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Abstract: We propose a novel algorithm to reduce average waiting time of secondary user in modeling the dynamic channel allocation problem 
in cognitive radio networks by applying game theory blended with pricing theory with an effect of past behavior of the channel. Moreover in the 
proposed work, we define a unique model to stumble on a channel to by Secondary User to minimize the switching of secondary user. The 
Secondary Users can be considered as selfish users competing with each other for spectrum. These selfish users will try to get more access to the 
spectrum and achieve higher profits. We propose a scheme to prohibit such users from accessing more bandwidth. Moreover, since the usage of 
a channel may vary in various time bands, so we allocate a channel to a secondary user based on the utilization history of the channel. In the 
paper we also propose the scheme to minimize their power requirements. 
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I. INTRODUCTION 

Wireless networks are regulated by a fixed spectrum 
assignment policy, i.e. the spectrum is regulated by 
governmental agencies and is assigned to license holders or 
services on a long term basis for large geographical regions. 
In addition, a large portion of the assigned spectrum is used 
sporadically as illustrated in the Figure 1, where the signal 
strength distribution over a large portion of the wireless 
spectrum is shown. 

 

 
 

 
The spectrum usage is concentrated on certain portions 

of the spectrum while a significant amount of the spectrum 
remains unutilized. According to Federal Communications 
Commission (FCC) [20], temporal and geographical  

 

 
variations in the utilization of the assigned spectrum range 
from 15% to 85%. Although the fixed spectrum assignment  
 
policy generally served well in the past, there is a dramatic 
increase in the access to the limited spectrum for mobile 
services in the recent years. This increase is straining the 
effectiveness of the traditional spectrum policies. 

Frequency spectrum is the scarcest resource for wireless 
communications and may become congested to 
accommodate diverse types of air interfaces in next-
generation wireless networks. The limited available spectrum 
and the inefficiency in the spectrum usage necessitate a new 
communication paradigm to exploit the existing wireless 
spectrum opportunistically. Dynamic spectrum access is 
proposed to solve these current spectrum inefficiency 
problems. 

Cognitive Radio (CR) is relatively a new technology, 
which wisely finds a particular segment of the radio 
spectrum currently in use and chooses unused spectrum 
quickly without interfering with the transmission of 
authorized users. Cognitive Radios can find out about current 
use of spectrum in their operating region, make intelligent 
decisions, and react to immediate changes in the use of 
spectrum by other authorized users. The goal of CR 
technology is to mitigate radio spectrum overcrowding, 
which actually translates to a lack of access to full radio 
spectrum utilization. Due to this adaptive behavior, the CR 
can easily preclude the interference of signals in a crowded 
radio frequency spectrum. Cognitive radio has emerged as a 
new design paradigm for next-generation wireless networks 
that aims to increase utilization of the scarce radio spectrum 
(both licensed and unlicensed). Learning and adaptation are 
two significant features of a cognitive radio transceiver. 

Figure 1: Signal strength distribution wireless spectrum 
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The network dedicated specially to xG users is called xG 
or secondary network. The main role for cognitive radios in 
cognitive networks can be summarized as follows: 

A. Spectrum Sensing –  
Identifying unused spectrum and sharing the spectrum 

without destructive interference with other users  

B. Spectrum Management –  
Capturing the best available spectrum to greet user 

communication needs;  

C. Spectrum Mobility –  
Maintaining seamless communication requirements 

during the switch to better spectrum;  

D. Spectrum Sharing –  
Providing the fair spectrum scheduling method among 

contemporaneous cognitive users. 

 
 

 
Section II contains various approaches being used for 

dynamic channel selection in cognitive radio.  Section III 
contains a brief description of the game theory and justifies 
the use of game theory in the cognitive radio dilemma. 
Section IV contains a brief description of the work done in 
the related field using game theory. Section IV describes the 
proposed model. Concluding remarks are provided in 
Section V. 

II. APPROACHES FOR DYNAMIC CHANNEL 
SELECTION 

Different techniques and methods are required in a 
cognitive radio transceiver to realize the processes of 
dynamic channel selection. 

