
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 328

ISSN No. 0976-5697

A Semi-Distributed Approach for Dynamic Load Distribution in Distributed Systems

Sandipan Basu
Post Graduate Department of Computer Science

St. Xavier’s College
Kolkata, INDIA.

mail.sandipan@gmail.com

Abstract: This paper presents an efficient algorithm, which is able to distribute the workload dynamically in a distributed systems. In this algo-
rithm, we do process allocation in such a way, that resource utilization will be robust and also managing the workload among different nodes
(processors) and also kept a look on load sharing, so that no node will become (almost) idle. In this algorithm, I suggest a semi-distributed struc-
ture of nodes, so that certain problems (that usually appear in case of load balancing & load sharing in distributed system) can be solved without
much effort.

Keywords: dynamic load sharing, semi-distributed, local process, remote process, mcount, local table, global table, local coordinator, cluster,
CPU utilization.

I. INTRODUCTION

In distributed systems, process management is a signifi-
cant issue, since processes are distributed among several
nodes (processors) throughout the system, and to manage
those processes within processors need some serious man-
agement. By the term load distribution, we mean, load shar-
ing and load balancing along with process migration [7].
Load balancing in distributed system, refers to the distribu-
tion of workload among several nodes, so that the workload
is (approximately) evenly balanced throughout the system.
But, in the real & hard sense, absolute load balancing in
distributed system is not possible, since the number of
processes in a node is always varying and there exists a
temporal unbalance among the nodes at every moment.
Hence, the aim is to keep a moderate balance of workload
between nodes, as far as possible, with minimum effort. But
in case of distributed system, besides load balancing, our
main aim is that, every node must perform some reasonable
amount of work, so that no node becomes (almost) idle, es-
pecially, when one node becomes heavily loaded. Hence, in
our approach, we also discuss the concept of dynamic load
sharing.

In the proposed algorithm, we use the concept of semi-
distributed system. That is, we consider a system that is nei-
ther pure centralized, nor pure distributed; we call it as semi-
distributed. With this new kind of approach, what we try to
do is, to remove the problem associated with pure centra-
lized system and pure distributed system. Here, we use the
term, local process – a local process is the one that is
processed at its originating node; and remote process – a
remote process is one that is processed at a node, different
from the one on which it originated [2].

II. PRECONDITIONS

The effectiveness of algorithm depends on the validity
of assumptions that are made. The following assumptions
are needed to make the algorithm work appropriately.

a) All nodes in the entire system are assigned identifica-
tion number say, 1 to N.

b) All nodes in the system are fully connected.
As we are considering distributed systems, some as-

sumptions also need to make about the communications
network. This is very important because nodes communicate
only by exchanging messages between them. The following
aspects about the communications network should be consi-
dered.
a) Messages are not lost or altered and are correctly deli-

vered to their destination in a finite amount of time.
b) Messages reach their destination in a finite amount of

time, but the time of arrival is variable.

III. ALGORITHM

As mentioned above, in the proposed algorithm, we
consider semi-distributed system. We define semi-
distributed system as a system, which is neither purely cen-
tralized nor purely distributed; it is in an intermediate form.
In the semi-distributed system, if there are n nodes (proces-
sors), then out of them, nodes are selected as
local coordinator(s). A task of local coordinator is to take
care (meet the requirements needed for load distribution) of
at the most

A. Priority Assignment policy :- Intermediate

 () nodes. A local
coordinator with its associated nodes forms a cluster. The
entire distributed system is divided into multiple clusters,
where each cluster is (primarily) responsible for dynamic
load distribution for its associated nodes. Again, local coor-
dinators are inter-connected and exchange information as
needed. In the proposed algorithm, we follow certain poli-
cies, which are suitable for the algorithm.
These are –

Whenever a process is generated or fetched into a sys-
tem, a priority has been assigned to that process. In the pro-
posed algorithm, we use the Intermediate approach for
priority assignment. In the Intermediate approach, in a node,
if the number of local processes is greater than or equal to
the number of remote processes, then local processes will be

Sandipan Basu, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,328-332

© 2010, IJARCS All Rights Reserved 329

given higher priority than remote processes, else remote
processes will be given higher priority.

