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Abstract: The Rice theorem proves that semantic properties of computer programs are not decidable.  In this paper it  will  be proved that
grammars are not a sufficient mean to provide semantic validity on computer programs, first as a corollary of the Rice theorem and then as an
independent theorem. Once that is proved that they are not sufficient, the use of ontologies are presented as a viable alternative to grammars and
the additional benefits they offer. Finally, an implementation of a programming language is presented which is not based in any grammar, but in
an ontology.
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I. INTRODUCTION 

Grammars  have  been  used  extensively  to  validate  the
syntax of computer programs. Although the semantic validity
of  programs  can  be  lifted  adding  more  structures,  for
example with types; a complete mean of semantic validity
cannot exist.

A. The Rice theorem

The  Rice  theorem  [11]  states  that  it  is  impossible  to
formalize  a  method  to  differentiate  a  single,  no  trivial
semantic  property  to  all  computer  programs.  A  trivial
semantic property is a semantic property that is either always
present  or  always  absent  in  all  possible  programs.  An
example  of  no  trivial  semantic  property  could  be  “This
program is  harmful”.  As a consequence  of  this  theorem a
formal and deterministic malware detection program cannot
be built [16]; most of them use heuristics for their detection
procedures.  The proof of  this  theorem shows that  if  there
existed a method to differentiate such a semantic property, it
could be used to solve the halting problem [15], which it is
known to be impossible.

II. A COROLLARY FOR THE INSUFFICIENCY OF

GRAMMARS FOR SEMANTIC VALIDITY

Corollary  1.  A  computer  language  grammar  cannot
define the meaning of the programs or instances that belong
to it.

Proof.  Let  us  define  the  property  “This  program does
exactly  what  its  author(s)  wanted  it  to  do” as  a  semantic
property because  it  is  evident  that  some programs have  it
while some others do not. According to the Rice theorem,
there  cannot  exist  a  formal  method  to  differentiate  this
property  from  any  given  program,  including  the  use  of
grammars. ■

III. A THEOREM FOR THE INSUFFICIENCY OF

GRAMMARS FOR SEMANTIC VALIDITY

Theorem  1.  A  computer  language  grammar  cannot
define the meaning of the programs or instances that belong
to it.

The proof is  based in  the  fact  that  if  a  program were
semantically  valid  under  a  specific  grammar,  then  there
cannot be more than one such valid different meanings.

Before  presenting  the  proof,  let  us  see  the  following
exercise  from Douglas  R.  Hofstadter  in  his  book “Gödel,
Escher, Bach: an Eternal Golden Braid” [7], named the pq-
system:

The pq-system contains the following three symbols:

p  q  -

There  is  the  following  definition:  xp-qx is  an  axiom,
whenever x is composed of hyphens only.

And there is just only production rule: Suppose x, y and z
all stand for particular strings containing only hyphens. And
suppose that xpyqz is known to be a theorem. Then xpy−qz−
is a theorem.

According to this, the following are valid strings:

− p − q − −
− − p − −q − − − −

− − p − − − q − − − − −

While the following are not:

− − − p − − q −
− − p − − − − q − − − − − − − − − − − − −

Afterward in the Hofstadter exercise, the reader is invited
to find the associated semantic. This is, to define the meaning
in the real world of the propositions created in the pq-system.
Valid propositions must be paired with valid real-world facts,
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and conversely, non-valid propositions must be paired with
invalid real-world facts.

The following interpretation arises almost immediately:

p ⇔ plus
q ⇔ equals
− ⇔ one

−− ⇔ two
−−− ⇔ three

⋮

So the string − − p − − − q − − − − − means “2 plus 3
equals 5”.

We have a tendency to think that there exists a biunivocal
correspondence between the pq-system and the semantic we
have just found, but Hofstadter destroys it by showing the
following, alternative interpretation:

p ⇔ equals
q ⇔ taken from
− ⇔ one

−− ⇔ two
−−− ⇔ three⋮

Nonetheless,  it  can be argued that  while  there are two
meanings,  there  exists  an  isomorphism between  them and
therefore they are equivalent.

In  order  to  show  an  isomorphism,  a  rule  of
correspondence  must  be  shown between  the  elements  and
operations  of  both  structures.  The  hyphens  representing
numbers, are the same in both. It is evident that:

A + B = C

Is isomorphic with:

A = B taken from C

And therefore they are equivalent, so they are the same
semantics.

