
DOI: http://dx.doi.org/10.26483/ijarcs.v10i4.6447

Volume 10, No. 4, July – August 2019

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 52

ISSN No. 0976-5697 ISSN No. 0976-5697

DESIGNING A TASK ALLOCATOR FRAMEWORK FOR DISTRIBUTED
COMPUTING

Mrityunjay Chaubey

DST-CIMS, Institute of science
Banaras Hindu University

Varanasi, India

Manjari Gupta
DST-CIMS, Institute of science

Banaras Hindu University
Varanasi, India

Abstract: Software Frameworks attempt to capture and implement a software system architecture that is reusable. A frameworks, thus, is a
semicode that needs to be customized for a particular reuse. The problem of finding an optimal task allocation in distributed computing system
(DCS) is an NP-hard. There are various task allocation algorithms and hence a Task Allocator may implement any of them. Any Task Allocator,
hence will have many portions that can be reused to define and implement a Task Allocator. In distributed system a Task Allocation mechanism
may be replaced by a new one if a standardized definition of a reusable system architecture for this purpose is available. This work attempts at
formalizing a system architecture of a Task Allocator by proposing a framework for the purpose. Here we start the design methodology for OO
software and identify the various parts of the software system architecture for task allocation. This effort finally results into a semicode
framework. The interesting conclusions include “Identification of that code portion of the semicode framework that does not change when
reused”, “Characteristics of the code portion that need customization” and the nature of framework definitions that need to be coded at the time
of reuse. In this work OO design of various activities of task allocation process has been carried out as per the OO design methodology. To be
objects have been identified the dynamic and functional modeling along with identification use cases, corresponding scenarios and data flow
diagrams.

Keywords: Distributed system, Object oriented framework , Design, UML, Task Allocation.

I. INTRODUCTION

Today there is a need of techniques and tools to support
developers to develop complex software in order to improve
current situation. Researchers, in the software engineering
fields, have always been striving to find ways and means to
develop high quality products at low cost. Software reuse
promises substantive reduction in cost and improved quality
if seriously planned and practiced. There are certain
technical and non-technical reasons that impede reuse [11].
The reuse of software design experiences in form of design
patterns and frameworks can make the life of developers
easy. It can promise improved maintainability as well. A
DCS consists of multiple processing nodes and various
cooperating tasks, of any jobs, are distributed across there
nodes. Individual nodes schedule the tasks allocated to
them. Various tasks of a job are allocated to processing
nodes in such a fashion so that execution characteristics of
the jobs such as throughput, turn-around time etc are
improved. Consequently a DCS requires a ask Allocator that
keeps performing task allocation business for all the
incoming Tasks. These Task allocators implementations
based on corresponding task allocation algorithms [1-6].
There are various task allocation algorithms and hence a
Task Allocator may implement any of them. Any Task
Allocator, hence will have many portions that can be reused
to define and implement a Task Allocator. In distributed
system a Task Allocation mechanism may be replaced by a
new one if a standardized definition of a reusable system
architecture for this purpose is available. This work attempts
at formalizing a system architecture of a Task Allocator by
proposing a framework for the purpose. Designers of a DCS
may required to do task allocation as per new algorithms

that may have not been there earlier or in a new situation a
new allocator need to be designed as per some other existing
algorithm. In such a situation designing and implementing a
new allocator would require redoing similar things and
undergoing the same design experiences as earlier. As it is
obvious most of the things in all Task Allocators will be
similar if not always identical. If we can represent that
design of a Task Allocator in form of a semicode framework
a good deal of reuse of the same would take place this work
attempts to achieve the same. An object-oriented framework
is a set of collaborating object classes that embody an
abstract design to provide solutions for a family of related
problems; we have carried out the same for the task
allocation.
In the following subsections we have described what an
object-oriented framework, methodology we used to
develop the framework to appear in this paper and the
problem of task allocation. In section 2 we have carried out
the design for task allocation in DCS that leads to the
framework proposed herein. The concluding section 3
summaries the idea and its usefulness.

