
ISSN No. 0976-5697
DOI: http://dx.doi.org/10.26483/ijarcs.v10i5.6467

Volume 10, No. 5, September-October 2019

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

ABOUT INSUFFICIENCY OF GRAMMARS FOR SEMANTIC VALIDITY OF
COMPUTER PROGRAMS AND ONTOLOGIES AS AN ALTERNATIVE

APPROACH

Laurence R. Ugalde
Project Creator, Formulae (formulae.org)

Toluca, Mexico

Abstract: The Rice theorem proves that semantic properties of computer programs are not decidable. In this paper it will be proved that
grammars are not a sufficient mean to provide semantic validity on computer programs, first as a corollary of the Rice theorem and then as an
independent theorem. Once that is proved that they are not sufficient, the use of ontologies are presented as a viable alternative to grammars and
the additional benefits they offer. Finally, an implementation of a programming language is presented which is not based in any grammar, but in
an ontology.

Keywords: Validation of programs, grammars, semantic validity, symbolic computation, ontology

I. INTRODUCTION

Grammars have been used extensively to validate the
syntax of computer programs. Although the semantic validity
of programs can be lifted adding more structures, for
example with types; a complete mean of semantic validity
cannot exist.

A. The Rice theorem

The Rice theorem [11] states that it is impossible to
formalize a method to differentiate a single, no trivial
semantic property to all computer programs. A trivial
semantic property is a semantic property that is either always
present or always absent in all possible programs. An
example of no trivial semantic property could be “This
program is harmful”. As a consequence of this theorem a
formal and deterministic malware detection program cannot
be built [16]; most of them use heuristics for their detection
procedures. The proof of this theorem shows that if there
existed a method to differentiate such a semantic property, it
could be used to solve the halting problem [15], which it is
known to be impossible.

II. A COROLLARY FOR THE INSUFFICIENCY OF

GRAMMARS FOR SEMANTIC VALIDITY

Corollary 1. A computer language grammar cannot
define the meaning of the programs or instances that belong
to it.

Proof. Let us define the property “This program does
exactly what its author(s) wanted it to do” as a semantic
property because it is evident that some programs have it
while some others do not. According to the Rice theorem,
there cannot exist a formal method to differentiate this
property from any given program, including the use of
grammars. ■

III. A THEOREM FOR THE INSUFFICIENCY OF

GRAMMARS FOR SEMANTIC VALIDITY

Theorem 1. A computer language grammar cannot
define the meaning of the programs or instances that belong
to it.

The proof is based in the fact that if a program were
semantically valid under a specific grammar, then there
cannot be more than one such valid different meanings.

Before presenting the proof, let us see the following
exercise from Douglas R. Hofstadter in his book “Gödel,
Escher, Bach: an Eternal Golden Braid” [7], named the pq-
system:

The pq-system contains the following three symbols:

p q -

There is the following definition: xp-qx is an axiom,
whenever x is composed of hyphens only.

And there is just only production rule: Suppose x, y and z
all stand for particular strings containing only hyphens. And
suppose that xpyqz is known to be a theorem. Then xpy−qz−
is a theorem.

According to this, the following are valid strings:

− p − q − −
− − p − −q − − − −

− − p − − − q − − − − −

While the following are not:

− − − p − − q −
− − p − − − − q − − − − − − − − − − − − −

Afterward in the Hofstadter exercise, the reader is invited
to find the associated semantic. This is, to define the meaning
in the real world of the propositions created in the pq-system.
Valid propositions must be paired with valid real-world facts,

© 2015-19, IJARCS All Rights Reserved 22

Laurence R. Ugalde, International Journal of Advanced Research in Computer Science, 10 (5), Sept-Oct 2019,22-26

and conversely, non-valid propositions must be paired with
invalid real-world facts.

The following interpretation arises almost immediately:

p ⇔ plus
q ⇔ equals
− ⇔ one

−− ⇔ two
−−− ⇔ three

⋮

So the string − − p − − − q − − − − − means “2 plus 3
equals 5”.

