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Abstract: Pattern recognition is pertinent field for detection of urban/man-made features from satellite imagery. Neural networks are best used in 
object detection for recognising patterns in imageries. Convolutional Neural Networks (CNNs) become way in solving object detection task 
based on deep learning concepts. This article demonstrates the usability of CNNs for detecting and mapping of small objects from the urban 
scenes. Identification and mapping of overhead water tanks from satellite imagery is a very important task especially during reconnaissance 
situation raised due to water contamination. Faster Region based CNN (Faster RCNN) has been used to detect and map the overhead water tanks 
in the urban scene from satellite imagery. The results from this study indicate that Faster RCNN gives affirmative accuracy towards detection of 
small objects from satellite imageries. 
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I. INTRODUCTION 

Artificial Neural Networks (ANNs) have proved its 
efficiency in the problems related to the classification of 
objects by applying a learning rule [1]. This learning rule is an 
algorithm which modifies the parameters like weights and 
threshold of the variables within the network [2]. A network 
consists of a backbone network and an object detector.  A 
backbone network or base network is a feature extractor from 
which the detector extracts its discriminative power. Several 
feature extractors like MobileNet, VGG-16, and Inception will 
tend to learn the features of the object in the input image based 
on the size of the object [3-5]. The choice of feature extractor is 
crucial as the number of parameters and types of layers directly 
affects memory, speed and performance of the detector [6]. 

As the size of the network increases, the training becomes 
slower and requires more and more data. Recent advances have 
witnessed increased efficiency in using Convolution Neural 
Network (CNN). Girshick proposed a Fast Region-based CNN 
(Fast R-CNN) for object detection [7]. This framework portrays 
two main approaches, first of applying CNN to ground up the 
region proposals in order to localize objects and secondly, 
adopting transfer learning when label data is less. In transfer 
learning, a parent network is trained on a base dataset and a 
base task, the learned features from this network is then 
transferred to a second target network to be trained on a target 
dataset and a task.  

Pattern recognition is pertinent field for detection of 
urban/man-made features from satellite imagery. Identification 
and mapping of overhead water tanks from satellite imagery is 
a very important task especially during reconnaissance situation 
raised due to water contamination. A need has risen to detect 
overhead water tanks from satellite data for a public health 
monitoring project. In this article we produce the results on 
application of Region Proposal Network (RPN) for detecting 
overhead water tanks from various satellite data captured on 
various cities and towns.  RPNs have helped in predicting the 
object bounds and objectness score, consequently RPNs are 
trained end-to-end to generate high-quality region proposals, 
which are used by Fast R-CNN for detecting the overhead 
water tanks from a given scene. 

II. LITERATURE REVIEW 

Shin et al. have employed deep CNN to computer aided 
detection from medical images to detect thoraco-abdonminal 
lymph node and interstitial lung disease [8].  Erhan et al. 
proposed a method to localize objects in an image, which 
predicts multiple bounding boxes at a time by using the concept 
of DeepMultiBox [9]. Girshick introduced the Fast-RCNN, an 
update to RCNN and SPPnet [7].  Ren et al. proposed a unified, 
deep learning based object detection system based on Faster R-
CNN and RPN [10]. Lee et al. has shown the trade-offs 
between different backbone networks in the terms of speed and 
accuracy with Faster R-CNN as the classifier [11]. Wang and 
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Zang applied Faster RCNN on a different number of datasets 
for accuracy in detecting building areas [12]. Huang et al. 
performed an experimental comparison between different 
object detectors with respect to the factors affecting the speed 
and accuracy [13]. Szegedy et al. proposed a method for 
significant quality gain with minimum computational cost 
compared to shallow networks and used their inception 
architecture for small object detection [14,15]. 

III. METHODOLOGY 

In our work, we have used inception-v2 as the feature extractor 
and Faster R-CNN for detection purpose.  

 

A. Inception Network as a Feature Extractor 

In networks with repetitive max pooling layers, the  chances 
of loss of  accurate spatial information  is much  higher with 
respect to the scale of the image and size of the target object in 
the image. Therefore a network has been created with three 
different size of filters (1*1, 3*3, 5*5) to perform the 
convolution followed by max pooling at a single layer. The 
collective output is then transferred to next inception module. 

B. Inception v1 

To reduce the computation cost, an extra 1*1 convolution is 
added before the 3* and 5*5 convolutions. This 1*1 
convolution is added after the max pooling layer. 

C. Inception v2 

In this module, the 5*5 convolution has been factorized into 
two 3*3 convolutions to improve computational speed. Further 
the factorization of n x n filters is done in the combination of 1 
x n and n x 1 to boost up the performance. Figure 1 shows the 
architectural view of Inception v2. 

 
Figure 1. Archictural view of Inception v2 

D. Faster RCNN 

The state of the art model, Faster RCNN is a combination 
of two networks. RPN is used to generation of regional 
proposals and the second network which used these proposals 
for detecting objects. The RPN ranks the region boxes and 
nominates the ones with most likely containing objects. 

E. RPN 

CNNs proved to be important object detection classifiers 
which take an input, assign learnable weights and bias to 
various aspects in the image and differentiate features from one 
another. It constitutes two parts, the feature learning part 
comprises of convolution layers, activation function and 
pooling layers. The classification part is a fully connected 
layer. The last stage of convolution generates a feature map.  

 

To generate region proposals, a small network is transferred 
over the convolution feature map output. This small network 
takes input as an n * n spatial window of the input convolution 
feature map. These feature maps are then passed to two 
convolution layers in which one layer is for classification and 
another one is for regression. Each pixel in the feature map 
generates region candidate boxes which are then fed to 
classification layer (cls) and regression layer (reg) to get 
proposals. 