II. WHAT IS A FRAMEWORK?

Framework is one of the object-oriented reuse techniques
that promise highest degree of reuse among all others. An
object-oriented framework is a set of collaborating object
classes that embody an abstract design to provide solutions
for a family of related problems. The framework typically
consists of a mixture of abstract and concrete classes. The
abstract classes usually reside in the framework, while the
concrete classes reside in the application. A framework, then,
is a semicomplete application that contains certain fixed

Mrityunjay Chaubey et al, International Journal of Advanced Research in Computer Science, 10 (4), July-August 2019,52-58

© 2015-19, IJARCS All Rights Reserved 53

aspects common to all applications in the problem domain,
along with certain variable aspects unique to each application
generated from it. According to Ralph Johnson “A
frameworks is a reusable design of all or part of a system that
is represented by a set of abstract classes and the way there
instances interact”. Frameworks can be easily refined,
reused, customized and extended. Another common
definition is “A framework is the skeleton of an application
that can be customized by an application developer” [4].
Thus by developing a framework for a particular domain
large amount of time and effort can be saved. Since a
framework describes the whole architecture of an application
and several applications are developed by instantiating this
framework its quality must be quite high. The run-time
architecture of a framework is characterized by an
``inversion of control.'' Inversion of control allows the
framework (rather than each application) to determine which
set of application-specific methods to invoke in response to
external events (such as window messages arriving from end-
users or packets arriving on communication ports) [8]. This
work aims at proposing such a “Framework” for the task
allocation. The proposed framework is white-box (based on
OO concepts) and vertical (only for the domain of task
allocation). The variable aspects (called hot spots), which is
here the actual task allocation algorithm, would depend on
the different instantiation of this framework. Once the
framework is defined for the task allocation it can be used to
instantiate a task allocation process for different solution
approaches.

III. METHODOLOGY

Here, in brief, we are describing the methods used in
developing the framework. Although a framework can be
developed using procedural design but to get quality
framework it must be developed in object-oriented design.
Here framework’s quality means its modularity,
extensibility, composability and other characteristics that
come naturally with object orientation as reusable modules
and patterns can also be extracted here from. We have used
Object-oriented design [10]. In Object-oriented design
object modeling, dynamic modeling and functional
modeling is carried out to understand and specify the
solution to a problem being designed. Object modeling is
performed to identify all the classes relevant to the problem
to be considered. Dynamic and functional modeling is
performed to identify attributes and operations that can
clarify what a class is in the context of considered problem.
OOA and OOD may follow some existing design
methodology. A methodology uses some notations for
classes, objects and their relations. We have followed the
UML that has resulted by unification of Booch and
Rumbaugh (OMT) methodologies.
The UML is a modeling language for specifying,
visualizing, constructing, and documenting the artifacts of a
system-intensive process. The UML provides the several
diagrams, to represent user model view, structural model
view and behavioral model view of the system [9].

IV. TASK ALLOCATION

In this paper, from now on wards, we are using modules for
tasks and tasks for jobs. A Distributed Computing System
(DCS) comprising networked of heterogeneous processors.

Each processor is of different capabilities for example they
have their separate local memory, some may be able to do
multithreading while others may not be, some have graphics
capability while others may not, etc. DCS provides the users
access to various resources so that the system maintains
access to shared resources to allow computation speedup
and improved data availability and reliability. Processors are
connected to each other though links (dedicated or shared).
A processor may have access to more than one link. Thus
processors connection can be represented using processor
graph where a node represents a processor and links
represent the communication links among processors.
Weight on links represents the communication cost of the
links. A task to be run on DCS consists of a set of modules
(possibly defined by some partitioning activity). Modules of
a task may communicate each other and thus a task can be
represented by Task Graph that has each module as a node
and communication among modules as links. Weight on a
link indicates the communication cost between modules
connected by this link. Thus the task graph considers the
precedence and the Inter Module Communication (IMC)
among the modules. Each of the modules comprising the
task will execute on one processor and communicate with
other modules of the task. Among all the coming modules
some modules can be executed at once (whose all the
predecessors are executed) while others have to wait until all
their predecessors are executed. Hence, the task allocation
on a DCS consists of two major steps: Task partitioning and
its allocation [2, 3]. Both the problems are NP-Hard. In a
typical DCS, it is possible that some processors are assigned
more tasks than others. Therefore, it is desirable for the
workload in a DCS to be eventually distributed to maximize
the CPU utilization and minimize the average response time.
A DCS may have some high and low threshold value for the
load to distinguish between heavily and lightly loaded
processor.
Thus the task allocation problem can be described as “given
a distributed computing system made up of n processors (p1,
p2,……..Pn) and several tasks (t1, t2,…….tm), each made
up of k modules (m1, m2,……mk), 1<=k<=Large Integer,
each module may execute on any processor, allocate each
module (of all the tasks) to one of each processors such that
an objective cost function is minimized subject to
constraints imposed by both the systems and application [1].
In other words we can say the problem of task allocation is
to map the tasks, represented by tasks graphs, onto the
processing nodes such that it takes optimal time to produce
the result.