We have a tendency to think that there exists a biunivocal
correspondence between the pq-system and the semantic we
have just found, but Hofstadter destroys it by showing the
following, alternative interpretation:

p ⇔ equals
q ⇔ taken from
− ⇔ one

−− ⇔ two
−−− ⇔ three⋮

Nonetheless, it can be argued that while there are two
meanings, there exists an isomorphism between them and
therefore they are equivalent.

In order to show an isomorphism, a rule of
correspondence must be shown between the elements and
operations of both structures. The hyphens representing
numbers, are the same in both. It is evident that:

A + B = C

Is isomorphic with:

A = B taken from C

And therefore they are equivalent, so they are the same
semantics.

Proof. It is based in the previous scheme, this is, an
incomplete grammar will be presented, in order to discover
the meaning of missing symbols, and then a different non-
isomorphic meaning is presented.

Let us suppose that some documents from a early
discovered civilization are found. They show symbols that
seem strange to us. Most of the symbols have been already
deciphered. Two of the undeciphered symbols are:

 The symbol , which is a binary operator, because⑅, which is a binary operator, because
it appears in the documents as a ⑅, which is a binary operator, because b.

 The symbol , which is a unary operator, because it⭑, which is a unary operator, because it
appears in the documents as (⭑, which is a unary operator, because it x).

One of the documents is shown in Fig. 1.

Given

(a1 × a2 × · · · × an) ⑅, which is a binary operator, because x

If we calculate:

(⭑, which is a unary operator, because it a1) ⇔ A1

(⭑, which is a unary operator, because it a2) ⇔ A2⋮
(⭑, which is a unary operator, because it an) ⇔ An

Then

(⭑, which is a unary operator, because it x) ⇔ A1 + A2 + · · · + An

Figure 1. An example of a document found. It can be seen as a grammar.

In order to avoid confusion, the document is not shown in
its “original” form, but it does in our notations and symbols.
For example, the symbols + and × represent usual addition
and multiplication respectively, with the obvious exception
of the and symbols because their meanings are⑅, which is a binary operator, because ⭑ symbols because their meanings are
unknown.

Can the reader discover the meaning of the operations ⑅, which is a binary operator, because
and , in such a way that we have a complete interpretation⭑, which is a unary operator, because it
of the document, and therefore its semantic?

After remembering the logarithm laws we can state the
following relation:

⑅, which is a binary operator, because ⇔ equality (=)
⭑, which is a unary operator, because it(x) ⇔ logarithm log(x)

In this relation, we could have chosen any valid base (a
positive value excepting 1). For this specific case we chose
the base 2.

Now let us build a specific case shown in Fig. 2 (if the
document were a grammar one, this example would be a
valid program).

Given

3 × 4 × 8 = x

If we calculate:

log2 (3) ⇔ 1.5849625

log2 (4) ⇔ 2

log2 (8) ⇔ 3

Then

log2 (x) 1.5849625 + 2 + 3 = 6.5849625⇔

Figure 2. An example of a “valid” program.

In order to find x, we have to do the inverse operation.
The inverse operation of logarithms is exponentiation, so x =
26.5849625 = 96.

So we can conclude that the document expresses the rule
of logarithms that we enunciate as “The logarithm of a
product is equal to the sum of the logarithms of the factors”,
and therefore it is the meaning of the document.

Will there exist another interpretation? By way of
explanation, will there exist another set of operations
(different from equality and logarithms) that satisfies the
same structure?

In number theory, exists the concept of index [8].
Suppose that we define any arbitrary base (for example 2)

© 2015-19, IJARCS All Rights Reserved 23

Laurence R. Ugalde, International Journal of Advanced Research in Computer Science, 10 (5), Sept-Oct 2019,22-26

and we calculate how we can express all the numbers (under
any modulo, for example 13) as powers of the base. We
found that 212 ≡ 1, 21 ≡ 2, 24 ≡ 3, 22 ≡ 4, 29 ≡ 5, 25 ≡ 6, 211 ≡
7, 23 ≡ 8, 28 ≡ 9, 210 ≡ 10, 27 ≡ 11 and 26 ≡ 12 (all modulo
13). Expressly, 2 is a generator of the multiplicative group of
integers modulo 13.