F. Object Detection 

Now that we have the proposals, the next step is to get the 
labels and the position of each proposal. The detection network 
contains two fully connected layers and two dropout layers. 
The two output layers gives N+1 as one output (N object 
classes and 1 background) and second output as N * 4 
bounding box regress for each candidate box. 

 
CNNs proved to be important object detection classifiers 

which take an input, assign learnable weights and bias to 
various aspects in the image and differentiate features from one 
another. It constitutes two parts, the feature learning part 
comprises of convolution layers, activation function and 
pooling layers. The classification part is a fully connected 
layer. The last stage of convolution generates a feature map.  

 
Figure 2 shows the methodology of detecting overhead 

water tank from satellite images using Faster RCNN process. 
 

 
Figure 2. Overhead water tank detection from Satellite image using Faster 

RCNN process. 

G. Establishment of Image Dataset 

In this experiment, our dataset is a collection of 175 satellite 
images (spatial resolution of 0.5 m) containing overhead water 
tanks for various citites and towns in India. Certain images 
without overhead water tank are also part of the collection. 
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Each image is then annotated and the bounding boxes are made 
such that each box includes the top circular pattern of the 
overhead water tank with the shadow as an extra feature to 
differentiate the circular tank with other circular patterns in the 
background. The coordinates of the bounding boxes are saved 
in a separate XML file for each image. These XML files are 
then converted into a combined CSV file which is further 
converted into a tfrecord. tfrecord file format is Tensorflow’s 
own binary storage format which has significant impact on the 
performance and the training time of our model. Moreover, 
binary data takes less space on disk, takes less time to copy, 
and can be read much more efficiently from the disk. 

H. Training 

Training of RPN is done by assigning a binary class label 
(of being an object or not) to each proposals. A positive label is 
assign to two kinds of proposals:  

1. the proposal with the highest Intersection-over-Union 
(IoU) overlaps with the ground-truth box or 

2. a proposal that has an IoU overlap higher than 0.7 with 
any ground-truth box 

Proposals that are neither positive nor negative do not 
contribute in training. With these definitions, our loss function 
for an image is defined as 

 

 
 
Where i is the index of the proposal and pi is the probability 

of a proposal belong to an object, pi* ϵ{0,1} is ground-truth 
label, ti* is the ground-truth of the box’s position containing 
values(the coordinates of upper left corner, width, height of 
bounding box), ti = {tx,ty,tw,th} is the predicted bounding box. 

 
Tx = (x – xa)/wa     ,    ty = (y – ya)/ha 
Tw=  log(w/wa)     ,    th = log( h/ha) 
Lcls(pi, pi*) are two categories i.e, target and non-target 

logarithmic loss, 
Lcls(pi, pi*) = -log[ pi*pi + (1- pi*)(1-pi)] 
Lreg(ti, ti*) is regression loss, 
Lreg(ti,  ti*) = (ti – ti*) 
 
Where R is smooth L1 function. 
 
λ=10, is parameter for normalization. 
 
Here, we will be using stochastic gradient decent (SGD) 

optimizer. Through transfer learning, a pre trained model 
(inception v2) trained on coco dataset is used for classification 
to initialize our base network. In this paper, we will be using 
several consecutive steps for training our model. In the first 
step, the input images are fed to several convolution and 
pooling layers in each iteration to extract feature map. These 
feature maps are then passed through the RPN to obtain the 
proposals. The proposals are then forwarded to the Faster-
RCNN detection network. 

 

IV. RESULTS AND DISCUSSIONS 

Considering Faster RCNN for transfer learning, models are 
trained on images that are scaled up to M pixels on the shorter 
edge whereas in SSD, images are always resized to a fixed 
shape M x M. Setting up the Tensorflow as backend, the target 
model is trained using the generalized features of parent 
network Faster RCNN Inception-v2 keeping stride size as 16, 
IoU threshold as 0.69, batch size as 1 and initial learning rate as 

0.00019. Softmax function is used to normalize the input vector 
into a probability distribution with k probabilities. The mean 
average precision (mAP) value of Faster RCNN with our tank 
dataset was noted as 29. The checkpoint with the average loss 
of about 0.7 is saved and the corresponding inference graph is 
used for testing purpose. The i and j coordinates of the centroid 
of each predicted bounding box is calculated: 

 
Ymin= boxes[0][i][0]*H 
Xmin= boxes[0][i][1]*W 
Ymax= boxes[0][i][2]*H 
Xmax= boxes[0][i][3]*W 
i = (Ymin+Ymax)/2 
j = (Xmin+Xmax)/2 
 
Where, Xmin, Ymin are the coordinates of top left of 

bounding box and Xmax, Ymax are the coordinates of bottom 
right.  H and W are the height and the width of the image and i, 
j are the coordinates of the centroid of the predicted bounding 
box. 

 
Figure 3. Figures showing successful identificaiton of the targets 

V. CONCLUSION 

Faster RCNN is proven effective in extracting the small 
targets even with varied background. We evaluated the 
previously studied Faster RCNN model on dataset containing 
satellite images for detecting over-head water tanks. The 
circular pattern of the tank with the on-ground tank shadow is 
considered as the target object in the input image. Through 
transfer learning, the features of the Faster RCNN Inception-V2 
model have been taken as the generalized features for the target 
model. Further accuracy can be improved in future by adding 
more images in dataset with various patterns and features of the 
over-head water tanks. 
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