
ISSN No. 0976-5697
DOI: http://dx.doi.org/10.26483/ijarcs.v10i3.6433

Volume 10, No. 3, May-June 2019

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

ANALYSIS OF SHELLSORT ALGORITHMS

Avik Mitra
BCA Department

The Heritage Academy
Kolkata, India

Jash Kothari
Final Year Student, BCA
The Heritage Academy

Kolkata, India

Annesa Ganguly
Final year student, BCA
The Heritage Academy

Kolkata, India

Abstract: Shellsort is a comparison sort that uses insertion sort at each iteration to make a list of interleaved elements nearly sorted so that at the
last iteration the list is almost sorted. The time complexity of Shellsort is dependent upon the method of interleaving (called increment sequence)
giving variants of Shellsort. However, the problem of finding proper of interleaving to achieve the minimum time complexity of O(n log n) is
still open. In this paper, we have analyzed the performance of variants of Shellsort based on their time complexity. Our measure of time
complexity is independent of the machine configuration and considers all the operations of a sorting process. We found that the interleaving
method or increment sequence proposed by Sedgewick performs best among the analyzed variants.

Keywords: Shellsort; increment sequence; variants; survey; time complexity; algorithm; data structure

I. INTRODUCTION
Shellsort [1] is an in-situ comparison sort algorithm where

at each iteration, each list of interleaved elements from the list
A[0, ..., n], are sorted by insertion sort; each list of interleaved
elements forms disjoint sets of elements. The interleaving is
reduced in subsequent iteration, until it becomes 1, in which
case insertion sort gets applied to the whole, now nearly sorted,
list A. The sorting algorithm is oblivion to the data [2] and one
of its implementation is (sorting in non-decreasing order):

Void Shellsort (A[0, ..., n-1], SkipLength[0, , k-1])
//SkipLength[x] > SkipLength[x+1]

//SkipLength[k-1] = 1, SkipLength[i] = hi+1

{

 For i = 0 to (k-1), step by (+1), do: //For each skip length

 {

 For j = 0, j < SkipLength[i], step by (+1), do:

 {

 Temp = A[j]. //Assignment operation – A[j] is assigned
to Temp.

 For z = j – SkipLength[i], z ≥ 0 and A[z] > Temp, step
by (-SkipLength[i]), do:

 {

 A[z + Skiplength[i]] = A[z]

 } //End of For-loop

 A[z + SkipLength[i]] = Temp

 }//End of For-loop.

 }//End of For-loop

}//End of Shellsort

The sequence of interleaving (h1, h2, ..., hk) with h1>h2> ...>
hk=1, is called increment or offset sequence and each hi is
called skip length. For [1], the increment sequence is (
⌊n/2 ⌋ , ⌊n/4 ⌋ ,…,1). There are many variants of the
original Shellsort algorithm depending upon the increment
sequence [2]-[15]; the time complexity of the algorithm is also
dependent upon the increment sequence. Finding optimal
increment sequence that will minimize the time complexity of
the Shellsort is still an open problem [12]. In addition to this,
data-oblivion property of the sorting algorithm makes it an
attractive solution for deployment in those systems where a
dataset, distributed over multiple nodes in a network, needs to
be arranged in certain order. In this paper we will compare the
Shellsort variants in terms of the time complexities. Unlike
[16]-[18] that compared the shellsort variants based on a
parameter that includes number of swaps or number of
comparisons, we have defined a parameter that have included
these factors and also the time consumed in checking
conditions for loop to run. We believe that our parameter for
comparison is closer to the general definition of theoretical
time complexity of an algorithm. The rest of this paper is
organized as follows: section II will make a brief description of
the variants of Shellsort. The framework used to make the
comparison among the Shellsort variants and findings are
discussed in section III. We conclude our paper in section IV,
followed by references.