It is not true for any base. A base that shows this property
is said to be a primitive root of the modulo. There are four
primitive roots modulo 13: 2, 6, 7 and 11, and their
correspondent indices are shown in the table 1.

Table 1. Indices modulo 13

Number
(or residue)

Primitive
root 2

Primitive
root 6

Primitive
root 7

Primitive
root 11

1 0 0 0 0
2 1 5 11 7
3 4 8 8 4
4 2 10 10 2
5 9 9 3 3
6 5 1 7 11
7 11 7 1 5
8 3 3 9 9
9 8 4 4 8
10 10 2 2 10
11 7 11 5 1
12 6 6 6 6

The following valid relation can be established:

⑅, which is a binary operator, because ⇔ Congruence, as in a ≡ b mod 13
(⭑, which is a unary operator, because it x) ⇔ Index, ind11 (x)

Any base of either 6, 7 or 11 could be used besides 2.
Building a specific case (a new “valid” program, for the

same grammar) is shown in the Fig. 3.

Given

3 × 4 × 8 ≡ x mod 13

If we calculate:

ind2 (3) ⇔ 4

ind2 (4) ⇔ 2

ind2 (8) ⇔ 3

Then

ind2(x) (4 + 2 + 3) = 9⇔

Figure 3. An example of another “valid program” for the same grammar.

In order to find x, we have to do the inverse operation. If
we (reverse) lookup at the table 1, we will find that ind2 (5) =
9 mod 13, then x = 5.

This new interpretation, corresponds to the rule “The
index of a product is congruent to the sum of the indices of
the factors”.

Due to the similarity of indices with logarithms, indices
are also known (outside theory of numbers) as discrete
logarithms, and it is supposed to because they come from the
same origin: the exponentiation in continuous and discrete
domains, respectively.

However, the two semantics cannot be isomorphic, at
least for the following reasons:

1. The sets that define the bases of both systems
(logarithms and indices) are infinite but of different

cardinality. The set of bases for indices is
numerable while the set of bases for logarithms is
not. Cantor proved that a rule of correspondence
between them does not exist [3].

2. No algorithm for calculation of indices running in
polynomial time is known1. If an isomorphism
existed, it could be used to translate an index
problem to a logarithm problem, which can run in
polynomial time.

It has been shown an example of two different (non-
isomorphic) meaning for the same grammar, therefore it
cannot be generalized that a grammar necessarily defines a
unique semantics. ■

IV. ONTOLOGIES AS A MEAN OF SEMANTIC

VALIDATION OF PROGRAMS

An ontology [14] is a description of the world “as it is”. It
is a compendium of properties obtained under the criteria
that they best describe the world, rather than being deduced
from formal systems only. This last statement is not a trivial
contempt to formal systems, it is because many properties of
exact and non-exact fields of science cannot be obtained by
deduction. As a very simple example, the value of the speed
of light can neither be obtained exclusively from
mathematical nor physical formulas, it requires observation
and experimentation.

A. Ontologies and symbolic computation

Although ontology technologies exist, such as languages
for ontologies, or documented ontologies for a wide scope of
sciences, a different use of ontologies is presented here.

Symbolic computation works differently from the
traditional one. It is based in rewriting rules, and therefore is
a non-deterministic form of computation, because its
behavior depends not only on the program and its inputs, but
also on the available rewriting rules. It strongly relies on the
principle of compositionality [9][10], derived of the fields of
denotational semantics [12].

A set of rewriting rules define an ontology and hence a
mean of semantic validity.

The expression 2 + 3 is semantically valid and it can be
rewritten as 5 because there is a rewriting rule (addition of
numbers) that can be applied. On the other hand, the
following expression is an arithmetic division (the numerator
refers to the planet, while the denominator refers to the
chemical element):

Mars ÷ Silver

The expression is not semantically valid, there cannot be
a rewriting rule, which everybody could define it as correct.

