
DOI: h

Abstr
exten
calcu
calcu
Curre
Exasc
the c
perfo
comp
Exasc
achie

Keyw

H

comp
perfo
exten
enterp
a sing
an HP
proce
execu
applic
proce
super
solve
comp
are
frequ
solve
HPC

Th
behin
hours
hour b
compu
the re
HPC
Petasc

http://dx.doi.or

IMPR

Mu
Depa

Governm

ract: Today's
nsiveparallel pr
lations per sec
lations per sec

ent supercomp
cale performan
hallenge of po
rmance under

prehensive anal
cale computing
ve HPC Exasc

words: HPC, Ex

High-Performan
puting power
rmance than a

nsive enigmas
prise [1], [2]. A
gle processing
PC system em

essor contains m
ute a variety
cations. HPC s
essing techniq
rcomputing, th

extensive pr
putation in whi
accomplished
ently be divid
d at the same t
systems.
he detailed exa
d the HPC i.e
 to complete a
by utilizing 200
uter might not

esources collect
system's perfo

cale, to Exascal

rg/10.26483/ija

Internati

ROVING

uhammad Usm
artment of Com
ment College W

Sialkot, Pa

High-Perform
rocessing appro
cond). The nex
cond-a remark
uters can't ach

nce can be ach
ower consump
power consum
lysis of existin
g system. Cons
cale system goa

xascale compu

I. INTROD

nce Computi
in such a wa
a traditional d
in medicine,

A traditional co
 unit (a Centra

mbodies a comm
multi-cores alo
y of compli
systems utilize
ques to per

housands of pr
roblems. Paral
ich many calcu

concurrently
ded into small
time to enhanc

ample can exp
e. a traditional
specific task wh

0 computers at o
be as useful as

tively as a comm
ormance from
le constitute an

arcs.v10i2.6397

Volum

ional Journ

Avail

PERFOR
CONS

man Ashraf
mputer Science
Women Univer
akistan

Go

mance Compu
oaches for solv
xt breakthroug
kable achievem
hieve such a h
hieved by multi
ption still pers

mption limitatio
ng strategies th
sequently, we h
als.

uting, Massive p

UCTION

ing (HPC)
ay that can p
desktop compu
engineering an
omputer gener
al Processing
munity of CPU
ong with its lo
cated tasks

e supercompute
rform extens
rocessors work
llel Computing
ulations or exe
y. Massive p
ler ones that
ce the overall p

plain the funda
desktop comp

hile it could be
once. In short, a
s it could be wh
munity. Every

GigaScale, to
extraordinary i

me 10, No.

al of Advan

REVIEW

lable Onlin

RMANCE
UMPTIO

e
rsity

Rab
Department of
vernment Coll

Sialko

uting (HPC)
ving complicat

gh in the comp
ment in compu
high level of p
iplying the num
sists. However
ons for emergi
hat can be con
have suggested

parallelism, Int

practice the
provide greater
uter to resolve
nd commercia
ally consists o
Unit), whereas
Us where each

ocal memory to
and software

ers and paralle
ive jobs. In

k in parallel to
g is a sort o
ecution of tasks
problems can
could then be

performance o

amental concep
puter takes 200
e completed in 1
a single desktop
hile utilizing al
advancement in

o Terascale, to
mprovement in

 2, March-A

nced Resea

W ARTICLE

ne at www.i

IN HPC S
ONS LIMIT

bia Aslam
f Computer Sci
lege Women U
ot, Pakistan

systems req

ted computatio
puting revoluti
uting that will
performance un
mber of cores
r, the primary
ing technologie
nsidered to enh
d a massive par

tra-node comm

e
r
e

al
f
s
h
o
e

el
n
o
f
s
n
e
f

pt
0
1
p
ll
n
o
n

computing
computing
the secto
enterprise
high-end
applicatio
challenge
prototypi
making,
performa
Moreover
developm
support t
products
Similarly
build an
implemen

Nowa
solves co
performin
these Pet
milestone
towards
outstandi
high-perf
will have
Current s
computat
Although
Petascale

