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Abstract:Customer Service Centre is the second most important consideration just after the actual product. Also, customer service is one of the 
biggest contributors to the cost component for any firm. We aim to apply well-known data mining techniques to the problem of predicting the 
quality of interactions like those done in call centers and the problem of predicting the quality of service. The analysis of call center 
conversations will provide useful insights for enhancing Call Center Analytics to a level that will enable new metrics and key performance 
indicators (KPIs) beyond the standard approach. These metrics rely on understanding the dynamics of conversations by highlighting the way 
participants discuss topics. The main focus will be to reduce the average handling time, is a call center metric for the average duration of one 
transaction, typically measured from the customer’s initiation of the call and including any hold time, talk time and related tasks that follow the 
transaction. Get real-time solution. The main operations will be speaker diarization, speech to text, agent analysis, emotion recognition andother 
measures to help with the analysis. We will use RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song) for emotion 
analysis, consisting of vocal emotional expressions in sentences spoken in a range of basic emotional states (happy, sad, anger, fear, disgust, 
surprise and calm). Emotion recognition is done by extracting features from the audio from its Mel-frequency cepstral coefficients (MFCCs) and 
passing it through a convolutional neural network. All of this will happen in real time as the call is taking place. 
 
Keywords:CNNs, data mining, emotion recognition, speech diarization, speech to text. 

 
I. INTRODUCTION 

In our increasingly industrialized and globalized world, a 
large number of companies include call centres in their 
structures and more than $300 billion is spent annually on 
call centres around the world. For a customer, addressing the 
call center actually means addressing the company itself, and 
any negative experience on the part of the customer can lead 
to the rejection of company products and services. Hence, for 
the company, it is very important to ensure that a call centres 
function effectively and provides high quality service to its 
customers. Call centres collect a huge amount of data, and 
this provides a great opportunity for companies to use this 
information for the analysis of customer needs, desires, and 
intentions. Such data analysis can help improve the quality of 
customer service and lower the costs. 

II. PROBLEM FORMULATION 

Call center optimization is an important part of customer 
relationship management which consists of people, 
processes, technology and strategies. Service quality of a call 
center is a result of comparison of actual service performance 
and customer expectations. Evaluating the service quality 
which is offered by customer service agent to customer is 
more difficult than evaluating the product quality. Reduce 
total call time, i.e. the average handling time, get real time 
emotion of the speaker, get real time solution and correctly 
route the customers to respective agents to solve their needs. 

III. LITERATURE SURVEY  

Call centres provide services for many types of sectors such 
as telecommunication, finance, transportation, health, 

automotive etc. Several studies have proposed various 
approaches and solutions for the problem of evaluating agent 
performance. Performance evaluation in call centres is 
generally performed through listening randomly selected 
calls from recorded calls, and evaluating the words one by 
one in the related conversation. Obvious demand for 
automatic performance evaluation systems to reduce 
employee costs and to increase the time efficiency. Takeuchi 
has analyzed the recorded calls from a rental car reservation 
office with Trigger Segment Detection to find whether a 
customer has the intention of booking a car or not. Mishne 
has proposed a call centre monitoring system that uses text 
analytics and information retrieval methods. The system is 
used to analyze the content of call center conversations and 
detect the main issue addressed in the call. The project has 
presented speech analytics system adapted automatic speech 
recognition and text mining technologies. 
[1] Minnucci (2004) reports that the most required metrics by 
call center managers are indeed the qualitative ones topped 
by Call Quality (100%) and Customer Satisfaction (78%). 
However, these performance metrics are difficult to 
implement with the adequate level of accuracy. For instance, 
the Baird study (2004) points out that for Customer 
Satisfaction, accuracy can be “negatively affected by 
insufficient number of administered surveys per agent 
resulting in not enough samples of individual agent’s work to 
constitute a representative sample. The result could be an 
unfair judgment of the agent’s performance and allocations 
of bonuses based more upon chance, good fortune than 
merit.” Accuracy is defined as true indication and it depends 
on the actual level of performance attainment, especially 
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