Proof.  It  is  based  in  the  previous  scheme,  this  is,  an
incomplete grammar will be presented, in order to discover
the meaning of missing symbols, and then a different non-
isomorphic meaning is presented.

Let  us  suppose  that  some  documents  from  a  early
discovered civilization are found. They show symbols that
seem strange to us. Most of the symbols have been already
deciphered. Two of the undeciphered symbols are:

 The symbol , which is a binary operator, because⑅, which is a binary operator, because
it appears in the documents as a  ⑅, which is a binary operator, because b.

 The symbol , which is a unary operator, because it⭑, which is a unary operator, because it
appears in the documents as (⭑, which is a unary operator, because it x).

One of the documents is shown in Fig. 1.

Given

(a1 × a2 × · · · × an) ⑅, which is a binary operator, because x

If we calculate:

(⭑, which is a unary operator, because it a1) ⇔ A1

(⭑, which is a unary operator, because it a2) ⇔ A2⋮
(⭑, which is a unary operator, because it an) ⇔ An

Then

(⭑, which is a unary operator, because it x)    ⇔ A1 + A2 + · · · + An

Figure 1. An example of a document found. It can be seen as a grammar.

In order to avoid confusion, the document is not shown in
its “original” form, but it does in our notations and symbols.
For example, the symbols + and × represent usual addition
and multiplication respectively, with the obvious exception
of  the   and   symbols  because  their  meanings  are⑅, which is a binary operator, because ⭑ symbols because their meanings are
unknown.

Can the reader discover the meaning of the operations ⑅, which is a binary operator, because
and , in such a way that we have a complete interpretation⭑, which is a unary operator, because it
of the document, and therefore its semantic?

After remembering the logarithm laws we can state the
following relation:

⑅, which is a binary operator, because ⇔ equality (=)
⭑, which is a unary operator, because it(x) ⇔ logarithm log(x)

In this relation, we could have chosen any valid base (a
positive value excepting 1). For this specific case we chose
the base 2.

Now let us build a specific case shown in Fig. 2 (if the
document  were  a grammar  one,  this  example  would be  a
valid program).

Given

3 × 4 × 8 = x

If we calculate:

log2 (3) ⇔ 1.5849625

log2 (4) ⇔ 2

log2 (8) ⇔ 3

Then

log2 (x)     1.5849625 + 2 + 3 = 6.5849625⇔

Figure 2. An example of a  “valid” program.

In order to find  x, we have to do the inverse operation.
The inverse operation of logarithms is exponentiation, so x =
26.5849625 = 96.

So we can conclude that the document expresses the rule
of  logarithms  that  we  enunciate  as  “The  logarithm of  a
product is equal to the sum of the logarithms of the factors”,
and therefore it is the meaning of the document.

Will  there  exist  another  interpretation?  By  way  of
explanation,  will  there  exist  another  set  of  operations
(different  from  equality  and  logarithms)  that  satisfies  the
same structure?

In  number  theory,  exists  the  concept  of  index [8].
Suppose that we define any arbitrary base (for example 2)
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and we calculate how we can express all the numbers (under
any  modulo,  for  example  13)  as  powers  of  the  base.  We
found that 212 ≡ 1, 21 ≡ 2, 24 ≡ 3, 22 ≡ 4, 29 ≡ 5, 25 ≡ 6, 211 ≡
7, 23 ≡ 8, 28 ≡ 9, 210 ≡ 10, 27 ≡ 11 and 26 ≡ 12 (all modulo
13). Expressly, 2 is a generator of the multiplicative group of
integers modulo 13.

It is not true for any base. A base that shows this property
is said to be a primitive root of the modulo. There are four
primitive  roots  modulo  13:  2,  6,  7  and  11,  and  their
correspondent indices are shown in the table 1.

Table 1. Indices modulo 13

Number
(or residue)

Primitive
root 2

Primitive
root 6

Primitive
root 7

Primitive
root 11

1 0 0 0 0
2 1 5 11 7
3 4 8 8 4
4 2 10 10 2
5 9 9 3 3
6 5 1 7 11
7 11 7 1 5
8 3 3 9 9
9 8 4 4 8
10 10 2 2 10
11 7 11 5 1
12 6 6 6 6

The following valid relation can be established:

⑅, which is a binary operator, because ⇔ Congruence, as in  a ≡ b mod 13
(⭑, which is a unary operator, because it x) ⇔ Index, ind11 (x)

Any base of either 6, 7 or 11 could be used besides 2.
Building a specific case (a new “valid” program, for the

same grammar) is shown in the Fig. 3.