A. Estimation Technique —  
Parameter estimation is important for the observation 

process in a cognitive radio transceiver to obtain 
information about the ambient network environment. 
Sophisticated sensing mechanisms are generally required to 
obtain multiple parameters 
(e.g., channel state, traffic load, neighborhood information) 
simultaneously.  

B. Game Theory —  

Game theory is a mathematical tool developed to 
understand competitive situations in which rational decision 
makers interact to achieve their objectives. The basic 
concept of game theory is the rationality with which the 
players of the game will choose their actions based on their 
interests. The solution of the game is given by the actions 
through which all the players are satisfied with their 
received payoffs (i.e., returns). In [19] a game-theoretic 
adaptive channel allocation scheme was proposed for 
cognitive radio networks. In particular, a game was 
formulated to capture the selfish and cooperative behaviors 
of players. 

C. Evolutionary Computation —  
Evolutionary computation is a problem solving method 

based on evolution of biological life in the real world. This 
could be achieved by simulating evolution behavior of 
individual structures, which includes the selection and the 
reproduction processes. The most common technique in 
evolutionary computation is the genetic algorithm. and it has 
been applied to cognitive radio [20].  

D. Fuzzy Logic —  
Fuzzy logic provides a simple way to obtain the 

solution to a problem based on imprecise, noisy, and 
incomplete input information. Instead of using complicated 
mathematical formulation, fuzzy logic uses a human-
understandable fuzzy set of membership functions and 
inference rules to obtain the solution that satisfies the 
desired objectives. To capture dynamic system behavior, 
fuzzy logic rules and membership functions need to be 
adaptive to the changing environment so that the desired 
solution can be achieved. Fuzzy logic is combined with a 
learning algorithm (i.e., neuro-fuzzy) that is able to adapt to 
the changing environment of a cognitive radio system. 

E. Markov Decision Process —  
Decision theory is required for cognitive radio to 

choose the best action intelligently in response to 
environmental stimuli. A partially observable Markov 
decision process (POMDP) was used for dynamic spectrum 
access in an ad hoc network [21]. 

F. Pricing Theory —  
The pricing mechanism impacts resource allocation in 

wireless networks since service providers want to maximize 
revenue and users want to minimize cost for the target 
quality of service (QoS) performance. Pricing theory can be 
used for resource management in cognitive radio systems. In 
[22] a dynamic pricing, resource allocation, and billing 
method was proposed for cognitive radio users with multiple 
wireless interfaces. In this system pricing and allocation of 
radio resources were performed based on an auction 
mechanism. The system learns the users’ bidding strategies 
by a Bayes optimal classifier, and a multi-unit sealed bid 
auction is performed to obtain the optimal decision for the 
service providers and users. 

G. Reinforcement Learning —  
A reinforcement learning algorithm learns by 

interacting with the environment. In [23] a reinforcement 
learning algorithm, Q-learning, was used for dynamic 
channel assignment in cellular networks. While the amount 
of traffic in each cell varies, the proposed algorithm learns 

Figure 2: Schematic diagram for cognitive radio process 
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and adapts the number of channels assigned to each cell so 
that the call blocking probability can be minimized. 

III. GAME THEORY AND COGNITIVE RADIO 

Game theory is a natural modeling technique for 
cognitive radios. A game is a model of an interactive 
decision process. An interactive decision process is a 
process whose outcome is a function of the inputs from 
several different decision makers who may have potentially 
conflicting objectives with regard to the outcome of the 
process. Game theory is a collection of models (games) and 
analytic tools used to study interactive decision processes. 
Every game includes the following components: 

A set of players; Actions for each of the players; Some 
method for determining outcomes according to the actions 
chosen by the players; Preferences for each of the players 
defined over all the possible outcomes; Rules specific to the 
model, e.g., the order of play. 

In our research work, the basic framework considered is 
that an operating spectrum is divided into sub-bands or 
channels. These channels, when not in use by the PUs, are 
allocated to SUs for enhanced spectrum efficiency. We 
contribute the following unique features in the spectrum 
sharing:  

Classify the quality of a channel into five different 
types, depending upon the occupancy of its neighboring 
channels. 

Develop a multi-objective function optimization 
problem leading to a Game theoretic perspective among 
cooperative N cognitive users in order to allocate channels 
to these users. 