Rewriting rules provide both validity and functionality.

1 The ElGamal cryptographic scheme, and the Diffie-
Hellman key exchange protocol are based on this
property.

© 2015-19, IJARCS All Rights Reserved 24

Laurence R. Ugalde, International Journal of Advanced Research in Computer Science, 10 (5), Sept-Oct 2019,22-26

Figure 4. Visual capabilites of the Fōrmulæ programming language.

B. Benefits

The usage of ontologies provides several benefits. The
list does not pretend to be exhaustive:

Figure 5. Chemical elements and compounds are first-class citizen in the
Fōrmulæ programming language.

Dynamism. Grammars are static. Making changes to a
programming language involves making changes in its
underlying grammar and therefore in its tools such as
compilers. Rewriting rules, on the other hand, are
independent pieces that can however, interoperate with each
other. A programming language based on an ontology built
by rewriting rules is dynamic because their capabilities can
be defined and evolve over time with consistent result,
making such that language orthogonal [13].

 Increasing validity. As the number of rewriting
rules increases, also the ontology does; and
therefore the validation capacity of programs.
Because ontologies are not formal systems their
validation capacity are not limited by the Rice
theorem.

 Possibility of non-textual programs. Computer
languages are commonly expressed as plain text,
because it is required by their underlying grammars.
Using ontologies, text languages are not mandatory,
creating the possibility of programs defined
structurally instead or textually.
Structural programming languages also opens
possibilities for homoiconic languages. These are
programming languages where the objects managed
are defined in the language itself. It is highly
desirable to create languages able to manage real
world objects, such as mathematics elements
directly in the language.

C. Are ontologic languages necessary?

Our knowledge is not perfect, it cannot be, there is a
barrier imposed by the nature that prevent it. Kurt Gödel
proved that no formal system can be both complete and
consistent [5]. Stephen Hawking shows that the realism
(scientific abstractions to explain natural phenomena)
depends on the model used to its study [6].

Our knowledge is not static either. Gregory Chaitin
asserts that the concept of truth is not absolute. It could either
change with time, be sometimes random and even be
accidental [2].

Going further, Paul Feyerabend in his work Against the
method defines the epistemological anarchism which
postulates that the scientific method, although it is valid, it is
not the unique mean to promote the progress of the science.
Other forms of non-scientific as holism (in opposition of
reductionism), or even the serendipity, have produced great
advances in science [4].

Nowadays, we have neural networks able to beat any
human player in difficult games such as Chess or Go. Of
course, there is a lot of theory and formal methods involved
in that field of science, but these networks are able to do that
because their neurons are in a state produced by the learning
on millions of games previously played. The only formal
elements initially introduced in these networks are the game
rules. They are able to play (and play very well) “as is”.

As a second example, in mathematics (a formal and exact
science), what is the result of 00 ? There is not an agreement
about the answer. For some fields, it is more appropriate the
answer 1, and indefinite for others. The choice whether to
define 00 is based on convenience, not on correctness [1].

V. FŌRMULÆ, AN IMPLEMENTATION OF A
ONTOLOGY-BASED PROGRAMMING LANGUAGE

Fōrmulæ [17] is a programming language based in
ontology. It has no grammar associated so it is not compiled
but interpreted.

The associated ontology is not centralized in a work
group or place. Rewriting rules can be written by anyone,
thanks to a free, open source API is provided in order that
they can be implemented in a regular programming language.
Related rewriting rules are then grouped in units called
packages that can be easily published, downloaded and
installed. Because of it, the ontology is created by the
community.

© 2015-19, IJARCS All Rights Reserved 25

Laurence R. Ugalde, International Journal of Advanced Research in Computer Science, 10 (5), Sept-Oct 2019,22-26

Capabilities of the Fōrmulæ language increase in time, it
is orthogonal and homoiconic. Because it is not text based,
its programs can be visualized in different forms, according
to regional settings or user preferences, but mainly in
mathematical notation.

Fig. 4 and Fig. 5 show visual capabilities of the Fōrmulæ
programming language.