V. THE PROPOSED FRAMEWORK FOR TASK

ALLOCATION IN DCS

Before describing the framework we describe the
assumptions that we have taken to propose the framework
for task allocation. These assumptions are as follows:
1. There may be several tasks coming in DCS.
2. Module precedence relationship is to be considered.
3. Modules of different tasks may be allocated to processors
only if the following conditions are satisfied so that there
would not be need of task migration:
i. The resource needed by the module is held by the
processor for example if the module requires some graphics
capability then for allocation of this module only those

Mrityunjay Chaubey et al, International Journal of Advanced Research in Computer Science, 10 (4), July-August 2019,52-58

© 2015-19, IJARCS All Rights Reserved 54

processors would be considered that have the graphics
capabilities. Further the local memory held by the processor
must be greater than the memory required by the module
and so on.
ii. After allocating the module the number of modules
assigned to the processor doesn’t exceed the number that it
can handle at a time.
iii. After allocating the module to the processor its high
threshold load does not exceed than a fixed Threshold value
(that would depend on the method of finding solution).

Now we start designing for the TA framework. As the first
step in OO design is to identify the classes relevant to the
problem domain we perform the same. We will concern
only those objects that must always be applicable whatever
task allocation algorithm one uses. By performing a
“grammatical parse” on task allocation process described in
section 1.3, we identified the following problem domain
classes: Processor to which tasks are to be assigned.
ProcessorGraph (ConnectionMatrix) describes the links
(direct/ single indirect/ double indirect etc.) of connection
paths among the processing nodes in Processor Graph (PG).
One may also take ProcessorGraph as an attribute of the
DCS (described later) class that would represent the whole
distributed computing system. It would depend on the
designer how he wants to implement it. Here we are taking
it as a separate class. TaskPartitioner that handles the
partitioning of incoming tasks into modules. It implies two
objects Task and Module. Each task object has many
module objects. Further FreeModule are those modules
whose all the predecessors are allocated and thus next at the
time of allocation they would be considered while
UnFreeModule represents those tasks whose at least one
predecessor has not been allocated and thus they can not be
considered in allocation until there all the predecessors are
allocated. FreeModuleFinder that would find the free
modules among all the modules. TaskGraph
(TaskPrecedenceGraph) (Task Interaction Graph)
describes the communication among the modules. PrQueue
object that acts as queue to which tasks are filled that are
allocated to the processor. For each processor object there is
a ProcessorQueue object. It is a matter of preference and
opinion whether ProcessorQueue should be an object, or
ProcessorQueue should be implemented as a property of
Processor class. Here we are taking it as a separate class. If
required one can combine take it as an attribute of Processor
class. PrQUpdater is an object that updates the processor
queue of each processor that is assigns inserts tasks to
processor queues (resulted by concerned scheduling policy).
Threshold is a class that encapsulates the high threshold and
low threshold value for load of each processor.
ThresholdUpdater is another object that updates high and
low threshold of each processor after updation of its
processor queue. MemManager is an object that would
update memory of processors after allocation of tasks. DCS
is an object that represents the whole system including all
the processors and their links. At an abstract level we can