Define idle durations and transmission rate for each 
channel during which the SUs are permitted to transmit, and 
develop a game theoretic strategy to allocate single channel 
to each user, while taking the transmission rate and idle 
durations into account in defining the reward functions.  

In addition, we have considered parameters such as idle 
duration and transmission time in the context of spectrum 
sharing. The simple idea behind this approach is that each 
channel supports its own data transmission rates based on 
perceived channel conditions and multipath characteristics. 
During a specific time instant if the idle duration of a 
particular channel is less than the total transmission time 
required by the SU, then the channel is not allocated to this 
particular SU. We show that the spectrum allocation method 
that does not consider such aspects may lead to inefficient 
spectrum utilization. 

Our proposed spectrum sharing model consists of M 
PUs denoted by PU1,  PU2,  …. , PUM located in specific 
channels represented as Ch1, Ch2,  … , ChM. Each channel 
is licensed to a single PU, as is the case of television band 
where the television transmitters are further away from each 
other to avoid interference. There are N SUs denoted as 
SU1; SU2; …., SUN. The objective of our spectrum sharing 
approach is to allocate multiple available channels to an SUi 
based on two factors:  
a. The number of packets SUi need to transmit 
b. The transmission rate of each Chi.  

Game  Cognitive radio network; Player Cognitive 
radio; Actions  Actions; Utility function Goal Outcome 

space  Outside world; Utility function arguments 
 Observations/orientation; Order of play Adaptation 
timings. 

In game theory parlance, a player acting in its own 
interest (or acting in a way it believes increases its payoff) – 
no matter how difficult the calculation or fine the distinction 
in payoffs – is said to be rational. We also assume that the 
radios are acting autonomously. With autonomous 
rationality, we say that a player or its decision rule is 
autonomously rational. 

Depending on the system we are modeling it may be 
appropriate to assume different device capabilities such as 
knowledge of the other radios’ goals or actions perfect 
observations and long memories of past behavior. Going 
from the cognition cycle to a game, every node in a network 
that implements the decision step of the cognition cycle is a 
player (making it a decision maker in the interactive 
decision process). Each radio’s available adaptations form 
the associated player’s action set, and the Cartesian product 
of the radios’ adaptations form the action space. The 
cognitive radio’s goal supplies a player’s utility function, 
and the outputs of the cognitive radio’s observation and 
orientation steps are the arguments and valuation for this 
utility function. Loosely, the observation step provides the 
player with the arguments to evaluate the utility function, 
and the orientation step determines the valuation of the 
utility function. 

Based on their knowledge of the game – past actions, 
future expectations, and current observations – players 
choose strategies – a choice of actions at each stage. These 
strategies can be fixed, contingent on the strategies of other 
players, or adaptive to the actions observed in each stage. 
We denote player i's strategy by the symbol di indicating 
that the strategy of player i determines its action in each 
stage of the repeated game. However, di is not only reactive 
to the current state of the game but it should also consider 
past states and future expectations. 

When players consider future expectations, the players 
employ utility functions that incorporate the payoff of the 
most recent stage and a time-discounted expectation of 
utility received from all future stages. As estimations of 
future values of ui may be uncertain, many repeated games 
modify the original objective functions by discounting the 
expected payoffs in future stages by the discounting factor δ, 
where δ ε (0,1] such that the anticipated value in stage k to 
player i is given by equation (1) where ak denotes the action 
vector played in stage k. Note that if δ = 1, then all future 
payoffs are given equal weight with the present payoff. 
(Discounted payoff in stage k)  

ui(ak) = δk ui(ak)                      
…(1) 

Assuming all players’ choices of strategies result in the 
sequence of action vectors (ak), a player, i, that considers 
future expectations for an infinite horizon would value this 
sequence as shown in equation 2. 

ui(ak) = 
0k

∞

=
∑ δk ui(ak)                    

…(2) 
With players considering their future payoffs, it 

becomes possible for players to employ strategies designed 
to punish players in subsequent stages after they deviated 
from agreed upon behavior in prior stages. When 



Prabhakar Sharma et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 628-634 

© 2010, IJARCS All Rights Reserved                         631 

punishment occurs, players choose their actions to reduce 
the payoff of the offending player. 