© 2015-19, IJARCS All Rights Reserved 48

Avik Mitra et al, International Journal of Advanced Research in Computer Science, 10 (3), May-June 2019,48-50

II. SURVEY OF SHELLSORT VARIANTS

At i-th iteration of Shellsort, list A gets subdivided into hi

sublists each of size ⌊n/hi ⌋ [12], and insertion sort is applied
to each of these lists. So, the time complexity of the sorting
algorithm depends upon the time complexity of sorting each of
the sublists. Moreover, since each of these sublists gets sorted
resulting partially sorted list, therefore, at subsequent iterations
it is expected that there will be less swaps than the number of
comparisons. The sequence proposed by Shell [1] uses
⌊ log n ⌋ length sequence. The time complexity in worst case
is proved to be O(n2) when n is a power of 2. To reduce the
time complexity, [3] proposed that even skip length should be
replaced by next odd number, resulting time complexity of
O(n3/2). [4] also achieved the same worst-case complexity using

the increment sequence (
n
2
+1,...

n

2⌊ logn ⌋
+1,1). [5] obtained

a tighter bound of Θ(n
3
2) using reverse of the following

generated sequence (note that mod represents modular
operation):

For i =1 to 2⌊log (n−1) ⌋ ; i = i*2 //Double value of i at each
iteration

{

 J = i

 Do{ Store J // Note J

 J = (3*J)/2 //Integer division

 } while (J mod 3 == 0 and J < n) //End of Do-while loop

}//End of For-loop

The problem of moving an element to its rightful place is
reduced to Frobenius problem [19] by [6] where it is derived
that at each iteration, the skip length should not be a linear
combination of the skip length of the next iterations, thus
avoiding unnecessary relocation of same element in the list;
this resulted better time complexity of O(n5/4). Time
complexity of 3-tuple increment sequence (h, k, 1) is studied
in [7] where the exact time complexities for each of the three
iterations are derived. [8] proposed the increment sequences –
hk =1 and hi=3hi+1 + 1 where h1 is such that 3h0 ≥ n, and (2, 1),
whereas, [9] proposed the reverse of following increment
sequence (3hi ≥ n) using the Frobenius problem:

hi={9.2i
−9.2

i
2+1 if s is even

8.2i
−6.2

i+1
2 +1 if s isodd

Using this increment sequence, O(n4/3) time complexity is
achieved. 3-tuple increment sequence for Shellsort are again
explored in [10] where the increment sequence (n7/15, n1/5, 1) is
proposed, getting a time complexity of O(n23/15). [11] proposed
increment sequence where hi = 2i-1 (i ≥ 1) until hi ≥ n; the
achieved time complexity is almost same as in [3]. [12]
analyzed three increment sequences: (1) (n1/3, 1) with time

complexity Ω(n5/3) (2) (n1/2, n1/4, 1) with time complexity
O(n3/2) (3) (n11/16, n7/16, n3/16, 1) with time complexity Ω(n21/16).

[13] with increment sequence (⌈ n
1
3 +1⌉ , ⌈ n

1
3 ⌉ , 1) obtained

time complexity of O(n5/3). Genetic algorithm used in [14] to
generate two increment sequences based on the size of the list
A: 7-tuple increment sequence is used when size of A is
between 1000 and 1 million; 15-tuple increment sequence is
used when size of A exceeds 1 million. [15] uses binary search
algorithm for each skip length so that the time complexity of
the algorithm becomes O(n log n); the algorithm implicitly
uses reverse of the increment sequence

hi=⌈ {9(9 /4)
i
−4} /5 ⌉ suchthat

9hi

4
<n∧i ≥ 0. The

discussed variants did not achieve the lower bound
Θ(n logn) [20] of a comparison sort algorithm. During
writing of this paper this bound is probabilistically achieved
by [2] and [17] proved that to achieve the lower bound the
length of the increment sequence will be Θ ¿, which is yet to
be found.
 Most of the time complexities of the Shellsort variants have
considered either number of swaps or number of comparisons,
except [14] and [21] which have additionally used a
specialized machine for actual time taken. However, during
run of algorithm associated variables like use of counter
variables and temporary variables, using instruction for
increment or decrement etc., adds up the time complexity and
their contribution to the time complexity is proportional to the
number of times a loop, using these, runs. In the next section
we define a parameter measuring of time complexity where we
include these factors and using this parameter we make
compare the performances of the Shellsort variants.

III. COMPARATIVE ANALYSIS OF SHELLSORT

VARIANTS

We first define the parameter for the comparison followed by
the methodology for comparison and results obtained.

A. Defining Complexity

Time complexity of an algorithm B, C(B), consisting (I1, ... It)
instructions running (n1, ... nt) times respectively can be
defined as:

 C (B)=∑
j=1

t

(I ¿¿ j× n j)¿ .