include Taskallocator as a class that would need to be
refined depending on the task allocation algorithm used.
Thus 16 classes are identified in the problem domain:
Processor, PrGraph, TaskPartitioner, Task, Module,
FreeModule, UnFreeModule, FreeModuleFinder,
TaskGraph, PrQueue, PrQUpdator, Threshold,
ThresholdUpdator, MemManager, DCS, Taskallocator.
Now let us look for properties and methods of each
identified class, as said above, to clarify what a class is in
the context of the problem. Each processor would have a
processor Id (PrId), Architectural capability (ArchiCapa), a
data structure ‘Status’ associated with every processing
node, which has two fields, showing the maximum no. of
the modules that can be allocated to this processor and the
memory capacity of the processing node. Another attribute
of the processor object is ModulesAssinged that is an integer
type array and stores the modules that have been assigned to
it. To know when the currently executing module to a
processor would get completed there is an attribute
remaining execution time (CTT) of the task currently been
processed by the processor that would be decremented in
each clock cycle until it becomes zero that is until the
currently executing task is completed. Resource is another
attribute that is an array of resources held by the processor.
CurrentLoad, AccepingLoad, Utilization (Util), Throughput
and ResponseTimes are other properties of the Processor
class. ProcessorGraph has an attribute ConnectionMatrix
that describes the IPC cost for the links of connection paths
among the processing nodes. TaskPartitioner has method
PatitionTask that patitions a single tasks into modules. Each
Task object has a TaskNo and ModuleNo attributes.
ModuleNo corresponds to the number of modules each task
contains. InterModuleComm (IMC) is an attribute of each
object that gives that inter module communication cost for
each task. Module object has attributes ExeTime, MemReq,
ResourcesReq and a boolean attribute Isallocated. ExeTime,
MemReq and ResorcesReq give the time, memory and
resources requirement for each module object. Isallocated
attribute tells whether the module has been allocated to any
of the processor or not. FreeModule and UnFreeModule
are two specialized classes of Module class.
FreeModuleFinder have one method FindFreeModules that
would return all the modules that can be allocated atonce by
considering precedence relationships among them.
TaskGraph object has attribute CommuCost (IMCC) (that
can be modeled as two dimentional array) that contains
information about communication cost among its modules.
ProcessorQueue may be empty or it may have some tasks.
Thus its one attribute is no of tasks in the processor queue
(NoTaskInPrQ). There is total execution time of all the tasks
waiting in a processor queue (QT). For initializing, updating
the processor queue and its total time there are methods
Update QT. Get No of Task In PrQ, Increase No Task In
PrQ, Decrease No Task In PrQ, Increase Total PrQ Time,
Decrease Total PrQ Time is another method that returns
total number of tasks in the processor queue.

Mrityunjay Chaubey et al, International Journal of Advanced Research in Computer Science, 10 (4), July-August 2019,52-58

© 2015-19, IJARCS All Rights Reserved 55

Processor QU pdater class would have method InitializePrQ,
UpdatePrQ that would initialize and update the processor
queue respectively. Further it would contain AssignTasks as
internal methods. Threshold class has two attributes high
threshold (Th) and Low threshold (Tl). ThresholdUpdater
would have method UpdateHighTh and UpdateLowTh.
MemManager has methods ShowMem, FreeMem,
AllocateMem. DCS object has attributes NoOfPrs, Avgload,
AvgUtilization that would show the number of processors in
the DCS, overall load and overall utilization of the system.
During task allocation one would be interested in reducing the
AvgLoad while increasing the AvgUtilization of the system.
There always would be one object of PrGraph (described
above) for the object DCS. Taskallocator object would have
one method AllocateTask that would allocate all the free
tasks. The algorithm for this operation would depend on the
method to solve the problem of task allocation.

Dynamic Modeling:
The dynamic modeling is used to obtain the behavioral model
of the system. the behavioral model indicates how software
will respond to external events or stimuli [12]. in the
following two sub-sections the dynamic modeling is carried
out for the task allocation process. as scenarios should be
prepared for both normal and exceptional cases first we give it
for normal case and after that for exceptional case.
Scenario:
By developing the scenarios a designer can understand
sequence of events that occur in a particular execution of the
system [10]. The normal scenario is that the inputs are given
and the outputs are produced. The normal scenario for task
allocation is as follows:
By assuming that in parallel to the following activities
occurred in the system the tasks are coming in the DCS and
are partitioned by task partitioner.

Normal Scenario:
1. FreeModuleFinder finds the free modules, that is, that have
no predecessor modules (that is can be executed at once).
2. These free modules are given to the TaskAllocator.
3. TaskAllocator generates a solution that suggests which
module to assign to which processor.
4. Solution is checked for its feasibility.
4. ProcessorQUpdater updates the processor queue of each
processor according to the solution that has the minimum cost.

