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Abstract:  Shellsort is a comparison sort that uses insertion sort at each iteration to make a list of interleaved elements nearly sorted so that at the
last iteration the list is almost sorted. The time complexity of Shellsort is dependent upon the method of interleaving (called increment sequence)
giving variants of Shellsort. However, the problem of finding proper of interleaving to achieve the minimum time complexity of O(n log n) is
still  open. In this paper,  we have analyzed the performance of variants of Shellsort based on their time complexity. Our measure of time
complexity is independent of the machine configuration and considers all the operations of a sorting process. We found that the interleaving
method or increment sequence proposed by Sedgewick performs best among the analyzed variants. 
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I. INTRODUCTION
Shellsort [1] is an in-situ comparison sort algorithm where

at each iteration, each list of interleaved elements from the list
A[0, ..., n], are sorted by insertion sort; each list of interleaved
elements forms disjoint  sets of elements.  The interleaving is
reduced in subsequent iteration, until it  becomes 1, in which
case insertion sort gets applied to the whole, now nearly sorted,
list A. The sorting algorithm is oblivion to the data [2] and one
of its implementation is (sorting in non-decreasing order):

Void  Shellsort  (A[0,  ...,  n-1],  SkipLength[0,  ....,  k-1])
//SkipLength[x] > SkipLength[x+1]

//SkipLength[k-1] = 1, SkipLength[i] = hi+1

{

   For i = 0 to (k-1), step by (+1), do: //For each skip length

   {

       For j = 0, j < SkipLength[i], step by (+1), do:

       {

           Temp = A[j]. //Assignment operation – A[j] is assigned
to Temp.

           For z = j – SkipLength[i], z ≥ 0 and A[z] > Temp, step
by (-SkipLength[i]), do:

           {

                A[z + Skiplength[i] ] = A[z]

           } //End of For-loop

           A[ z + SkipLength[i] ] = Temp

       }//End of For-loop.

    }//End of For-loop

}//End of Shellsort

The sequence of interleaving  (h1, h2, ..., hk) with  h1>h2> ...>
hk=1,  is  called  increment  or  offset  sequence  and  each  hi is
called  skip  length.  For  [1],  the  increment  sequence  is  (
⌊n/2 ⌋ , ⌊n/4 ⌋ ,…,1).  There  are  many  variants  of  the
original  Shellsort  algorithm  depending  upon  the  increment
sequence [2]-[15]; the time complexity of the algorithm is also
dependent  upon  the  increment  sequence.  Finding  optimal
increment sequence that will minimize the time complexity of
the Shellsort is still an open problem [12]. In addition to this,
data-oblivion  property  of  the  sorting  algorithm makes  it  an
attractive  solution for  deployment  in  those  systems where  a
dataset, distributed over multiple nodes in a network, needs to
be arranged in certain order.  In this paper we will compare the
Shellsort  variants  in  terms  of  the  time complexities.  Unlike
[16]-[18]  that  compared  the  shellsort  variants  based  on  a
parameter  that  includes  number  of  swaps  or  number  of
comparisons, we have defined  a parameter that have included
these  factors  and  also  the  time  consumed  in  checking
conditions for loop to run. We believe that our parameter for
comparison  is  closer  to  the  general  definition  of  theoretical
time  complexity  of  an  algorithm.  The  rest  of  this  paper  is
organized as follows: section II will make a brief description of
the  variants  of  Shellsort.  The  framework  used  to  make  the
comparison  among  the  Shellsort  variants  and  findings  are
discussed in section III. We conclude our paper in section IV,
followed by references.
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II. SURVEY OF SHELLSORT VARIANTS

At i-th iteration of Shellsort, list  A gets subdivided into  hi

sublists each of size ⌊n/hi ⌋ [12], and insertion sort is applied
to each of these lists. So, the time complexity of the sorting
algorithm depends upon the time complexity of sorting each of
the sublists. Moreover, since each of these sublists gets sorted
resulting partially sorted list, therefore, at subsequent iterations
it is expected that there will be less swaps than the number of
comparisons.  The  sequence  proposed  by  Shell  [1]  uses
⌊ log n ⌋ length sequence. The time complexity in worst case
is proved to be O(n2) when n is a power of 2. To reduce the
time complexity, [3] proposed that even skip length should be
replaced  by  next  odd  number,  resulting  time  complexity  of
O(n3/2). [4] also achieved the same worst-case complexity using

the increment sequence (
n
2
+1,...