Given

3 × 4 × 8  ≡ x mod 13

If we calculate:

ind2 (3) ⇔ 4

ind2 (4) ⇔ 2

ind2 (8) ⇔ 3

Then

ind2(x)     (4 + 2 + 3) = 9⇔

Figure 3. An example of another “valid program” for the same grammar.

In order to find x, we have to do the inverse operation. If
we (reverse) lookup at the table 1, we will find that ind2 (5) =
9 mod 13, then x = 5.

This  new  interpretation,  corresponds  to  the  rule  “The
index of a product is congruent to the sum of the indices of
the factors”.

Due to the similarity of indices with logarithms, indices
are  also  known  (outside  theory  of  numbers)  as  discrete
logarithms, and it is supposed to because they come from the
same origin:  the exponentiation in continuous and discrete
domains, respectively.

However,  the  two  semantics  cannot  be  isomorphic,  at
least for the following reasons:

1. The  sets  that  define  the  bases  of  both  systems
(logarithms and indices) are infinite but of different

cardinality.  The  set  of  bases  for  indices  is
numerable while the set of bases for logarithms is
not.  Cantor  proved  that  a  rule  of  correspondence
between them does not exist [3].

2. No algorithm for calculation of indices running in
polynomial  time  is  known1.  If  an  isomorphism
existed,  it  could  be  used  to  translate  an  index
problem to a logarithm problem, which can run in
polynomial time.

It  has  been  shown an  example  of  two  different  (non-
isomorphic)  meaning  for  the  same  grammar,  therefore  it
cannot be generalized that a grammar necessarily defines a
unique semantics. ■

IV. ONTOLOGIES AS A MEAN OF SEMANTIC

VALIDATION OF PROGRAMS

An ontology [14] is a description of the world “as it is”. It
is  a  compendium of  properties  obtained  under  the criteria
that they best describe the world, rather than being deduced
from formal systems only. This last statement is not a trivial
contempt to formal systems, it is because many properties of
exact and non-exact fields of science cannot be obtained by
deduction. As a very simple example, the value of the speed
of  light  can  neither  be  obtained  exclusively  from
mathematical nor physical formulas, it requires observation
and experimentation.

A. Ontologies and symbolic computation

Although ontology technologies exist, such as languages
for ontologies, or documented ontologies for a wide scope of
sciences, a different use of ontologies is presented here.

Symbolic  computation  works  differently  from  the
traditional one. It is based in rewriting rules, and therefore is
a  non-deterministic  form  of  computation,  because  its
behavior depends not only on the program and its inputs, but
also on the available rewriting rules. It strongly relies on the
principle of compositionality [9][10], derived of the fields of
denotational semantics [12].

A set of rewriting rules define an ontology and hence a
mean of semantic validity.

The expression 2 + 3 is semantically valid and it can be
rewritten as 5 because there is a rewriting rule (addition of
numbers)  that  can  be  applied.  On  the  other  hand,  the
following expression is an arithmetic division (the numerator
refers  to  the  planet,  while  the  denominator  refers  to  the
chemical element):

Mars ÷ Silver

The expression is not semantically valid, there cannot be
a rewriting rule, which everybody could define it as correct.

Rewriting rules provide both validity and functionality.

1 The  ElGamal  cryptographic  scheme,  and  the  Diffie-
Hellman  key  exchange  protocol  are  based  on  this
property.
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Figure 4. Visual capabilites of the Fōrmulæ programming language.

B. Benefits

The usage of ontologies provides several  benefits.  The
list does not pretend to be exhaustive:

Figure 5. Chemical elements and compounds are first-class citizen in the
Fōrmulæ programming language.

Dynamism.  Grammars are static.  Making changes to a
programming  language  involves  making  changes  in  its
underlying  grammar  and  therefore  in  its  tools  such  as
compilers.  Rewriting  rules,  on  the  other  hand,  are
independent pieces that can however, interoperate with each
other. A programming language based on an ontology built
by rewriting rules is dynamic because their capabilities can
be  defined  and  evolve  over  time  with  consistent  result,
making such that language orthogonal [13].