5. Threshold updater updates the threshold value (high and
low threshold) of the processor.
Steps 1 through 5 are executed iteratively until the tasks
coming in the DCS stops.

Exceptional Scenario:
There are a number of exceptional scenarios.
I. if a free task is canceled by the user at the time when all the
free modules have been considered for allocation but still
solution has not been generated:
1. FreeModuleFinder finds the free modules, that is, that have
no predecessor modules (that is can be executed at once).
2. These free modules are given to the TaskAllocator.
3. User cancels a task whose some modules are assigned to
some processors according to the generated solution.
4. Step 1 and 2 would again execute.
5. And from now events occurs same as in normal scenario.

This scenario hints the need of one more object User having
the operation CancelTask that would delete all the modules
(free or un-free both) of the cancelled task. One more
operation IsCancelledAnyFreeModule on allocator that will
check whether any free module is canceled or not.

II. If a free task is canceled by the user at the time when
solution has been generated by considering modules of these
canceled tasks:

1. FreeModuleFinder finds the free modules, that is, that have
no predecessor modules (that is can be executed at once).
2. These free modules are given to the TaskAllocator.
3. TaskAllocator generates a solution that suggests which
module to assign to which processor.
4. User cancels a task whose some modules are assigned to
some processors according to the generated solution.
5. ProcessorQUpdator will count the number of non-empty
processor queues.
6. The count is compared by the half of the number of
processors.
7. The solution would be discarded. {If this number is less
than half of the number of processors.)
8. Steps
7. The remaining modules are assigned to the processors
according to the generated solution. {If this number is greater
than half of the number of processors.)

Get next task Partition the
task

 modules

Determine those
modules that can

be allocated

Free modules
Find how to
allocate these

modules

tasks

task

modules

Fig-1 DFD for the task allocation process (for problem domain)

Update processor
queue of each

processor

Check
feasibility

feasible

Not-feasible

Mrityunjay Chaubey et al, International Journal of Advanced Research in Computer Science, 10 (4), July-August 2019,52-58

© 2015-19, IJARCS All Rights Reserved 56

8. Steps 1 through 6 are executed until the tasks coming in the
DCS stops.
It suggests for adding an operation Count on
ProcessorQUpdator that would count the number of non-
empty processor queues. Further one more operation
Compare on the same object that will compare this count
value to the half of the number of processors.

III. If the task allocation algorithm is not correct or not
implemented correctly and generates a solution is not feasible
for example if number of modules to any processor, assigned
according by the solution, is greater than the empty space in a
processor queue of a that processor.

1. FreeModuleFinder finds the free modules, that is, that have
no predecessor modules (that is can be executed at once).
2. These free modules are given to the TaskAllocator.
3. TaskAllocator generates a solution that suggests which
module to assign to which processor.
4. Solution is checked for its feasibility.
5. One message would be printed giving the reason why the
solution is not feasible.
6. ProcessorQUpdater updates the processor queue of each
processor according to the solution that has the minimum cost.
7. Threshold updater updates the threshold value (high and
low threshold) of the processor.

It indicates to add one more object FeasibilityChecker that
would check the feasibility of the generated solution. And

three operations on this object: CountNoofModulesAssigned,
CountFreeSlotsInPrQ and Compare that would counts the
number of modules assigned to each processor according to
generated solution, the number of free slots in processor queue
of each processor and compares both counts respectively.
Further one more object ErrorGenerator that would have
one method PrintMessage should be added that would be
executed when the Compare operation results in more number
of modules assigned to a processor than the number of free
slots in it processor queue.