n

2⌊ logn ⌋
+1,1). [5] obtained

a  tighter  bound  of  Θ(n
3
2 ) using  reverse  of  the  following

generated  sequence  (note  that  mod  represents  modular
operation):

For i =1 to  2⌊log (n−1) ⌋ ; i =  i*2 //Double value of i at each
iteration

{

   J = i

  Do{ Store J // Note J

       J = (3*J)/2 //Integer division

   } while ( J mod 3 == 0 and J < n) //End of Do-while loop

}//End of For-loop

The  problem of  moving  an  element  to  its  rightful  place  is
reduced to Frobenius problem [19] by [6] where it is derived
that  at  each iteration, the skip length should not be a linear
combination  of  the  skip  length  of  the  next  iterations,  thus
avoiding unnecessary relocation of same element in the list;
this  resulted  better  time  complexity  of  O(n5/4).  Time
complexity of 3-tuple increment sequence (h, k, 1) is studied
in [7] where the exact time complexities for each of the three
iterations are derived. [8] proposed the increment sequences –
hk =1 and hi=3hi+1 + 1 where h1 is such that 3h0 ≥ n, and (2, 1),
whereas,  [9]  proposed  the  reverse  of  following  increment
sequence (3hi ≥ n) using the Frobenius problem:

hi={9.2i
−9.2

i
2+1 if s is even

8.2i
−6.2

i+1
2 +1 if s isodd

Using  this  increment  sequence,  O(n4/3)  time  complexity  is
achieved. 3-tuple increment sequence for Shellsort are again
explored in [10] where the increment sequence (n7/15, n1/5, 1) is
proposed, getting a time complexity of O(n23/15). [11] proposed
increment sequence where  hi = 2i-1 (i ≥ 1) until  hi ≥ n; the
achieved  time  complexity  is  almost  same  as  in  [3].  [12]
analyzed  three  increment  sequences:  (1)  (n1/3,  1) with  time

complexity  Ω(n5/3)  (2)  (n1/2,  n1/4,  1) with  time  complexity
O(n3/2) (3)  (n11/16, n7/16, n3/16, 1) with time complexity Ω(n21/16).

[13] with increment sequence (⌈ n
1
3 +1⌉ , ⌈ n

1
3 ⌉ , 1) obtained

time complexity of O(n5/3). Genetic algorithm used in [14] to
generate two increment sequences based on the size of the list
A:  7-tuple  increment  sequence  is  used  when  size  of  A  is
between 1000 and 1 million; 15-tuple increment sequence is
used when size of A exceeds 1 million. [15] uses binary search
algorithm for each skip length so that the time complexity of
the algorithm becomes  O(n  log n);  the  algorithm implicitly
uses  reverse  of  the  increment  sequence

hi=⌈ {9(9 /4)
i
−4} /5 ⌉ suchthat

9hi

4
<n∧i ≥ 0.  The

discussed  variants  did  not  achieve  the  lower  bound
Θ(n logn) [20]  of  a  comparison  sort  algorithm.  During
writing of this paper this bound is probabilistically achieved
by [2] and [17] proved that  to achieve the lower bound the
length of the increment sequence will be Θ ¿, which is yet to
be found.
 Most of the time complexities of the Shellsort variants have
considered either number of swaps or number of comparisons,
except  [14]  and  [21]  which  have  additionally  used  a
specialized  machine  for  actual  time taken.  However,  during
run  of  algorithm  associated  variables  like  use  of  counter
variables  and  temporary  variables,  using  instruction  for
increment or decrement etc., adds up the time complexity and
their contribution to the time complexity is proportional to the
number of times a loop, using these, runs. In the next section
we define a parameter measuring of time complexity where we
include  these  factors  and  using  this  parameter  we  make
compare the performances of the Shellsort variants.