 Increasing  validity.  As  the  number  of  rewriting
rules  increases,  also  the  ontology  does;  and
therefore  the  validation  capacity  of  programs.
Because  ontologies  are  not  formal  systems  their
validation  capacity  are  not  limited  by  the  Rice
theorem.

 Possibility  of  non-textual  programs.  Computer
languages  are  commonly  expressed  as  plain  text,
because it is required by their underlying grammars.
Using ontologies, text languages are not mandatory,
creating  the  possibility  of  programs  defined
structurally instead or textually.
Structural  programming  languages  also  opens
possibilities  for  homoiconic  languages.  These  are
programming languages where the objects managed
are  defined  in  the  language  itself.  It  is  highly
desirable to create  languages able to  manage real
world  objects,  such  as  mathematics  elements
directly in the language.

C. Are ontologic languages necessary?

Our knowledge is  not  perfect,  it  cannot  be,  there  is  a
barrier  imposed  by the  nature  that  prevent  it.  Kurt  Gödel
proved  that  no  formal  system  can  be  both  complete  and
consistent  [5].  Stephen  Hawking  shows  that  the  realism
(scientific  abstractions  to  explain  natural  phenomena)
depends on the model used to its study [6].

Our  knowledge  is  not  static  either.  Gregory  Chaitin
asserts that the concept of truth is not absolute. It could either
change  with  time,  be  sometimes  random  and  even  be
accidental [2].

Going further, Paul Feyerabend in his work  Against the
method defines  the  epistemological  anarchism  which
postulates that the scientific method, although it is valid, it is
not the unique mean to promote the progress of the science.
Other  forms  of  non-scientific  as  holism (in  opposition  of
reductionism), or even the serendipity, have produced great
advances in science [4].

Nowadays,  we  have  neural  networks  able  to  beat  any
human player  in difficult  games such as Chess or  Go. Of
course, there is a lot of theory and formal methods involved
in that field of science, but these networks are able to do that
because their neurons are in a state produced by the learning
on millions  of  games  previously  played.  The  only  formal
elements initially introduced in these networks are the game
rules. They are able to play (and play very well) “as is”.

As a second example, in mathematics (a formal and exact
science), what is the result of 00 ? There is not an agreement
about the answer. For some fields, it is more appropriate the
answer 1, and indefinite for others. The choice whether to
define 00 is based on convenience, not on correctness [1].

V. FŌRMULÆ, AN IMPLEMENTATION OF A
ONTOLOGY-BASED PROGRAMMING LANGUAGE

Fōrmulæ  [17]  is  a  programming  language  based  in
ontology. It has no grammar associated so it is not compiled
but interpreted.

The  associated  ontology  is  not  centralized  in  a  work
group or place.  Rewriting rules can be written by anyone,
thanks to a free, open source API is provided in order that
they can be implemented in a regular programming language.
Related  rewriting  rules  are  then  grouped  in  units  called
packages  that  can  be  easily  published,  downloaded  and
installed.  Because  of  it,  the  ontology  is  created  by  the
community.
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Capabilities of the Fōrmulæ language increase in time, it
is orthogonal and homoiconic. Because it is not text based,
its programs can be visualized in different forms, according
to  regional  settings  or  user  preferences,  but  mainly  in
mathematical notation.

Fig. 4 and Fig. 5 show visual capabilities of the Fōrmulæ
programming language.

Corollary  2.  The  Fōrmulæ  programing  language  is
Turing complete.

Proof. It is enough to show that the Fōrmulæ language
can be used to simulate a Turing machine as it is shown in
[18]. ■

VI. CONCLUSSIONS

The use of ontologies as a mean of semantic validation of
computer  programs  is  shown  as  an  alternative  to  formal
grammars. This opens new possibilities in language theories,
such  as  the  emerging  of  programming  languages  with
dynamic  capabilities,  ortogonality  and  homoiconicity.
Because the use of ontologies does not impose the use of
textual  programs,  it  allows  the  emerging  of  “visual”  and
structural languages and programs. The implementation also
opens  the  possibility  of  using  symbolic  computing  in
multiple  disciplines  as  a  simple  way  to  write  computer
programs.
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