In the interim between power level updates, each 
mobile has a probability of  of leaving the network and a 
new mobile enters the network with probability . If a 
cognitive radio leaves the network or if a cognitive radio 
enters the network, the game terminates as the players in the 
model have changed. So after k iterations the probability 
that the network is the same as when it began is given by (1-
)k(1-)k.   

Suppose a network consists of n cognitive radios with 
each radio, i, free to determine the number of simultaneous 
frequency hopping channels the radio implements, ci 
[0,). Guiding this decision, each radio is attempting to 
maximize the difference between a function of goodput and 
power consumption as given in equation (3) 

  ui(c) = P(c)ci – Ci(ci)  …(3) 
Where P(c) is the fraction of symbols that are not 

interfered with (making P(c)ci the goodput for radio i) and 
Ci(ci) is radio i’s cost for supporting ci simultaneous 
channels. In general, P decreases as the total number of 
channels implemented increases and Ci  increases with 
increasing ci (more bandwidth implies more  processing 
resources implies more power consumption). If we 
approximate these effects as linear functions, we can rewrite 
equation (3) as (4). 

( ) i( ) =  - K c
  N

i k iu c B c c
k

− ∑
∈

       …(4) 

Where B is the total bandwidth that the waveforms are 
hopping over, K is the cost of implementing each channel, 
and N is the set of cognitive radios. 

Figure 3 describes the cognition cycle. In the cognition 
cycle, a radio receives information about its operating 
environment (Outside world) through direct observation or 
through signaling. This information is then evaluated 
(Orient) to determine its importance. Based on this 
valuation, the radio determines its alternatives (Plan) and 
chooses an alternative (Decide) in a way that presumably 
would improve the valuation. Assuming a waveform change 
was deemed necessary, the radio then implements the 
alternative (Act) by adjusting its resources and performing 
the appropriate signaling. These changes are then reflected 
in the interference profile presented by the cognitive radio in 
the Outside world. As part of this process, the radio uses 
these observations and decisions to improve the operation of 
the radio (Learn), perhaps by creating new modeling states, 
generating new alternatives, or creating new valuations. 

 
Figure 3 – The Cognitive Cycle 

IV. RELATED WORK 

Spectrum sensing is key for effective spectrum 
management as it enables SUs to detect PUs in the operating 
channels.  

All the existing channel allocation algorithms 
concentrate on user request priorities or channel conditions, 
joint user requests and channel priorities can be predicted in 
formulating power efficient channel allocation to support 
Quality of Service QoS among SUs. Two main 
characteristics of the cognitive radio can be defined [4,5]: 
Cognitive capability - It refers to the capability of the radio 
technology to capture or perceive the information from its 
radio environment; Reconfigurability

In [9] [10], the authors investigated whether spectrum 
efficiency and fairness can be obtained by modeling the 
spectrum sharing as a repeated game. The authors in [11] 
proposed local bargaining to achieve distributed conflict-
free spectrum assignment that adapted to network topology 
changes. In [12], a no-regret learning algorithm using the 
correlated equilibrium concept to coordinate the secondary 
spectrum access was considered. Various auction and 
pricing approaches were proposed for efficient spectrum 
allocation, such as auction games for interference 
management [13] [14], the demand responsive pricing 
framework [15], and pricing for bandwidth sharing between 
WiMAX networks and WiFi hotspots [16]. A belief assisted 

 - It enables the radio 
to be dynamically programmed according to the radio 
environment. 

In [6], spectrum decision rules are presented, which are 
focused on fairness and communication cost. However, the 
method assumes that all channels have comparable 
throughput capacity. In [8], an opportunistic frequency 
channel skipping protocol is proposed for the search of 
superior quality channel, where this channel decision is 
based on Signal to Noise Ratio (SNR). In order to consider 
the primary user activity, the number of spectrum handoff, 
which happens in a specific spectrum band, is used for 
spectrum decision [7]. 
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distributive double auction was proposed in [17] that 
maximized both primary and secondary users’ revenues, and 
a game-theoretical overview for dynamic spectrum sharing 
was presented in [18]. Although the approaches listed above 
have boosted the spectrum efficiency, most of them are 
based on the assumption that the players (e.g., wireless 
users/devices) are honest and will not cheat. Nevertheless, 
selfish players aim only to maximize their own interests; if 
they believe their interests can be further increased by 
cheating, the users will no longer behave honestly, which 
usually results in a disastrous outcome for the spectrum 
sharing game. Therefore, designing a robust spectrum 
sharing scheme that can suppress cheating behaviors of 
selfish users is of critical importance.  