III. COMPARATIVE ANALYSIS OF SHELLSORT

VARIANTS

We first define the parameter for the comparison followed by
the methodology for comparison and results obtained.

A. Defining Complexity

Time complexity of an algorithm B, C(B), consisting (I1, ... It)
instructions  running  (n1,  ...  nt)  times   respectively  can  be
defined as:

                              C ( B )=∑
j=1

t

( I ¿¿ j× n j)¿                          .

.. (1)
We can, therefore,  measure  C(B)  by using a global variable
which is initially set to 0; the variable gets incremented by one
for each execution of the instructions. 

       The definition (1) includes the number of comparisons,
number  of  exchanges  and  the  number  of  times  associated
variables  are  used.  The  definition  is  also  independent  of
underlying platform used for implementation of the algorithm
B.

B. Methodology for Comparison

We  compare  average  case  complexities  of  the  Shellsort
variants. We have selected the variants [1][3]-[5][7]-[13] and
[15]. We have not taken [2] as it is a probabilistic algorithm
where  sorting  is  not  guaranteed  (though  the  probability  of
getting  a  sorted  list  is  very  high).  The  increment  sequence
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generation of [6] is complex as it requires checking co-prime
of two numbers,  thus it  can take more time to generate the
increment sequence than actual sorting if the size of list to be
sorted is high. Therefore we have not considered the variant in
our  analysis.  Based  on  similar  reason  (time  complexity  of
genetic  algorithms  are  generally  high),  [14]  is  also  not
considered.

 We have implemented the selected Shellsort  variants  in
Java  programming  language  as  generating  random  list  of
elements is easier in it. Each of the variants is implemented in a
separate class. Objects are created for each of these variants in
the  main  method  and  executed.  During  implementation  we
have not considered the time complexity of increment sequence
generation  as  we  are  more  inclined  towards  the  time
complexity of sorting (section I). To find time complexity of
each Shellsort variant and size n of the list to be sorted, 1000
random lists are generated, the average of these 1000 runs are
taken. n is varied from 500 to 10000 with interval of 500, that
is, 20 values of n is taken. To ensure fairness of analysis among
the selected variants, same 1000 lists for given n is fed into all
the variants. Therefore, our analysis has used same 20 × 1000 =
20000 lists, for all the variants.

C. Results

We have plotted the obtained average of average-case time
complexity in  vertical  axis  and  size  of  dataset  in  horizontal
axis. The mapping of the labels used in plots is given in table I.
The variation of time complexity with lists’ size is shown in
figure  1.  To  avoid  overflow  during  measuring  the  time
complexity of a variant,  the variable used for the measure is
incremented by 0.010 for a run of an observed instruction. So,
the time complexities in figure are scaled down by 100.

From figure 1, it can be observed that the second increment
sequence in [8] performed worst as it has used only two skip-
lengths and hence it nearly reduced to insertion sort which has
time complexity O(n2). [9] performed best among the selected
variants  since:  (1)  the  possibility  that  two  consecutive  skip
length in increment sequences are co-primes is high, thereby
avoiding unnecessary movement of an element of list; (2) the
number  of  skip  lengths  for  given  n is  close  to  log  n as
suggested by [17]. On similar reason, [1] and [15] (though [15]
performed better than [1]) performed nearly as good as [9].

Table I. Labelling of Increment Sequences for Plot

Increment Sequence Label
[1] DLShell
[4] PapernovStasevich
[3] LazarusFrank
[5] Pratt
[7] ACCYao
[8] Knuth1, Knuth2
[9] Sedgewick
[10] JansonKnuth
[11] Hibbard
[12] Vitnayi1, Vitnayi2, Vitnayi3
[13] Weiss
[15] Tokuda
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Figure 1. Comparison of Shellsort variants

IV. CONCLUSION

We  have  compared  average  case  time  complexity  of
variants of Shellsort algorithm and observed that the variants
that  uses  increment  sequences  of  length close  to  1  tends  to
perform worse than those variants whose length of increment
sequences is proportional or close to log n. Based on this fact
increment  sequence  proposed  by  Sedgewick  performed  best
among the other variants that we have considered. Therefore,
we suggest use of Sedgewick’s increment sequence for use in
practical field.
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