B. Migration-Limiting Policy :- Controlled
Migration-limiting policy decides about the total num-

ber of times a process is allowed to migrate from one node
to another. In the proposed algorithm, we use the Controlled
approach. In the Controlled approach, what we do, is, we
associate a counter, known as mcount (migration count) to
each process after its generation, to fix a limit on the number
of times that process may migrate. Since, process migration
is an expensive operation, it is not allowed to a process to
migrate too frequently. To handle it, we propose that, when-
ever a process is created and after its priority has been as-
signed, the mcount is also initialized. If a process has a high
priority, then its mcount will be set to 1. Since, it is a high
priority process, it is not desirable to migrate it frequently.
So, we allow it to migrate it only once (if necessary at all).
Again, if a process has been assigned a low priority, then its
mcount is initialized to 2, i.e. it is allowed to migrate the
process only twice, and not more.

C. Load Estimation Policy:- CPU Utilization
Before we migrate a process from one node to another,

we have to measure, the workload of the node from where
the process will be migrated. Or, it may be the case, the lo-
cal coordinator, may need to know the current work-
load of any of its associated nodes. In the proposed algo-
rithm, we prefer to measure the load of a node, in terms of
CPU utilization. The number of CPU cycles actually
executed per unit of time, is known as CPU utilization. CPU
utilization can be measured by setting up a timer to
periodically observe the CPU state (idle/busy) [1].

D. Process Transfer Policy:- Triple-Threshold
To transfer a process form one node to another, it is ne-

cessary to decide whether a node is lightly loaded or
heavily loaded. In the proposed algorithm, we use the
Triple-threshold (high- intermediate– low) policy.

Figure 1: Different levels of CPU utilization

A decision to transfer a local process or to accept re-
mote process is based on the following:-

i. When the load of a node is below the low mark (region
0), then new local processes (both of high & low priori-
ty) will be executed locally and for load sharing pur-
pose, requests to accept remote processes (both high
and low priority processes) are accepted.

ii. When the load of a node is above the low mark but be-
low the intermediate mark (region 1), then new local
processes (both high & low priority) will be executed
locally and requests to accept remote processes (only
low priority processes) are accepted.

iii. When the load of a node is above the intermediate mark
but below the high mark (region 2), then new local
processes (low priority processes) are executed locally
and a request is sent to its local coordinator to migrate
new local processes of high priority. Requests to accept
new remote processes will be rejected.

iv. When the load of a node is above the high mark (region
3), then a request is sent to its local coordinator to mi-
grate new local processes (both high and low priority).
Requests to accept new remote processes will be re-
jected.

E. State information exchange policy :- Polling
In the proposed algorithm, we are considering dynamic

load distribution policy. In dynamic load distribution policy
it is implicitly required to exchange of state information
among the nodes as required. There are different policies for
exchange of state information – Periodic broadcast, Broad-
cast when state changes, On-demand exchange and Ex-
change by polling. In the proposed algorithm, we use the
policy of Polling [2]. Polling is a better policy than the oth-
ers, because, all other methods use broadcasting technique.
Consequently, if the number of nodes is large in a distri-
buted system, then broadcasting messages throughout the
entire system would result into a massive traffic and net-
work congestion. So, it is better to use the polling method.
According to this policy, there is no need to exchange of
state information between nodes, without necessity. Rather,
when a node needs the cooperation of some other nodes, it
can search, by randomly polling the other nodes one by one.
The polling process stops, either when a suitable node is
found or a predefined poll limit Lp is reached. In the latter
approach, the conventional method is to set the poll limit
(Lp) to a positive integer, and decrease the count after each
unsuccessful attempt. If the poll limit is reached to zero,
then the process will be executed at that node, where it was
generated. Now, in this conventional approach, a little ques-
tion may arise, that,

a. What will be Value of Poll Limit (Lp)?
In the proposed algorithm, we have suggested to set the

poll limit to the number of local coordinators in the system.

