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Abstract. Let be an undirected and simple graph on vertices and degree of each vertex is equal . We present some properties of 

and confirm that is a Hamiltonian graph.
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1. INTRODUCTION

Let be an undirected and simple graph 

on vertices, where be the vertex set and be edge 

set of . We use and to denote the number of 

vertices and the number edges of , respectively. In , the 

degree of vertex is denoted by . The edge of two 

vertices and is denoted by or . A graph is 

called regular graph of degree (or - Regular graph) if 

its vertices has degree . We use to denote the 

minimum degree of the vertices of . The graph on 

vertices with all vertices having degree is called the 

complete graph and denote by . 

A set of vertices in graph is called independent 

if no two vertices in this set are non-adjacent. Maximum 

independent set is an independent set of largest possible size 

for a given graph. Denote by the size of a maximum 

independent set of . A set is called clique if every 

two distinct vertices in are adjacent in

The graph is called a subgraph of 

if and . Let is a vertex of , we use 

to denote the subgraph which obtained by deleting 

from . Livewise , if is a set of vertices of , graph 

is a subgraph of whose obtained by deleting 

from . 

We use to denote the number of components 

of . In , a vertex is called cut vertex if 

. Denote by the graph which 

obtained from when previously non-adjacent vertices 

and are joined by a new edge . A set of vertices in a 

connected graph is called disconnecting if the graph 

becomes disconnected when this set is removed. Denote by 

the smallest size of a disconnecting set in .

Graph is called 1-tough if for 

every non-empty subset of . 

The distance between two vertices in is the 

number of edges in a shortest path connecting them. The 

diameter of is the greatest distance between any pair of 

vertices and denote by .

A simple path in connected graph that passes 

through every vertex exactly once is called Hamiltonian 

path. A simple cycle in a connected graph that passes 

through every vertex exactly once is called Hamiltonian 

cycle. Any connected graph that contains a Hamiltonian 

cycle is called Hamiltonian Graph.

Recognizing Hamiltonian graph is hard problem. 

Now there are many theorems providing sufficient 

conditions for a graph to be Hamiltonian. Dirac [4] proved 

that if the minimum degree of the vertices of is at least

then is Hamiltonian graph. Denote by - the 

degree sum of any two non-adjacent vertices in . Ore [4] 

asserts results more generally, if then is 

Hamiltonian graph. In [4], H. A. Jung proved that, if is 1-

tough and , then is Hamiltonian 

graph.

In [1] and [2], we proved that, if , 

there are three cases, if is an even number then is 

Non-Hamiltonian graph, if is an odd number and 

http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_problem
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then is Hamiltonian graph, 

otherwise, is Non-Hamiltonian graph.

In [5], Paul Erdos proved that, if ( )-Regular 

graph with or and 

, then, is Hamiltonian if only if is not the 

Petersen graph. Figure 1 is Petersen graph.

Figure 1. Petersen graph.

Bondy, Chvátal and Murty [3] used the definition 

on closure graph to define the necessary and sufficient 

condition for Hamiltonian graph. Following some sufficient

conditions for Hamiltonian and non-Hamiltonian graph.

Theorem 1 (Bondy and Chvátal [3]). Let be a graph on 

vertices and let and be nonadjacent vertices of 

with degree sum at least . Then, is Hamiltonian graph 

if and only if is Hamiltonian graph.

Theorem 2 (Chvátal [3]). If is not 1-tough graph then 

is not Hamiltonian graph.

Denote by )(GCl the closure of which derived 

from by recursively joining pairs of nonadjacent vertices 

having degree sum at least . Figure 2 illustrates graph 

and its closure graph )(GCl .

Figure 2

Theorem 3 (The Closure Lemma). is Hamiltonian if and 

only if )(GCl is Hamiltonian.

Following result is special case of Theorem 3.

Corollary 1 (Bondy and Murty [3]). If )(GCl is complete 

graph then is Hamiltonian. 

Theorem 4 (Nash-Williams, Bondy [5]). If , 

and then is Hamiltonian.

2. RESULT

Let be an -regular graph on vertices, where 

. Then, must be an odd number and 

(if not, be an odd number, 

i.e., graph has number of vertices of odd degree is an odd 

number, this is absurd). 

