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Abstract: - Quantum computing has emerged as an important interdisciplinary field, merging theories in mathematics, physics and computer 
science. So far, a significant portion of research in quantum computing has focused on the design of quantum algorithms.  Quantum Com-
puters requires very different algorithms for factorization, which plays an important role in the field of quantum computing and shor’s algo-
rithm is used to address integer factorization problem. Shor's algorithm is important because it breaks a widely used public-key cryptography 
scheme known as RSA. This paper discusses the refinement of quantum factorization algorithm. 
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I. INTRODUCTION 

Quantum computer first proposed in the 1970s,[1] quan-

tum computing relies on quantum physics by taking advan-

tage of certain quantum physics properties of atoms or nuc-

lei that allow them to work together as quantum bits, or qu-

bits, to be the computer's processor and memory. By inte-

racting with each other while being isolated from the exter-

nal environment, qubits can perform certain calculations 

exponentially faster than conventional computers.A quantum 

computer is a machine that performs calculations based on 

the laws of quantum mechanics, which is the behavior of 

particles at the sub-atomic level. By the early nineties it was 

know that a quantum computer could be faster than any clas-

sical computer for certain problems. 

In a quantum computer, the fundamental unit of infor-

mation (called a quantum bit or qubit), is not binary but ra-

ther more quaternary in nature.  This qubit property arises as 

a direct consequence of its adherence to the laws of quantum 

mechanics which differ   radically   from   the   laws   of   

classical physics [2].  A qubit can exist not only in a state 

corresponding to the logical state 0 or 1 as in a classical bit, 

but also in states corresponding to a blend or superposition 

of these classical states.  In other words, a qubit can exist as 

a zero, a one, or simultaneously as both 0 and 1, with a nu-

merical coefficient representing the probability for each 

state. 

Integer factorization is  believed to be  

Computationally infeasible with an ordinary computer for 

large integers that are the product of only a few prime 

numbers (e.g., products of two 300-digit primes). By com-

parison, a quantum computer could solve this problem more 

efficiently than a classical computer using Shor's algorithm 

to find its factors. This ability would allow a quantum com-

puter to "break" many of the cryptographic systems in use 

today, in the sense that there would be a polynomial time (in 

the number of bits of the integer) algorithm for solving the 

problem. In particular, most of the popular public key 

ciphers are based on the  difficulty of factoring integers, 

including forms of RSA. These are used to protect secure 

Web pages, encrypted email, and many other types of data. 

Breaking these would have significant ramifications for 

electronic privacy and security. The only way to increase 

the security of an algorithm like RSA would be to increase 

the key size and hope that an adversary does not have the 

resources to build and use a powerful enough quantum com-

puter[3]. 

II. RELATED WORK 

The most famous example of the high performance of a 

quantum computer is Peter Shor's algorithm for factoring 

large numbers. The solution of this problem is important in 

cryptography.  Actually Shor solved a related problem 

called the discrete log. Suppose we take a number x to the 

power r and reduce   the   answer   modulo   n   (i.e.,   find   

the remainder   r   after   dividing   xr       by n ).  This   is 

straightforward   to   calculate.  It   is m u c h    more diffi-

cult to find the inverse - given x, n, and y, find r such that 

xr    = y (mod n). For factoring, all we need to do is con-

sider y=1 and find the smallest positive r such that xr  = 1 

(mod n). Shor's quantum algorithm to do this calculates xr   

for all r at once. Since xl+r = xl   (mod n), this is a periodic 

function with period r .  Then when we take the Fourier  

transform, we will get something that is peaked at mul-

tiples of 1/r. Since there is an efficient quantum algorithm   

for   the   Fourier   transform,   we   can therefore find r. 

A. Integer Factorization 

a. Prime decomposition 

b. Practical applications 
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In   number   theory,   the   integer   factorization prob-

lem is the problem of finding a non-trivial divisor of a 

composite number; for example, given a number like 91, 

the challenge is to find a number such as 7 which divides it. 

When the numbers are very  large,  no  efficient  algorithm  

is  known;  a recent effort which factored a 200 digit num-

ber (RSA-200)  took  eighteen  months  and  used  over 

half a century of computer time. The supposed difficulty of 

this problem is at the heart of certain algorithms in crypto-

graphy such as RSA. Many areas of mathematics and com-

puter science have been brought  to  bear  on  the  problem,  

including Elliptic curves, algebraic number theory, and 

quantum computing. 

B. Prime decomposition 

By the fundamental theorem of arithmetic, every in-

teger has a unique prime factorization. Given an algorithm 

for integer factorization, one can factor any integer down 

to its constituent primes by repeated application of this 

algorithm [5]. 