F. Location Policy:- Threshold
Location policy determines the destination node of the

process, which is decided to migrate from its cur-
rent location. In the proposed algorithm, we use the method
of threshold in this respect. Whenever a decision is
made to migrate a process from its current location, a mes-
sage is sent to its local coordinator. If the local
coordinator is unable to fulfill the request within its cluster,
then it sends message to other local coordinators, one-by-
one. In the proposed algorithm, we implement the location
policy as follows:-
Case 1:- If a node is in region 3 [(76-100%), as mentioned
above], then it would send request to its local coordinator,
informing that it is in region3 and wants to transfer pro-
cesse(es) (high priority processes with mcount=1 and low
priority processes with mcount=2 or mcount=1; as decided
by the process transfer policy). Then, it is its local coordina-
tor’s duty to find a suitable node which is in region0 or in
region1, and transfer some processes.
Case 2:- If a node is in region 2, then it would send request
to its local coordinator, informing that it is in re-
gion2 and wants to transfer processes (as decided by the
process transfer policy; high priority processes with

Sandipan Basu, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,328-332

© 2010, IJARCS All Rights Reserved 330

mcount=1;) Then it is its local coordinator’s duty to find a
suitable node which is region0.
Case 3:- If a node is in region 1, then it would not send any
request to its local coordinator.
Case 4

As mentioned above, if the local coordinator is unable
to satisfy request of its own cluster, then it sends request
one-by one to other local coordinators, in the system, until
the pending requests gets satisfied.

:- If a node is in region 0, then it would not send any
request to its local coordinator.

The algorithm can best be explained by an example.
Consider a system having 20 nodes. According to the

proposed algorithm, we follow the semi-
distributed structure of the nodes. So, here n=20, i.e. total
number of nodes.

Figure 2: Semi-Distributed structure of a Distributed System

As seen in the above diagram, the nodes are logically
organized in a semi-distributed structure. There are 20
nodes. So, according to the proposed algorithm, the number
of local coordinators will be , and each
coordinator takes care of at the most

 nodes. In this diagram, N0, N1, N2,
N3 are four local coordinators. Local coordinator N0 takes
care of nodes- P15, P2, P14, and P0. N0, P15, P2, P14, P0
altogether form a cluster. So, in each cluster there is only
one local coordinator and its associated nodes. If any of the
nodes (P15, P2, P14, P0), needs service regarding process
migration, load balancing and load sharing, it only consults
to their local coordinator (N0). Also, if N0 needs to fulfill
requests from any of these nodes (P15, P2, P14, P0), it then,
first search for the solution within its own cluster. If the re-
quest could not be satisfied, it (N0) then consults other local
coordinators (N1, N2, and N3) one-by-one, until it gets sa-
tisfied. If there is no suitable node for process migration,
then the process will be executed where it generated.

In the proposed algorithm, we have suggested, that, in a
cluster, each node (normal nodes) maintains two tables.

a. Local Table: -
A local table contains information about the nodes (in-

cluding coordinator) and their status. For example in clus-
ter0, each node (P15, P2, P14, and P0) contains the follow-
ing local table.

Table 1: Local table

Nodes Status
N0 Coordinator

P15 Alive
P2 Alive

P14 Alive

P0 Alive

b. Global Table :-
A global table contains information about all the local

coordinators present in the system. For example, in cluster0,
each node (P15, P2, P14, and P0) contains the following
global table.

Table 2: Global Table

 Local Coordinators
N0

N1

N2

N3

On the other side, each local coordinator (N0, N1, N2,

N3) also maintains the same global table. The purpose of
keeping this table will be discussed soon. The working of
the algorithm is as follows:- Consider a scenario, process
P0, in cluster0 becomes heavily loaded, i.e. it is in region 3.
P0 then sends a message to its local coordinator, informing
that it became heavily loaded (i.e. it is in region 3) and try to
get rid of some processes (having high priority with mcount
=1 and processes having low priority with mcount=2 or
mcount=1). After receiving this message from P0, local
coordinator (N0) asks other nodes in its cluster, i.e. nodes
P15, P2, and P14 to send their state information. According
to the proposed algorithm, local coordinator N0 is searching
for a node which is currently in the region0 or in region1.
After receiving all the state information messages form rest
of the nodes, P0 will decide which node is suitable for mi-
gration (i.e. which node is in region0 or in region1). If the
desired node is found within the cluster, then the search
stops. But, if local coordinator could not be able to find a
suitable node within the cluster, it then sends a request mes-
sage to other local coordinators (one-by-one); informing
about its necessity. For instance, in this case, N0 sends re-
quest to the local coordinator N3, and also informing that it
is in search for a node which is in region0 or in region1.
Now, local coordinator N3 would asks it local nodes for
their corresponding state information. If a desired node is
found, N3 locked that node, so that it cannot take any other
remote processes from other node, for that moment.