We use to denote the set of - regular 

graphs on vertices, where and 

(so, and be an even number). 

Figure 3 illustrates graphs in and .

Figure 3. Graphs in and .

Proposition 1. For every , is connected 

graph.

Proof. Suppose otherwise, is disconnected graph. Let 

is a connected component of and . Denote 

by the remaining of and . We have 

. Choose an any vertex in and an any 

vertex in . Then, ,

. So, 

, a contradiction. Therefore, is 

connected graph.

Proposition 2. For every , contains a 

Hamiltonian path.

Proof. Let and be any two non-adjacent vertices in , 

we add an edge to . Then,

. Let is an any vertex such 

that is non-adjacent to or of , we have 

or 

)(GCl
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. In other 

words, we add to the graph the edges connecting 

two non-adjacent vertices whose degree sum is not less than 

. Thus, is complete graph , and by 

Corollary 1, is Hamiltonia graph. This proves that, 

contains a Hamiltonian path.

Note that, for , has only one graph as 

shown in Figure 3.

Suppose that, , and are two non-

adjacent vertices in . Denote by the set of vertices 

that are non-adjacent to , the set of vertices that are 

non-adjacent to in . Thus, is a set of 

vertices which are both adjacent to and , 

is a set of vertices which are non-adjacent to and . 

Proposition 3. For every , .

Proof. By all vertices of the have degrees , 

. 

Similarly, . We have,

=

. Thus, .

Proposition 4. For every , .

Proof. Let and be two non-adjacent vertices in . By 

Proposition 3, , so , or . This 

proves that, with two non-adjacent vertices and in , 

there exists at least one vertex such that is 

adjacent to both vertices and . In other words, 

. Thus, .

Proposition 5. Let , for every ,

.

Proof. a) Fisrt, we will prove that . 

Assume that . Let and be two any 

non-adjacent vertices in . 

Consider 1. By , so , and by 

Proposition 3, . Let , and so is the only 

vertex that is adjacent to both vertices and in . Let

be the set of vertices of that are non-adjacent to z

, be the set of vertices of that are non-adjacent to 

z . Figure 4 illustrates a graph in to prove 

Proposition 5. 

Figure 4.

Obviously, . Moreover, 

by , each pair of vertices in must be 

adjacent, and each vertex in must be adjacent to every 

vertex in . Similarly, each pair of vertices in must 

be adjacent. In other words, the vertices in form a 

clique and the vertices in form a clique 

in . 

Consider 2. Suppose that is any vertex in . 

Then, there exists at least one vertex such that 

is adjacent to (if not, graph will have three vertices 

, , , where each pair is non-adjacent, is contradictory 

to hypothesis ).

From Consider 1 and Consider 2, we have, vertex 

must be adiacent to , and all vertices in and 

. I.e., . 

This is contrary to the assumption of the - regular graph 

, . So, .

b) Next, we will prove that .

Assume that , and let 

is a maximum independent set of . 

Set . We have, 

. For every , 

. So is adjacent to  vertices in .

I.e., each vertex in must be adjacent to every vertex in 

. This proves that, each vertex in 

has degree no less than , this is contrary to the 



An D. Nhu, International Journal of Advanced Research in Computer Science, 11 (3), May-June 2020,12-15

© 2020-2022, IJARCS All Rights Reserved    15

assumption of the -regular graph . Therefore,

.

Note that, Proposition 5 is also true for , in 

has the only graph for 

(see Figure 3). Figure 5 illustrates graphs in for 

and .

Figure 5.

Theorem 5. Let , for every , is

Hamiltonian graph.

Proof. We will show that graph satisfies the condition of 

Theorem 4, and therefore, Theorem 5 is proved.

Indeed, by (the hypothesis of 

) and (Proposition 3), so

. (1) 

By , we have , i.e.,

. (2)

Next, we show that . Suppose othewise, 

and is an any cut vertex of . Then, graph 

is disconned graph, and in there exist two disjoint 

sets and such that , . 

By, each vertex in has degree , so 

, all vertices of (similarly ) whose 

each pairwise are adjacent, and all vertices of are 

adjacent to . So, 

, a 

contradiction with the hypothesis of . Thus, . (3)

From (1), (2), (3) shown that graph satisfies the 

condition of Theorem 4. 
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