Functional Modeling:
As said above the functional model is third dimension of
object-oriented modeling, here we perform the same for our
problem. This dimension helps *in concretize* the application
logic and hence helps in making ready the mechanisms of the
software to be able to carry out all the computation procedures
that the software environment is responsible for. The major
transformations and the data flows for task allocation are
shown in the following DFD at abstract level:

Object Model:
Having identified all the objects and operations during
dynamic (events on objects) and functional modeling
(processes in DFD) now the time is to define relationships
among all the classes. At this abstract level we come with the
relationships, shown in object model (Fig -2), among all the
identified classes

ThresholdUpdator

UpdateHighTh()
UpdateLowTh()

Threshold
Th
Tl

MemManager

FreeMem()
AllocateMem()

ProcessorQUpdator

InitializePrQ()
UpdatePrQ()
AssignTasks()

ProcessorQueue
NoTaskInPrQ
QT

UpdateQT()
GetNoofTaskInPrQ()
IncreaseNoTaskInPrQ()
DecreaseNoTaskInPrQ()
IncreaseTotalPrQTime()
DecreaseTotalPrQTime()

TaskGraph
IMCC

Task
TaskNo
ModuleNo
InterModuleComm

1 1updates

manages

1

1 1

1

1

N

1

N

assigned

1 1

1

1

partit ions

PrGraph
ConnectionMatrix

DCS
AvgLoad
AvgUtilization
NoOfPr

1 1

UnFreeModule

N

1

allocates

Processor
PrId
capability
Status
ModulesAssinged
CTT
Resources
CurrentLoad
AccepingLoad
Utilization
Throughput
ResponseTimes

FreeModule

TaskAllocator
SchedulingPolicy updates

TaskPartit ioner

PatitionTask()

Module
ExeTime
MemReq
ResourcesReq
Isallocated

generates

N

1

Fig-2 Object model (concerning problem domain) for the task allocation in DCS

Mrityunjay Chaubey et al, International Journal of Advanced Research in Computer Science, 10 (4), July-August 2019,52-58

© 2015-19, IJARCS All Rights Reserved 57

Now let us concentrate on the solution domain classes.
Although the solution domain classes would depend on the
chosen solution method some classes would not directly
depend on the method used, that is they would be ‘method of
solution’ invariant, and thus would be common for all the
methods used. These classes are as follows:
Solution Domain Classes:
We have got one object TaskAllocator at the time of
identifying problem domain classes that is basically a solution
domain class. Here, we refine this object to identify classes
relevant to solution domain (but common for any approach
that may be taken to solve the task allocation problem). These
classes are as follows:
PossibleSolution (resulted on applying any scheduling policy)
represent the object that describes the allocation of tasks to the
processors. This object has an attribute AllocationCost that
represent the cost of the allocation if tasks are allocated
according to this solution for example what would be turn
around time after allocation of modules according to this
solution. FeasibleSolu that satifies all the conditions
regarding allocation. The classes TaskAllocator, identified
during problem domain analysis is required to refine. Thus the
refinement of TaskAllocator object is as follows:
PSolutionGen that would generate the possible solutions.
TaskAllocationAlgo is one of the most important attribute of
the class SolutionGen. FeasibilityChecker that would check
whether the generated solution is feasible or not. For example
whether the module allocated to a processor has the capability
that is required to execute the module. CostEstimator object
that checks the cost of each solution for example the turn
around time due to allotment of modules according to this
solution. The attributes and operations for solution domain
classes would specifically depend on the approach adopting
for finding solution. Further other solution domain objects
would be specific to the method used to solve the problem.

Dynamic Modeling:
As said above to understand the dynamic behavior of the
system one performs the dynamic modeling. Here we are
describing the events concerning only with solution domain
i.e. at the time of solution generation.
Scenario
A scenario is a sequence of events that occur in a particular
execution of the system or with in a group of objects. For the
task allocation it is as follows:
1. PSolutionGen gets all the free modules that is have no
predecessor modules and thus can be allocated at once.
2. Execution requirements for these modules execution on
each processor are checked.
3. Several possible solutions that describe allocation of these
modules are generated by PSolutionGen.
4. FeasibiltyChecker checks the feasibility of the solutions by
considering several things like resources, threshold, and load
of the processors. For example if according to any solution
one module is allocated to a processor that has less memory
needed by the module the solution would be discarded.
5. CostEstimator estimates the cost of each solution get in the
step 5 by considering the task graph (communication cost
among modules of each task), processor graph
(communication cost among processors) and several other
things depending on the used method for solution.
6. ProcessorQUpdater updates the processor queue of each
processor according to the solution that has the minimum cost.

