented as O(gs2).
From above we can see the space requirement of this

complete algorithm is max {O(s2) , O(gs2)} = O(gs2)
 for g >= 1

C. Final Phase

 This phase proceeds further with the output
generated by the second phase. The localized patterns

obtained from different partitions are merged to form a
potential large itemset of size-k. This itemset is the first
appropriate domain which can be mined efficiently for
generation of valid association rules. The approach proposed
is primarily focused on condensing the size of domain.
 The largest item set derived from the entire domain
can be processed for obtaining rules according to some
traditional approach.

IV. SPACE REQUIREMENT OF PARTITIONING

ALGORITHM AND COMPARISON BETWEEN PARTITIONING

AND FIND_LOCALIZED_PATTERN (PROPOSED ALGORITHM)

Let s be the size of domain in a partition. i.e. total
number of items representing the Universe of Discourse All
possible number of subsets than can be generated from these s

elements is 2s – 1. The number of counters is exponential and

can be estimated as O(2s).
Comparing the requirement of space for partitioning

algorithm and the proposed algorithm:

Space requirement for the proposed method: O(gs2)

Space requirement o partitioning approach: O(2s)
The proposed method shows a space requirement of
polynomial order whereas the older approach has a space
complexity of exponential order.

V. CONCLUSION

This algorithm is primarily focused on reducing the size
of a large domain. It seems unmanageable to deal with a very
large domain since, the number of frequent item sets
generated increases exponentially with every element added
to the domain. This approach is much similar to the
partitioning algorithm but differs primarily in the approach
used for finding the item set inside the partition [2] as it
adopts the approach of localized pattern. In pure partitioning
algorithm the item sets generation was purely apriori in nature
as a result for large domain size it is simply not feasible. This
fact is supported from the above section which compares the
traditional approach of partitioning the database and the
proposed method which partitions the domain inside a
partitioned database.

VI. APPENDIX

The Apriori algorithm
In mining association rules the two important

measures are the support and the confidence. A large item

set is an item set with support larger than the support
threshold. The common algorithm to compute large item set
is the Apriori algorithm. The Apriori algorithm [3] has
become a data mining classic and most data mining
algorithms are based upon it. The algorithm is depicted
below. The most important step of this algorithm is step 3 in
the prune step in apriori-gen function, which makes sure
that all subsets of a candidate item set are frequent. The
basic idea is that any subset of a large item set must be
large. Therefore, the candidate item sets having k items can
be generated by joining large item sets having k − 1 items,
and deleting those that contain any subset that is not large.
The algorithm works as follows:
L1 = {large 1-itemsets}
for (k = 2; Lk−1 � ; k++) do begin
Ck = apriori-gen (Lk−1) //New candidates

Kanhaiya Lal et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 90-94

© 2010, IJARCS All Rights Reserved 94

for all transactions t in database do begin
Ct = subset (Ck, t) //Candidates contained in t
 for all candidates c Ct do begin
c.count++;
end

Lk = {c Ck c.count minsup}
end
Answer = kLk

 The apriori-gen function takes as argument Lk−1, the
set of all large (k − 1)-item sets. It returns a superset of the
set of all large k-item sets. The function works as follows.
First, the join step joins Lk−1 with Lk−1:
1. insert into Ck
2. select p.item1, p.item2, p.itemk−1, q.itemk−1
3. from Lk−1p, Lk−1q
4. where p.item1 = q.item1, p.itemk−2 = q.itemk−2,
p.itemk−1 < q.itemk−1;
Next, the prune step deletes all item sets c Ck such that
some (k − 1)-subset of c is not in Lk−1:
1. forall item sets c Ck do
2. forall (k − 1)-subsets s of c do
3. if (s Lk−1) then
4. delete c from Ck
5. end
6. end
7. end
This can be easily illustrated from the example given below:

Figure 2: Example

VII. REFERENCES

[1] M.S. Chen, J. Han and P.S. Yu, Data mining: an
overview from a database perspective, IEEE
Transactions on Knowledge and Data Engineering 8
(1996), pp. 866–883

[2] A. Savasere, E. Omiecinski and S. Navathe, An
efficient algorithm for mining association rules in large
databases, Proceedings of the VLDB Conference
(1995), pp. 432–444.

[3] R. Agrawal and R. Srikant, Fast algorithms for mining
association rules, Proceedings of the 20th Very Large
DataBases Conference (VLDB'94), Santiago de Chile,
Chile (1994), pp. 487–499.

[4] M.J. Zaki, Scalable algorithms for association mining,
IEEE Trans. Knowl. Data Eng. 12 (2000) (3), pp. 372–
390.

[5] J. Han, J. Pei, Y. Yin and R. Mao, Mining frequent
patterns without candidate generation: a frequent-
pattern tree approach, Data Min. Knowl. Discovery 8
(2004), pp. 53–87.

[6] C. Aggarwal, C. Procopiuc and P. Yu, Finding
localized associations in market basket data, IEEE
Trans. Knowl. Data Eng. 14 (2002) (1), pp. 51–62.

[7] R. Aggrawal, T. Imielinski and A. Swami, Mining
association rules between sets of items in very large
databases, Proceedings of the ACM SIGMOD
Conference (1993), pp. 207–216.

[8] J. Hipp, U. Guntzer and G. Nakhaeizadeh, Algorithms
for association rules mining—a general survey and
comparison, SIGKDD Explore. 2 (2000) (1), pp. 58–64.

[9] P. Bradley, J. Gehrke, R. Ramakrishnan and R. Srikant,
Scaling mining algorithms to large databases, Comm.
ACM 45 (2002) (8), pp. 38–43.

[10] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann Publisher, San
Francisco, CA, USA (2001).

[11] Girish K. Palshikar, Manan S. Kale & Manoj M.
Apte, Association rules mining using heavy itemsets,
IEEE Trans. Knowl. Data Eng.

[12] Park J. S., Chen M. S., and Yu P. S. “An Effective
Hash-based Algorithm for Mining Association Rules.”
Proceedings of the ACM-SIGMOD Conference on
Management of Data, 1995. Extended version appears
as: “Using a Hash-based Method with Transaction
Trimming for Mining Association Rules.” IEEE
Transactions of Knowledge and Data Engineering,
Volume 9, no 5, September 1997, pages 813-825.

[13] Toivonen H. “Sampling Large Databases for
Association Rules”. Proceedings of the 22nd
International Conference on Very Large Databases,
Bombay, India, September 1996.

[14] Srikant R., and Agrawal R. “Mining quantitative
association rules in large relational tables”. Proceedings
of the ACM SIGMOD Conference on Management of
Data, 1996. pages 1-12.

[15] Lent B., Swami A., and Widom J. “Clustering
Association Rules.” Proceedings of the Thirteenth
International Conference on Data Engineering. pages
220-231, Birmingham, UK, April 1997.

[16] Aggarwal C. C., Sun Z., and Yu P. S. “Generating
Profile Association Rules.” IBM Research Report, RC-
21037.

[17] Agrawal Rakesh and John C.Shafer “Parallel Mining
of Association Rules: Design, Implementation and
Experience” IBM Research Report, RJ-10004.