N3 informs N0, and eventually some high priority and
low priority processes (as mentioned previously) are mi-
grated from P0 to the destination node. After the migrated
processes complete their execution at the remote node, the
lock has been released. Again, if any node, say, P9 (in clus-
ter 2) is in region2, it then sends a request message to its
local coordinator and proceeds similarly as described just
above.

Sandipan Basu, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,328-332

© 2010, IJARCS All Rights Reserved 331

IV. DISCUSSION

In the discussion of the above mentioned algorithm, I
would like to mention few points-
A. The semi-distributed approach that was mentioned

above is beneficial in the manner; it removes the disad-
vantages that are in pure centralized approach and also
in pure distributed approach.
In the pure centralized approach, the responsibility of

dynamic scheduling physically resides on a single node
(known as central coordinator). As a result, all requests for
process scheduling are handled by the central coordinator.
The problem with this approach –
a. If the centralized coordinator fails, the entire system

would collapse [1].
b. Another problem with this approach, is the bottleneck

at the central coordinator, since, each and every node
sends any request (regarding scheduling) to the central
coordinator. As a result, traffic congestion will occur in
the communication network.

c. The third problem with the centralized approach is that,
the overload of the central coordinator. If the number of
number of nodes increase, then it would be tough for
central coordinator to maintain such large number of
nodes.
In case of pure distributed approach, the work involved

in making process assignment decisions is physically distri-
buted among the various nodes of the system. The problem
with this approach –
a. Since, the system is pure distributed in nature, it may

not have quick decision-making capability, which is an
extremely important aspect of a good global scheduling
algorithm.

b. Since, the system is purely distributed in nature, then to
take any scheduling decision; it becomes necessary to
collect state information of all the nodes in the system.
That may result into following sub problems-

1. Collecting state information of all other nodes of the
entire system is a time consuming task; delay may also
occur.

2. Collecting state information of all other nodes of the
entire system is also communication overhead.

3. In a distributed environment, information regarding the
state of the entire system is collected typically at higher
cost, than in a centralized system. The overhead is in-
creased in an attempt to obtain more information re-
garding global state of the system; the usefulness of that
information is decreased due to both the aging of the in-
formation being gathered and the low scheduling fre-
quency as a result of gathering and processing that in-
formation.
To overcome these above mentioned problems, I sug-

gested a semi-distributed structure, as mentioned above. It is
neither pure centralized approach, nor purely distributed. If
we have close look at the structure, then it can be seen, a
scheduling decision can be taken in two ways – 1) locally
and 2) globally. That is, a local coordinator can take a sche-
duling decision on the basis of information within its cluster
(i.e. locally), or it can do it globally, i.e. referring to other
local coordinators. Hence, the proposed algorithm removes
the complexity of overhead of gathering state information
across the entire system (i.e. in pure distributed environ-
ment). As we can clearly see in the proposed algorithm,
when we do require to gather state information of other
nodes, a local coordinator does not ask each and every node
in the entire system, Rather, it just asks other local coordina-
tors (one-by-one), and it up to that local coordinator to col-

lect the state information of its cluster’s. Again, the re-
quested local coordinator is not going to search for other
nodes, only interested in its own cluster. Hence, the pro-
posed algorithm provides an optimal system performance
with minimum communication overhead and also minimum
global state information gathering overhead.
B. The proposed algorithm also ensures fairness of service.

Consider a scenario, where a single node (which is in
region 0), is selected for process migration by two (or
more) different local coordinators. In that case a colli-
sion may occur. We solve this problem by locking a
node (which is selected as destination node for process
migration), and that lock can explicitly do by any one
local coordinator at a time. Once the remote process
(es) (processes which are migrated & executed at re-
mote site) complete their execution, the lock has been
released.