C. Practical applications 

The hardness of this problem is at the heart of several 

important cryptographic systems. A fast integer factoriza-

tion algorithm would mean that the RSA public-key algo-

rithm was insecure. Some cryptographic systems, such as 

the Rabin public- key algorithm and the Blum Shub pseu-

do- random number generator can make a stronger guaran-

tee - any means of breaking them can be used to build 

a fast integer factorization algorithm, so if integer factori-

zation is hard then they are strong. In contrast, it may turn 

out that there are attacks on the RSA problem more effi-

cient than integer factorization, though none are currently 

known. 

If a large, n-bit number is the product of two primes 

that are roughly the same size, then no algorithm is known 

that can factor in polynomial time. That means there is no 

known algorithm that can factor it in time O (nk) for any 

constant k. There are algorithms, however, that are faster 

than O (en). In other words, the best known algorithms are 

sub- exponential, but super-polynomial.  In particular, the 

best known asymptotic running time is for the general 

number field sieve (GNFS) algorithm, which is: 

 
 

For an ordinary computer, GNFS is the best known al-

gorithm for large n. For a quantum computer, however, 

Peter Shor discovered an algorithm in 1994 that solves it 

in polynomial time. This will have significant implications 

for cryptography if a large quantum computer is ever built. 

Shor's algorithm takes only O ((log n)3) time and O(log n) 

space. In 2001, the first 7-qubit quantum computer be-

came the first to Shor's algorithm. It factored the number 

15. 

III. ANALYSIS OF SHOR'S QUANTUM FACTO-

RIZATION ALGORITHM 

a. Procedure 

 [i] Classical part 

 [ii] Quantum part: Period-finding subroutine: 

b. Explanation of the algorithm 

 [i] Obtaining factors from period b) Finding the 

period 

c. Modifications to Shor's Algorithm 

Shor's algorithm is a quantum algorithm for factoring 

a number n in O ((log n) 3) time and O (log n) space, 

named after Peter Shor[3]. 

The algorithm is significant because it implies that pub-

lic key cryptography might be easily broken, given a suffi-

ciently large quantum computer. RSA, for example, uses a 

public key n which is the product of two large prime num-

bers. One way to crack RSA encryption is by factoring n, 

but with classical algorithms, factoring becomes increasingly  

time-consuming  as  n  grows  large; more specifically, no 

classical algorithm is known that can factor in time O((log 

n)k) for any k. By contrast, Shor's algorithm can crack RSA 

in polynomial time.  It has also been extended to attack 

many other public key cryptosystems. 

Like all quantum computer algorithms, Shor's algorithm  

is  probabilistic:  it  gives  the  correct answer with high 

probability, and the probability of failure can be decreased 

by repeating the algorithm. Shor's algorithm was demon-

strated in 2001 by a group  at  IBM,  which  factored  15  

into  3  and  5, using a quantum computer with 7 qubits.Like 

most factorization algorithms, Shor’s algorithm reduces the 

factorization[3]. 

Problem to problem of finding the period of a function 

uses quantum parallelism to find a superposition of all val-

ues of the function in one step. 

Then it calculated the QFT of the function, which sets 

the amplitudes into multiples of the fundamental. 

 
Figure-1: Steps of Shor’s algorithm at a glance. 

A. Procedure 
 

He problem we are trying to solve is that, given an in-

teger n, we try to find another integer p between 1 and n 

that divides n. 

Shor's algorithm consists of two parts: 

i. A reduction of the factoring problem to the prob-
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lem of order-finding, which can be done on a clas-

sical computer. 

ii. A quantum algorithm to solve the order finding 

problem. 

a. Classical Part 

Pick a pseudo-random number a < n 

Compute gcd (a, n). This may be done using the 

Euclidean algorithm. 

If gcd (a, n) ≠ 1, then there is a nontrivial factor of 

n, so we are done. 

Otherwise, use the period-finding subroutine (below) to 

find r, the period of the following function: 

f  (x)=ax mod n, 

i.e. the smallest integer r for which f(x + r) = f(x). If r is 

odd, go back to step 1. 

If a r/2 ≡ -1 (mod n), go back to step 1. 

gcd (ar/2  ± 1, n) is a nontrivial factor of n. We are done. 

b. Quantum Part: Period-Finding Subroutine 

The quantum circuits used for this algorithm are custom 
designed for each choice of n and the random a used in f(x) 

= ax  mod n. Given n, find Q = 2q  such that n2 ≤  Q < 2n2, 
which implies Q / r > n. The input and output qubit regis-
ters need to hold superpositions of values from 0 to Q − 1, 
and so have q qubits each. Using what might appear to be 
twice as many qubits as necessary guarantees that there is 
at least n different x which produce the same f(x), even 
as the period r approaches n/2. 