April 2019

rch in Com

E

ijarcs.info

SYSTEM
TATIONS

Departme
Government

S

ience,
University

quire significa
onal tasks at th
ion is the Exa
have a fathom

nder power di
according to E

y focus of this
es. Leading to
hance performa
rallel programm

munication, Inte
g performanc
g has to turn o
rs of educatio

e and business.
designing

ons under devel
s by providing

ing and testing
enhancing the

ance and fail
r, HPC acts as

ment process in
to improve ex
to the market

y, organization
nd examine
ntation [6].
adays, the fast
omplex problem
ng10

15
(quadril

tascale system
e in computin

high-perform
ing computing
formance will
e a fathomless
supercomputer
tion under t
h developers
e systems to

puter Scien

IS

UNDER P
S

Amna Arsha
ent of Comput
t College Wom
Sialkot, Pakist

ant usage of
he Petascale le
scale level of
mless influenc
issipation cons
Exascale comp
s study is to
objectives, the
ance and redu
ming mechani

er-node comm
ce. The usag
out to be globa
on & governm
 High-Perform
and simulatio
lopment to dea
the facility to a
g phases. And

e quality and f
lure rate of
promoting sup

n science and
xisting technol
tplace more ef
s and industrie
their strateg

test supercomp
ms using Peta
llion) calculati

ms are going w
ng advanceme
mance Exasc
g power. Thes

reveal many
s impact on ev
rs cannot deliv
the power c
can extend th

o devise a

nce

SSN No. 0976‐5

POWER

ad
ter Science,
men University
an

f "supercompu
evel of perform
performance t

ce towards eve
straints. Even
puting system c
analyse how t
e current study
cing power fo
sm which is pr

munication.
ge of high-p
ally significant

ment and all th
mance Computin

on environme
al with marketi
accelerate or eve
d also, for the
for predicting
the product

pport for the re
technology by
ogies and to
fficaciously an
es use superco

gies before t

puter at the g
ascale systems
ons each secon

well in this era
ent is to pace
cale systems
e advance and
scientific my

veryday life [1
ver such a hig
consumption
he cores in t
way towards

5697

uters" and
mance (1015
that is 1018
eryday life.
though the
constraints,
to enhance

y presents a
r emerging
romising to

performance
throughout

he areas of
ng provides
ent, helps
ing delivery
en get rid of
e decision-
the overall
[5], [14].

esearch and
y providing
deliver the
nd quickly.
omputers to
the actual

global level
capable of

nd. Though
a, the next
e relatively
 offering
d powerful
steries and

1], [2], [4].
gh level of

limitation.
the current
s Exascale

Muhammad Usman Ashraf et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019,76-83

© 2015-19, IJARCS All Rights Reserved 77

computing system, the challenge of power consumption still
persists.

The rest of the paper has been presented in a way that
Section II introduces HPC challenges for emerging Exascale
computing systems. Section III defines the approaches to
improve performance and reduce power consumption in HPC
systems. Section IV has carried out a comparative analysis of
these approaches. Section V has highlighted discussions and
recommendations for the best approach and we have
concluded the work in Section VI.

II. CHALLENGES IN EXASCALE COMPUTING

The roadmap towards Exascale computing systems, the

United States Department of Energy (DOE) has pointed out
some primary constraints taking into account the financial as
well as power consumption limitations. These constraints
include the power consumption not more than 25 to 30 Mega
Watts, system development cost near about to 200 million
USD, system time to delivery almost 2020 and integrated
multi-cores no more than 100 million [7]. The major challenge
in the way towards Exascale is that it does not exist yet and to
meet the above-defined barriers current technologies are facing
many challenges, from which power consumption is the most
influential challenge [8]. These challenges are further
elaborated and classified as follows:

A. Power Consumption Management

Exascale systems, which includes heaps of nodes drawing
excessive Megawatt power, mandate a want for brand new,
system-wide methodologies and strategies for power
monitoring, controlling, and scheduling. The power
consumption of both individual nodes and the overall system
is, therefore, an essential issue to cope with [9]. However, new
energy-efficient algorithms and devices are needed to manage
power consumption.

B. Programming Models

The emerging Exascale systems can face many challenges as
complex jobs make use of billions of threads, so there is a need
for novel models to deal with thread management and
synchronization overhead. Moreover, to utilize the power well
there will be a need to handle all the significant resources for
memory intensive operations. Failures can be expected in the
novel architecture and therefore error handling can limit the
computing performance. There is a need for a functional
programming model that takes into account all the issues and
make use of those resources that could be managed either at
software end or compiler end and have a tremendous impact on
the overall performance of the system. Furthermore, we cannot
assume whether the emerging Exascale system is of a
homogenous or heterogeneous environment. There is a need for
such programming models that can support both the homogeneous
and heterogeneous frameworks [10].