.. (1)
We can, therefore, measure C(B) by using a global variable
which is initially set to 0; the variable gets incremented by one
for each execution of the instructions.

 The definition (1) includes the number of comparisons,
number of exchanges and the number of times associated
variables are used. The definition is also independent of
underlying platform used for implementation of the algorithm
B.

B. Methodology for Comparison

We compare average case complexities of the Shellsort
variants. We have selected the variants [1][3]-[5][7]-[13] and
[15]. We have not taken [2] as it is a probabilistic algorithm
where sorting is not guaranteed (though the probability of
getting a sorted list is very high). The increment sequence

© 2015-19, IJARCS All Rights Reserved 49

Avik Mitra et al, International Journal of Advanced Research in Computer Science, 10 (3), May-June 2019,48-50

generation of [6] is complex as it requires checking co-prime
of two numbers, thus it can take more time to generate the
increment sequence than actual sorting if the size of list to be
sorted is high. Therefore we have not considered the variant in
our analysis. Based on similar reason (time complexity of
genetic algorithms are generally high), [14] is also not
considered.

 We have implemented the selected Shellsort variants in
Java programming language as generating random list of
elements is easier in it. Each of the variants is implemented in a
separate class. Objects are created for each of these variants in
the main method and executed. During implementation we
have not considered the time complexity of increment sequence
generation as we are more inclined towards the time
complexity of sorting (section I). To find time complexity of
each Shellsort variant and size n of the list to be sorted, 1000
random lists are generated, the average of these 1000 runs are
taken. n is varied from 500 to 10000 with interval of 500, that
is, 20 values of n is taken. To ensure fairness of analysis among
the selected variants, same 1000 lists for given n is fed into all
the variants. Therefore, our analysis has used same 20 × 1000 =
20000 lists, for all the variants.

C. Results

We have plotted the obtained average of average-case time
complexity in vertical axis and size of dataset in horizontal
axis. The mapping of the labels used in plots is given in table I.
The variation of time complexity with lists’ size is shown in
figure 1. To avoid overflow during measuring the time
complexity of a variant, the variable used for the measure is
incremented by 0.010 for a run of an observed instruction. So,
the time complexities in figure are scaled down by 100.

From figure 1, it can be observed that the second increment
sequence in [8] performed worst as it has used only two skip-
lengths and hence it nearly reduced to insertion sort which has
time complexity O(n2). [9] performed best among the selected
variants since: (1) the possibility that two consecutive skip
length in increment sequences are co-primes is high, thereby
avoiding unnecessary movement of an element of list; (2) the
number of skip lengths for given n is close to log n as
suggested by [17]. On similar reason, [1] and [15] (though [15]
performed better than [1]) performed nearly as good as [9].

Table I. Labelling of Increment Sequences for Plot

Increment Sequence Label
[1] DLShell
[4] PapernovStasevich
[3] LazarusFrank
[5] Pratt
[7] ACCYao
[8] Knuth1, Knuth2
[9] Sedgewick
[10] JansonKnuth
[11] Hibbard
[12] Vitnayi1, Vitnayi2, Vitnayi3
[13] Weiss
[15] Tokuda

500 2000 3500 5000 6500 8000 9500
0

50000

100000

150000

200000

250000

300000

350000

400000 DLShell
PapernovSta-
sevich
LazarusFrank
Pratt
ACCYao
Knuth1
Knuth2
Sedgewick
JansonKnuth
Hibbard
Vitnayi1
Vitnayi2
Vitnayi3
Weiss
Tokuda

Figure 1. Comparison of Shellsort variants

IV. CONCLUSION

We have compared average case time complexity of
variants of Shellsort algorithm and observed that the variants
that uses increment sequences of length close to 1 tends to
perform worse than those variants whose length of increment
sequences is proportional or close to log n. Based on this fact
increment sequence proposed by Sedgewick performed best
among the other variants that we have considered. Therefore,
we suggest use of Sedgewick’s increment sequence for use in
practical field.

V. REFERENCES

[1] D.L.Shell, “A High Speed Sorting Procedure”, Communications
of the ACM, volume 2, issue 7, pp 30-32, July 1959. DOI:
10.1145/368370.368387.