B. Explanation of the Algorithm 

The algorithm is composed of two parts. The first part 

of the algorithm turns the factoring problem into the prob-

lem of finding the period of a function, and may be imple-

mented classically. The second part finds the period using 

the quantum Fourier transform, and is responsible for the 

quantum speedup. 

a. Obtaining factors from period 

The integers less than n and coprime with n form a fi-

nite group under multiplication modulo n. By the end of step 

3, we have an integer a in this group. Since the group is 

finite, a must have a finite order r, the smallest positive in-

teger such that 

ar  ≡1 mod n. 

Therefore, n | (a r    − 1). Suppose we are able  to ob-

tain r, and it is even. Then 

ar -1=(ar/2 -1)(ar/2 +1) ≡ 0 mod n 

n | (ar/2 -1)(ar/2 +1). 

r is the smallest positive integer such that a r  ≡ 1, so n 

cannot divide (a r / 2 − 1). If n also does not divide (a r / 2  + 
1), then n must have a nontrivial common factor with each 

of (a r / 2 − 1) and (a r / 2  + 1). 

Proof: For simplicity, denote (a r / 2 − 1) and (a r / 2 
+ 1) by u and v respectively. n | uv, so kn = uv for some in-

teger k. Suppose gcd(u, n) = 1; then mu + ln 

= 1 for some integers m and l (this is a property of the great-

est common divisor.) Multiplying both sides by v, we find 

that mkn + nvl = v, so n | v. By contradiction, gcd(u, n) ≠ 1. 

By a similar argument, gcd(v, n) ≠ 1. 

This supplies us with a factorization of n. If n is the 

product of two primes, this is the only possible factoriza-

tion. 

b. Finding the period 

Shor’s period-finding algorithm relies heavily on the 

ability of a quantum computer to be in many states simul-

taneously. Physicists call this behavior a "superposition" 

of states. To compute the period of  a  function  f,  we  

evaluate  the  function  at  all points simultaneously[4]. 

Quantum physics does not allow us to access all 

this information directly, though. A measurement will   

yield   only   one   of   all   possible   values, destroying all 

others. But for the no cloning theorem, we could first 

measure f(x) without measuring x, and then make a few 

copies of the resulting state (which is a superposition of 

states all having the same f(x)). Measuring x on these states 

would provide different x values which give the same 

f(x), leading to the period. Because we cannot make exact 

copies of a quantum state, this method does not work. 

Therefore we have to carefully transform the superposi-

tion to another state that will return the correct answer 

with high probability. This is achieved by the quantum 

Fourier transform [9]. 
Shor thus had to solve three "implementation" prob-

lems.  All of them had to be implemented "fast", which 

means that they can be implemented with a number of 

quantum gates that is polynomial in log n. 

a. Create a superposition of states. This can be done by 

applying Hadamard gates to all qubits in the input 

register. Another approach would be to use the quan-

tum Fourier transform (see below). 

b. Implement the function f as a quantum transform. To 

achieve this, Shor used repeated squaring forhis 

modular exponentiation transformation. It is im-

portant to note that this step is more difficult to im-

plement than the quantum Fourier  transform,  in  

that  it  requires  ancillary qubits and substantially 

more gates to accomplish. 

c. Perform a quantum Fourier transform. By using con-
trolled rotation gates and Hadamard gates Shor  de-
signed  a  circuit  for  the  quantum Fourier transform 

(with Q = 2q) that uses just q(q − 1) / 2 = O((logQ)2) 
gates. 
After all these transformations a measurement will yield 

an approximation to the period r. For simplicity assume that 

there is a y such that yr/Q is an integer. Then the probability 

to measure y is 1. To see that we notice that then 

e − 2πibyr / Q = 1 

for all integers b. Therefore the sum whose square gives 
us the probability to measure y will be Q/r since b takes 

roughly Q/r values and thus the probability is 1 / r2. There 
are r y such that yr/Q is an integer and also r possibilities for 
f(x0), so the probabilities sum to 1. 

Note: another way to explain Shor's algorithm is by not-
ing that it is just the quantum phase estimation algorithm in 
disguise. 

C. Modifications to Shor's Algorithm 
 

There have been many modifications to Shor's algo-

rithm.  For example, whereas, an order of twenty to thirty 

runs are required on a quantum computer in the case of 

Shor's original algorithm, if the period of the series ends up 

being odd. 

IV. CONCLUSION 
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In this paper, we present a quantum factorization algo-

rithm. The algorithm’s probability of success is higher than 

shor’s algorithm. As we know, up to date there isn’t a quan-

tum algorithm for NPC problem in polynomial time. So 

finding a quantum algorithm for NPC needs more research. 
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