V. THE PROPOSED MODEL 

We propose a mechanism for design-based dynamic 
spectrum access approaches in two scenarios: spectrum 
sharing in unlicensed bands and licensed bands. Here is the 
difference: 

The strategy space of secondary users in open spectrum 
(xG network) sharing may include the transmission 
parameters they want to adopt, such as the transmission 
powers, access rates, time duration, etc.; while in licensed 
spectrum trading, their strategy space includes which 
licensed bands they want to rent, and how much they would 
pay for leasing those licensed bands.  

In open spectrum sharing, the utility function for the 
secondary users is often defined as a non-decreasing 
function of the Quality of Service (QoS) they receive by 
utilizing the unlicensed band; in licensed spectrum trading, 
the utility function for the users often represents the 
monetary gains (e.g., revenue minus cost) by leasing the 
licensed bands.  

Let there are nc number of channels and same is the 
count of PU licensed to one individual channel; nt is the 
count of time slots; ns is the count of secondary users.   
Following matrices are maintained at each base station: 

A. pUsage Matrix α :  
It is a nt x nc matrix keeping track of count of usages by 

a PU of its licensed channel in various time slots. 

B. sUsage Matrix β:  
It is a nt x ns matrix keeping a record of count of 

requests by SU in various time slots. 

C. tRemaining Matrix ξ:  
It is a one dimensional matrix of size nc. We allocate a 

time burst of b unit time to a PU or SU. As soon as a 
channel is allocated to PU or SU, the entry is done for that 
channel of the burst time. This value is decreased by 1 after 
each unit time. A zero entry reflects that the channel is free.  

D. allocation Matrix ζ:  
It is a nt x nc x ns size matrix. ζ[i,j,k] represents the that 

SUk is allocated channel j in the time slot i.  
These can be summarized as shown in Figure 4. 

 
 

Figure 4 – The data structure to be maintained at each base station 

a. c no – channel number 
b. u bit – channel lock bit (0-free; 1- occupied) 
c. channel tuple – for just pervious m allocations (using 

LRU scheme). It contains count of radios preempted, 
average utilization time span for PU, average utilization 
time span for SU, total utilization time, average bid 
price the PU is getting, average SINR 

d. radio node tuple– each for one cognitive radio. It 
contains radio id r,SU / PU bit (in case of xG network it 
is invalid), duration of previous use tp, 

 to decide the 
punitive action, duration of total use tu, to decide the 
punitive action, duration of total time in the range of the 
base station tt, minimum offered bid price pm, actual bid 
price pa,the transmit power pi,data rate R, the packet 
length L, the bandwidth of the transmitted signal W, the 
gain of the cognitive radio to the base station g, noise 
power at the base station σ. 
The nodes of one radio are also connected in the form 

of a linked list. As soon as, a radio is out of the range of a 
base station, its entries are deleted from the database. 

Cognitive radio networks can be characterized as 
asynchronous decision timings. In a power control game, 
radios adjust their power levels in an attempt to maximize 
some utility function, typically some function that balances 
SINR or throughput against power consumption or battery 
life. A cognitive radio will try to maximize its utility 
function given in equation (5). 

i

i

R
u

p
= (1-e-0.5γi )L            …(5) 

Where pi is the average transmit power of ith radio. In 
this expression, throughput is a function of the data rate, R, 
the packet length, L, and the received SINR of player i’s 
signal, γi, where γi is calculated as shown in equation (6). 

 

  + 

i i

k k

i
W g p
R g p

k N

γ
σ

=
∑
∈

        … (6) 

where, W is the bandwidth of the transmitted signal, gk 
is the gain of the kth cognitive radio to the base station, pk is 
the average transmit power of radio k and σ is the noise 
power at the base station. 