C. Novel Architectures

While Exascale computing remains a great challenge, it is
most probably for incremental advances in current technology
to attain performance 50x better than contemporary HPC
systems [11]. While conventional computer systems continue
to make substantial advances, it is argued that radical new
architectures and frameworks might be needed for high-
performance computing to attain Exascale-level of
performance [12].

D. Massive Parallelism

The one conventional way to enhance the Petascale
performance up to ExaFlops is to increase the clock speed of
CPU. But shortly the clock speed could be restricted to 1G Hz.
An alternative way towards Exascale is to extend the cores in
current Petascale systems. But according to Exascale limitations
defined by the United State Department of Energy, we can only
exceed the number of cores up to 100 million. Moreover, the
increase in computing resources (the number of cores) will
ultimately consume much power. Therefore, another option in the
way towards the Exascale level of performance is to achieve
massive parallelism by takingadvantage of modern
programming models, accelerated GPGPU devices and many-
core processors [23].

E. Resiliency

There is a need for considerably new computing strategies for
having the roadmap towards Exascale computing environment.
Massive parallelism, delivered by many-core processors will open
the way for massive computing with more than 1018 floating
point operations per second. A considerable number of practical
components (computing cores, memory chips, network interfaces)
will extensively increase the possibility of partial disasters, load
balancing and reliability issues [4]. Developers can't be intended
to continually cope with load balancing and reliability issues. The
operating system has to discover an efficient way that offers an
effective way for load management and checkpointing while
allowing software developers to complete control over the
performance of the system.

F. Memory Management Mechanism

The cost of data movement has continually been a concerned
subject matter in high-performance computing (HPC) systems. It
has now a substantial effect on both power consumption and
performance. Locality management has acquired a new urgency
in emerging HPC systems providing massive parallelism and
complicated memory hierarchy. Data locality abstractions with
the goal to increase productivity without sacrificing overall
performance are available in the varieties of libraries, data
structures, languages and runtime systems. Because of the
complex memory hierarchy of HPC systems, developers cannot
persist with low-level solutions of data management. Novel
memory management mechanisms are required to perform large
tasks without compromising performance [13].

III. PERFORMANCE ENHANCEMENT MECHANISMS IN
HPC SYSTEMS

The one conventional way to enhance the Petascale

performance up to ExaFlops is to increase the clock speed of
CPU. But shortly the clock speed could be restricted to 1G Hz.
Another way towards Exascale is to extend the cores in current
Petascale systems, but the challenge is to achieve all under
predefined Exascale computing constraints. This paper
illustrates well the various approaches to improve performance
using energy efficient models, performance efficient models
and approaches to improve intra-node communication that will
ultimately result in enhancing performance as discussed
below:

A. Performance Efficient Models

Parallelism has played an outstanding role in system
performance enhancement. Many single hierarchical models were
introduced to parallelize large independent processes for
Terascale computing systems. A message passing library
specification used for clusters, heterogeneous networks and
parallel computers. It is used in all connected nodes to
communicate among host CPU processors. It has two processes

Muhammad Usman Ashraf et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019,76-83

© 2015-19, IJARCS All Rights Reserved 78

master and slave process. The job of the master process is to
distribute data to all the connected nodes via the slave processes
[15]. It is used for distributed computing applications and
provides an efficient and portable way to address parallel
programs. Moreover, to distribute and parallelize data at the inter-
node level MPI offers coarse-grained parallelism and maintains
synchronization via blocking methods [16]. But the major
limitation of this model is that MPI designer did not take into
account the futureExascale systems that will require novel MPI
configurations and runtimes.

OpenMP is a single hierarchical programming model used to
parallelize and synchronize the threads by utilizing the shared
memory-based architecture. It offers two primary principles:
sequential equivalence and incremental parallelism [18], [19]. It
provides fine-grained parallelism by parallelizing and distributing
the data at the intra-node level via accelerated GPU devices.
Synchronization among host CPUs and GPU cores along with
GPU computation were improved to run the tasks concurrently
[20]. It provides high-performance support for both heterogeneous
and homogeneous systems for parallel applications. The primary
limitation for this model is that it only supports shared memory
architecture on a single node, and doesn't give the support for
cluster system [21].