[2] Michael T. Goodrich, “Randomized Shellsort: A Simple Data-
Oblivious Sorting Algorithm”, Journal of the ACM, volume 58,
issue 6, 2001.

[3] R.M.Frank, R.B. Lazarus, “A High Speed Sorting Procedure”,
Communications of the ACM, volume 3, issue 1, pp 20-22,
January 1960.

[4] A.A.Papernov and G.Stasevich, “A Method of Information
Sorting in Computer Memories”, Problems in Information
Transmission, volume 1, issue 3, pp 63-75, 1965.

[5] V.R.Pratt, “Shellsort and Sorting Networks”, No. Stan-CS-72-
260, Standford University CA Department of Computer Science,
February 1972. Available from:
https://apps.dtic.mil/dtic/tr/fulltext/u2/740110.pdf

[6] Janet Incerpi and Robert Sedgewick, “ Improved Upper Bounds
on Shellsort”, Journal of Computer and System Sciences,
volume 31, issue 2, pp 210-224, October 1985.

[7] Andrew Chi-Chih Yao, “An Analysis of (h, k, 1) – Shellsort”,
Journal of Algorithms, volume 1, issue 1, pp 14-50, March 1980.

[8] Donald. E. Knuth, “Art of Computer Programming: volume 3
Sorting and Searching”, Second Edition, Addison-Wesley, 1998.

[9] Robert Sedgewick, “A New Upper Bound for Shellsort”, Journal
of Algorithms, volume 7, issue 2, pp 159-173, June 1986.

© 2015-19, IJARCS All Rights Reserved 50

http://doi.acm.org/10.1145/368370.368387
https://apps.dtic.mil/dtic/tr/fulltext/u2/740110.pdf

Avik Mitra et al, International Journal of Advanced Research in Computer Science, 10 (3), May-June 2019,48-50

[10] Svante Janson and Donald E. Knuth, “Shellsort with Three
Increments”, Random Structures and Algorithms, volume 10,
issue 1, pp 125-142, January 1997.

[11] Thomas N. Hibbard, “An Empirical Study of Minimal Storage
Sorting”, Communications of the ACM, volume 6, issue 5, pp
206-213, 1963.

[12] Paul Vitnayi, “On the Average-case Complexity of Shellsort”,
Random Structures and Algorithms, volume 52, issue 2, pp 354-
363, 2018.

[13] M.A. Weiss, “Shellsort with Constant Number of Increments”,
Algorithmica, volume 16, issue 6, pp 649-654, December 1996.

[14] Richard Simpson, Shashidhar Yachavaram, “Faster Shellsort
Sequences: A Genetic Algorithm Application”, Computers and
Their Applications, 1999.

[15] Naoyuki. Tokuda, “An Improved Shellsort”, IFIP 12th World
Computer Congress on Algorithms, Software, Architecture –
Information Processing, 1992.

[16] Bronislava Brejova, “Analyzing Variants of Shellsort”,
Information Processing Letters, volume 79, issue 5, pp 223-227,
September 2001.

[17] Tao Jing, Ming Li, Paul Vitanyi, “Average-case Complexity of
Shellsort”, International Colloquium on Automata, Languages
and Programming, 1999.

[18] Janet Incerpi and Robert Sedgewick, “Practical Variations of
Shellsort”, Doctoral Dissertation, INRIA, 1986.

[19] J.L.Ramirez-Alfonsin, “Complexity of the Frobenius Problem”,
Combinatorica, volume 16, issue 1, pp 143-147, March 1996.

[20] Thomas H. Cormen, Charles E Leiserson, Ronald R. Rivest,
Clifford Stein, “Introduction to Algorithms”, 3rd Edition, MIT
Press and Prentice Hall of India, February 2010.

[21] D. Ghoshdastidar and Mohit Kumar Roy, “A Study on the
Evaluation of Shell’s sorting Technique”, The Computer
Journal, volume 18, issue 3, pp 234-235, 1975.

[22]

© 2015-19, IJARCS All Rights Reserved 51

	I. Introduction
	II. Survey of Shellsort Variants
	III. Comparative Analysis of Shellsort Variants
	A. Defining Complexity
	B. Methodology for Comparison
	C. Results

	IV. Conclusion
	V. References