Functional Modeling:
To identify all the transformations required from the system
one need to perform dynamic modeling. By refining the
bubble (process) ‘allocate tasks’ in the above DFD (Fig-1) we
get the following DFD:

Fig-1 DFD for the task allocation process (for solution domain)

Thus at this abstract level after defining the relationships among these and problem domain classes the obtained object model is as
follows:

Find these modules
requirements

(mem, resources)

find different solutions
that tell the allocation

of the modules

Choose those solutions
that satisfy the

processors capability

Find the cost of
these solutions

Get the minimum
cost solution

Free modules

Update each
processor queue

Mrityunjay Chaubey et al, International Journal of Advanced Research in Computer Science, 10 (4), July-August 2019,52-58

© 2015-19, IJARCS All Rights Reserved 58

FreeModulePSolutionGen

PossibleSolution
AllocationCost

CostEstimator

EstimateCost()

FeasibleSolu

FeasibiltyChecker

CheckFeasibilty()

N

1

estimates cost

1

N

generates

N

1

N1

considers

checks feasibility
determines

1

Fig-4 Object model (concerning solution domain) for the task allocation in DCS

VI. CONCLUSION

This paper formalizes the design of task allocation process in
DCS in form of a framework. Anybody who wishes to design
and implement the task allocation process (applying any
solution approach) can make use of this framework. In a way
this framework, as any other framework, represents the
skeleton as a system architecture that is responsible for the
task allocation process. The framework has been developed
and designed by object-oriented methodology and hence it
formalizes the framework development process. Many of the
classes that will always keep appearing in any task allocation
process result from this OO design. The specification and the
implementation of these parts of the framework need not be
rewritten again and again and hence a good deal of reuse
would be possible. Researchers and professional organizations
may make use of this framework for the purpose.

VII. REFERENCES

1. Kartik S. and Murthy C. S. R., “Task Allocation Algorithms

for Maximizing Reliability of Distributed Computing
Systems” IEEE Transactions on Computers, Vol 46, No. 6,
Page 719-724, June 1997.

2. Tripathi A.K., Vidyarthi D.P., Mantri A.N., (1996), “A
genetic task allocation algorithm for distributed computing
system incorporating problem specific knowledge”, Int. J.
of High Speed Computing, Vol. 8 No. 4, 363-370.

3. Vidyarthi D.P. and Tripathi A.K., “Precedence Constrained
Task Allocation in Distributed Computing Systems”,
International Journal of High Speed Computing, Vol. 8(1),
1996, pp.47-55.

4. Sarker B.K., Tripathi A.K. and Kumar N., “Some
observations on Load balancing in Distributed Computing

Systems”, Proceedings of National Seminar on Applied
Systems Engg. and Soft Computing, Agra, 4-5 March,
2000, pp. 167-171.

5. Tripathi A.K., Sarker B.K., Kumar N. and Vidyarthi D.P.,
“Multiple Task Allocation with Load Consideration in
DCS”, International Journal of Information and Computer
Science, Vol. 3 No. 1, 2000, pp. 36-44.

6. Vidyarthi D.P., Tripathi A.K., “A Fuzzy IMC Cost
Reduction Model for Task Allocation In Distributed
Computing Systems”, fifth International Symposium on
Methods and Models in Automation and Robotics, Poland,
August 1998, pp 719-721.

7. Gurp J. V. and Bosch J., “Design, Implementation and
Evolution of Object Oriented Frameworks: concepts and
guidelines”, Software-Practice and Experience, pp 277-
300, 2001.

8. Fayad M. and Schmidt D. C., “Object-Oriented Application
frameworks”, Communication of the ACM, Special Issue
on Object-Oriented Application Frameworks, Vol 40, No.
10, 1997.

9. Alhir S. S, “Understanding the Unified Modelling
Language (UML)”, Methods and Tools, published in an
International Software Engineering digital newsletter,
1999.

10. Jalote P., “An Integrated Approach to Software
Engfineering”, Narosa, ISBN 81-7319-271-5, Second
Edition.

11. Tripathi A. K. and Gupta M., Some Observations on
Reuse Types, Technologies, Practices and Problems,
International Journal of Information and Computing
Science, Vol.7, No.1, 2004.

12. Pressman. R. S., “Software Engineering a Practitioner’s
Approach”, McGraw Hill International Edition, ISBN 007-
124083-7, Sixth Edition.