CUDA abbreviated as "Compute Unified Device
Architecture" is an efficient hybrid model utilizing accelerated
GPUs and threads for massive parallelism [23]. It makes use of
the application comprising of a program referred to as "CUDA
kernel" that helps out to execute the tasks concurrently on
GPU devices. CUDA refers to as the most competent model
for thread-level optimization that allows application flexibility.
But GPUs supporting CUDA are rendered only by Nvidia and
has interoperability with rendering languages such as OpenGL.
It provides lesser performance as compared to OpenACC and
supports heterogeneous computation where the application
uses both the CPU and GPU devices [22].

OpenACC appeared as a high-level programming model
that makes use of high-end and supportive directives to
achieve parallel computing. It affords better performance than
CUDA and enables portability to a broad field of computing
architecture. However, it does not provide flexibility, thread
management, thread synchronization and optimization for the
programs, along with other high-level features available in the
CUDA framework [24].

OpenCL refers to as "Open Computing Language" is an
efficient parallel programming model for heterogeneous
frameworks. OpenCL supports run-time compilation that
excludes dependencies on instruction sets, allowing hardware
providers to make remarkable changes to instruction sets,
drivers, and supporting libraries. It grants portability and
compatibility of kernels across multiple hardware and
platforms [25], [26]. But the restriction is that OpenCL
demands a complicated setup which includes preparation of
settings, command queues, in addition to a compilation of
kernel codes [26].

Later on, dual-hierarchical models were introduced to
improve the performance for Petascale computing systems. In
the hybrid of MPI + OpenMP, MPI provides coarse-grain
parallelism by parallelizing and distributing the data at the
inter-node level, whereas OpenMP provides fine-grain
parallelism by parallelizing and distributing the data at the
intra-node level. This hybrid of MPI and OpenMP for coarse-
grained and fine-grained parallelism gives the best
performance as opposed to single hierarchical models. But
restriction for this model is that it uses a couple of threads in a
hybrid model that will increase the thread management
overhead and synchronization extensively. Also, this hybrid

only supports homogeneous frameworks and provides no
support for heterogeneous frameworks [28], [29].

The hybrid of MPI + OpenACC programming model was
proposed to resolve the portability and scalability issues for
heterogeneous frameworks. The hybrid of these two models
introduces unusual ine�ciencies including excessive data transfer
and configuration overhead among the models [24].

The hybrid model of MPI + CUDA was proposed for
heterogeneous frameworks utilizing multi-cores embedded
within accelerated GPU devices. MPI distributes work among
multiple computers, each of which uses CUDA to execute its
share of work. CUDA and MPI can be considered separate
entities: CUDA handles process per GPU and accelerate the
computational kernels with CUDA. This model achieves
coarse grain parallelism through MPI and fine-grain
parallelism through GPU computations. But the problem with
this model is that it causes portability and scalability issues
[22].

The hybrid of OpenCL-MPI makes use of Finite-difference
Time-Domain (FDTD) technique primarily based on Open
Computing Language (OpenCL) and the Message Passing
Interface (MPI). OpenCL provides better portability and gives
support for both the distributed shared memory clusters (typically
based on multicore CPUs) and GPU-accelerated clusters. Because
of the remarkable computational power of GPUs for massive
enigmas, execution time could be equal to the communication
time which leads to the decline of the scalability. Furthermore,
this model does not support dynamic memory architecture [27].

An alternative to the MPI/OpenMP hybrid model is to use a
Partitioned Global Address Space (PGAS) model, attempts to use
the Single Program Multiple Data (SPMD) model generally
support distributed memory systems. In this model, a portion of
the memory could be exposed by one process to other processes,
though each one has its memory address. PGAS languages
propose a one-sided approach where a process locates instantly
the remote memory of another process without disrupting its
execution. Potential reduction in memory footprint is equal to the
reduction in energy consumption. It provides explicit support for
parallelism. But this model also has some drawbacks that it does
not support distributed memory architecture as used in GPU
clusters. Copies severely limit the performance. Further, Compiler
can help the programmer with performance, scalability, and
programmability is another challenge.