Corollary 2. The Fōrmulæ programing language is
Turing complete.

Proof. It is enough to show that the Fōrmulæ language
can be used to simulate a Turing machine as it is shown in
[18]. ■

VI. CONCLUSSIONS

The use of ontologies as a mean of semantic validation of
computer programs is shown as an alternative to formal
grammars. This opens new possibilities in language theories,
such as the emerging of programming languages with
dynamic capabilities, ortogonality and homoiconicity.
Because the use of ontologies does not impose the use of
textual programs, it allows the emerging of “visual” and
structural languages and programs. The implementation also
opens the possibility of using symbolic computing in
multiple disciplines as a simple way to write computer
programs.

VII. REFERENCES

[1] Benson, D. C. (1999), “The moment of proof:
Mathematical epiphanies,” Oxford University Press, 1st.
edition.

[2] Chaitin, G. J. (2007), “Thinking about Gödel and Turing:
Essays on complexity 1970-2007,” World Scientific
Publishing.

[3] Ferreirós, J. (2007), “Labyrinth of thought: A history of
set theory and its role in mathematical thought,”
Birkhuser, 2nd revised edition.

[4] Feyerabend, P. (2010), “Against Method,” Verso, 4th.
edition.

[5] Gödel, K. (1992), “On the formally undecidable
propositions of Principia Mathematica and related
systems,” Oxford University Press.

[6] Hawkings, S. W. & Mlodinow, L. (2010), “The grand
design,” Bantam Books, 1st. edition.

[7] Hofstadter, D. R. (1999) “Gödel, Escher, Bach: an eternal
golden braid,” Basic Books, 20th anniversary edition.

[8] Nagel, T. (1981), “Introduction to number theory,”
Chelsea Pub Co, 2nd. edition.

[9] Pelletier, F. J. (1994), “The principle of semantic
compositionality,” Topoi, Vol. 13, pp. 11–24.

[10] Pelletier, F. J. (2001), “Did Frege believe Frege’s
principle?,” Journal of Logic, Language, and Information,
pp. 87–114.

[11] Rice, H. G. (1953), “Classes of recursively enumerable
sets and their decision problems,” Trans. Amer. Math.
Soc., Vol. 74, pp. 358366.

[12] Scott, D. & Strachey, C. (1971), “Towards a mathematical
semantics for computer languages,” Oxford Programming
Research Group Technical Monograph.

[13] Sebesta, R. W. (2010), “Concepts of programming
languages,” Addison-Wesley, 9th edition.

[14] Staab, S. & Studer, R. (2009), “Handbook on ontologies,”
chapter “What is an ontology?,” Springer Publishing
Company, Incorporated, 2nd edition.

[15] Turing, A. (1938), “On computable numbers, with an
application to the entscheidungsproblem,” A correction.
Proceedings of the London Mathematical Society, Vol.
43, No. 6, pp. 544546.

[16] Ugalde, L. R. (2015), “Cooperative development and
human interface of a computer algebra system with the
Fōrmulæ framework,” 21st Confer ence on Applications
of Computer Algebra (ACA 2015), pp. 38–41.
http://www.singacom.uva.es/ACA2015/latex/ACAproc.pd
f.

[17] Ugalde, L. R. (2015), The Fōrmulæ website.
http://www.formulae.org.

[18] Ugalde, L. R. (2018), The “Rosetta code” website, task
“Universal turing machine”, section “Fōrmulæ”.
http://rosettacode.org/wiki/Universal_Turing_machine#F.
C5.8Drmul.C3.A6.

© 2015-19, IJARCS All Rights Reserved 26

	I. Introduction
	A. The Rice theorem

	II. A corollary for the insufficiency of grammars for semantic validity
	III. A theorem for the insufficiency of grammars for semantic validity
	IV. Ontologies as a mean of semantic validation of programs
	A. Ontologies and symbolic computation
	B. Benefits
	C. Are ontologic languages necessary?

	V. Fōrmulæ, an implementation of a ontology-based programming language
	VI. Conclussions
	VII. References