The matrix ξ is used for deciding the allocation to 
reduce the power requirement. In practice, some free 
channels are preferred over others for an SU. For example, a 
free band in between two bands with PUs is less preferred 
than a free band with adjacent unused bands. The possible 

c 
no 

u 
bit 

channel 
property 

tuple 

  radio node no 
0 

 radio node no 
( m-1) 

     <r tuple 
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null 
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option s are given in Figure 5.  Each SU has a spectral mask 
on the maximum transmission power admissible in each 
channel. Therefore, this results in a low signal-to noise-ratio 
(SNR). This compels us to delve into the different 
configurations of the free bands with adjacent PUs while 
focusing on a specific free channel, Chi. The channels are 
assumed to be orthogonal to each other. This assumption 
enables us to consider that adjacent channels do not 
interfere. 

1      
      
2(a)      
      
2(b)      
      
3      
                      (i-1)      i      (i+1) 

Figure 5 – Possible option of a free channel 

The channel i is free and is under consideration for 
allocation to SU. There are two adjacent channels (i-1) and 
(i+1). We consider three various configurations: 
a. Both adjacent channels are free. 
b. and (b) only one of the adjacent channels is free. 
c. Both adjacent channels are occupied. 

Hence, the priority of the allocation will be case 1> case 
2 > case 3. To incorporate this aspect, we modify the 
equation (5) as below: 

*
i

i

R
u

s p
= (1-e-0.5γi )L          …(7) 

Where s is a factor decided as below: 
s = 1; when both adjacent channels are fre 
= 2; when any one of the adjacent channels is free and 
another is occupied 
= 3; when both adjacent channels are occupied 

The usage of time slice by an SU is obtained from 
sUsage matrix β. One SU is allocated one time slice t at one 
time. If a SU occupies more time slices in continuation, it 
will be susceptible for punitive action, in the sense that if 
there are n SU’s competing m numbers of channels, then in 
the next time slice: 
a. if n>m, then the SU’s has to wait in the queue 
b. if n=m, then the SU will get low quality channel 
Graphs representing this scenario are shown in Figure 6 and 
7. 

 
 
 

With an idea of including pricing theory, let η is the 

pricing factor, defined as: 
η = price offered by SU / price demanded by PU 

We incorporate a factor η in the equation (7) and 
modifying it to equation (8). 

 
Figure 7 - Graph for total channel allocation 

 * 

*
i

i

R
u

s p
η

= (1-e-0.5γi )L                      …(8) 

For a normal scenario, η = 1; but is the SU is ready to 
pay more for the sake of quality, then η >1. 

Graphs representing this scenario are shown in Figure 8 
and 9. 

 
Figure 8 - Graph for channel allocation for secondary user 

 
Figure 9 - Graph for total channel allocation 

There is a clear improvement in switching between the 
channels. 

In a repeated game, the overall payoff is represented as 
a normalized discounted summation of the payoff at each 

Figure 6 - Graph for channel allocation for secondary user 
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stage game. 

 = (1- )   [n]
0

ii
n

U u
n

δ δ
+∞
∑
=

       …(9) 

where ui[n] is user i’s payoff at the n-th stage, δ(0< δ 
<1) is the discount factor which indicates that a user values 
the current stage payoff more than the payoffs in future 
stages, and (1- δ) can be viewed as a normalization factor. 
As ui[n] is assumed to be a finite value, Ui is well-defined in 
the repeated game. If δ is close to 1, we say that the user is 
patient; if δ  is close to 0, we say that the user is myopic. In 
general, the spectrum sharing in unlicensed bands lasts for a 
long time, and we can assume that δ is close   to 1. Because 
the users care about not only the current payoff but also the 
rewards in the future, they have to constrain their behavior 
in the present to keep a good credit history; otherwise, a bad 
reputation may cost even more in the future.  

VI. CONCLUSION AND FUTURE WORK 

We have proposed a novel algorithm to model the 
dynamic channel allocation problem in cognitive radio 
networks. In this paper, we investigated a game-theoretical 
mechanism design methods for channel selection by 
incorporating the usage history simultaneously trying to 
minimize the transmit power requirement. The proposed 
work is unique as no other approach takes into consideration 
the priorities for both the SUs as well as the channels in the 
operating spectrum along with the past usage data and 
power requirement. As the future work we are trying to 
integrate the cost demanded by the PU of the channels.  
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