C. The above mentioned algorithm ensures stability, in the
sense; it would not result into processor thrashing [2].

D. The proposed algorithm also supports scalability. Nodes
can easily be added into the system and accordingly lo-
cal coordinators will be elected, along with its asso-
ciated nodes.

E. The proposed algorithm has a better fault tolerance ca-
pability, compared to other approaches (pure centra-
lized & pure distributed). If a node fails within a cluster,
then it would not affect other clusters in the system. For
instance, in the above diagram, if node P7, somehow
goes down, then it would only affect its home cluster
(i.e. cluster 1), and does not affect any other clusters
too. So, we can see that the effect of failure is confined
only within a certain portion of the system, does not
spread away and also the effect is nominal with respect
to the entire system performance. Again, if any of the
local coordinators goes down, it does not affect the en-
tire system significantly. Suppose, if the local coordina-
tor N2 (in cluster 2) goes down, then the local node
(within cluster2), who noticed it first, becomes the new
coordinator of this cluster (cluster2). For instance, node
P4 is the first one, noticed that N2 goes down, and be-
comes the new local coordinator. It then sends a mes-
sage to other nodes (P13, P6, and P9) within its cluster,
informing that P4 is the new local coordinator, with the
help from its own local table; since from local table P4
gets to know who the other members in the cluster are.
After its local announcement, P4 performs a global an-
nouncement, by updating its global table (making an
entry, P4 as the new local coordinator) and send a copy
of this updated table to other local coordinators (N0, N1
and N3), and in turn as acknowledgments are sent to P4.

V. CONCLUSION

From the above discussion, it is clearly seen; the pro-
posed algorithm ensures the desirable features of a good
global scheduling algorithm. That is, it supports –
a. Dynamic nature of the algorithm.
b. Quick decision-making capability.
c. Optimal system performance with minimum of global

state information gathering.
d. Stability
e. Scalability
f. Good fault tolerance capability
g. Fairness in service.

Sandipan Basu, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,328-332

© 2010, IJARCS All Rights Reserved 332

VI. REFERENCES

[1] Tanenbaum A.S., Distributed Operating System, Pear-
son Education, Third Edition,2007.

[2] Sinha P.K., Distributed Operating Systems Concepts
and Design, Prentice-Hall of India Private Limited,
2008.

[3] Attiya H., and Welch J.,, Distributed Computing Fun-
damentals, Simulation and Advanced Topics, John Wi-
ley & Sons, Inc Publication, Second Edition, 2004.

[4] Kshemkalyani A.D., and Singhal M., Distributed Com-
puting principles, Algorithms, and Systems, Cambridge
University Press, First Edition, 2008.

[5] Daniel Grosu, Anthony T. Chronopoulos “Algorithmic
Mechanism Design for Load Balancing in Distributed
systems”, IEEE TANSACTIONS ON SYSTEMS,
MAN, CYBERNETICS, VOL. 34, NO. 1, pg: 77-84,
FEBRUARY 2004.

[6] Hwa-Chun Lin, and Raghavendra “A Dynamic Load
Balancing Policy With a Central Job Dispatcher (LBC)”
,pg:148-158, IEEE TRANSACTIONS ON SOFT-
WARE ENGINEERING, Vol. 18 No. 2, February 1992.

[7] Niranjan G. Shivaratri , Phillip Krueger , and Mukesh
Singhal “Load Distributing for Locally Distributed Sys-
tems” , Ohio State University, IEEE, pg 33-44, Decem-
ber 1992.

[8] M.D. Feng , C.K.Yuen “Dynamic Load balancing on a
Distributed System” ,pg:318-325, IEEE 1994.

[9] Gupta D., Bepari P., “Load sharing in Distributed Sys-
tems”, Dept. Computer science & Engineering, IIT
Kanpur pg: 1-16.

[10] Yung-Terng Wang, Robert J. T. Morris “Load Sharing
in Distributed Systems”,IEEE TRANSACTION ON
COMPUTERS, Vol c-34, No. 3, pg: 204-217, March
1985.

[11] Smith J.M., “A Survey of Process Migration Mechan-
isms”,pg: 1-13, Columbia University, 22May,2001.

	INTRODUCTION