Toward massive parallel computing, a Tri-Hierarchy
hybrid MOC (MPI + OpenMP + CUDA) model is proposed.
MPI distributes data to overall connected nodes at inter-node
and thus provides coarse-grain parallelism. OpenMP is used to
achieve fine-grain parallelism and to parallelize CPU threads
over intra-node. CUDA is used to achieve finer grain
parallelism by executing data over accelerated GPU cores
[23]. Though, the United State Department of energy has
pointed out some primary constraints taking into account the
financial as well as power consumption limitations. These
constraints include the power consumption not more than 25
to 30 Mega Watts, system development cost near about to 200
million USD, system time to delivery almost 2020 and
integrated multi-cores no more than 100 million [7]. MOC
model does not provide an Exa-scale level of performance
even by using all the resources mentioned above.

B. Energy Efficient Models

Integer linear programming-based technique (ILP) is used
for selecting the optimal configuration of the chip that reduces
its power intake. Before the actual execution of the scheduled
job on the chip, the ILP optimizer starts its execution on a
specific chip to ascertain the best configuration for the job
being scheduled. This approach does not require any extra

Muhammad Usman Ashraf et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019,76-83

© 2015-19, IJARCS All Rights Reserved 79

resources for the selection of optimal configuration for the job.
By eliminating the overhead of finding the optimal
configuration for the job it minimizes the power consumption
and saves resources [30].

C. Models for communication reduction in intra- node

Userspace memory copy-based design utilizes the
advanced features of modern systems NUMA and CMP to
promote MPI intra-node communication. It requires a shared
memory area so that the processes can utilize it as a
communication channel. The sending process copies its data
and message to the shared memory region and consequently,
the receiving process copies the data to its buffer from the
shared memory. This technique is more portable than the
kernel-assisted memory mapping scheme as it does not
demand any services from the kernel thus providing high
bandwidth and low latency among processes, offering better
performance than the NIC-based loopback scheme. Some
limitations of this approach include that it could not improve
CPM latency for large message size and it wastes CPU cycles
and bandwidth for large messages. It depends on a cache-block
replacement scheme to complete its job [31].

Another approach is vShark which reduces the burden in
clusters of SMPs for intra-node communication by utilizing
thread-based design. Rather than utilizing the communication
stack of the message-passing library, the vShark makes use of
threads. Instead of starting many processes on SMP nodes, it
starts the same number of threads that exist in the same memory
location as the process does and thus provides a better
communication environment among the processes. One benefit of
this library is that it avoids deadlocks and additionalmemory
necessities via the usage of communication protocol. The

limitations of vShark are, it uses an additional communication
protocol and reduces the bandwidth for a more significant
number of processors [32].

One more approach to reduce intra-node communication is
Kernel-based memory mapping approach that takes advantage
from the kernel of the operating system to copy messages
directly from one user process space to another without
utilizing any shared memory resource. The kernel copies the
message from the sender buffer to the receiver buffer, only
when the other process arrives at the exchange point taking
into account the kernel-based memory mapping address space.
Hence the advantage of this technique is, it entails only one
copy and use fewer memory transactions and makes use of
cache efficiently. But limitations of this approach are, it
disturbs OS kernel and has memory mapping overhead [31].

The Network Interface Card offers NIC-level loopback.
When the message is initiated from the source, NIC locates the
position of the destination address. If the source and
destination are the identical nodes, it merely loopback as
opposed to injecting it into the network, therefore offer high
latency and put off overheads on the network link. The
limitations of NIC loopback are, it does not distinguish inter-
node or intra-node traffic and no longer utilize the cache
impact, and relatively it depends on NIC to locate source and
destination [31].

We have studied various models and approaches for

achieving performance indirectly by massive parallelism or by
reducing communication overhead. In Table 1, we have done
the critical analysis on all the above-discussed approaches to
deciding the promising approach for future Exascale systems.

Table I. Models To Improve Performance In HPC System

Sr. no Performance Efficient Programming Models (Single Hierarchy)
Approaches / Models Description Features Limitations

1 MPI (Message
Passing Interface)

MPI is a popular distributed-
memory single hierarchical
programming model used to
communicate between host CPU
processors in all associated nodes.

It provides an efficient and
portable way to address
parallel programs. Moreover,
to distribute and parallelize
data at the inter-node level
MPI offers coarse-grained
parallelism and maintains
synchronization via blocking
methods.

But the major
limitation of this model
is that MPI designer
did not take into
account the future
Exascale systems that
will require novel MPI
configurations and
runtimes.

2 OpenMP (Open
Specification of
Multi-Processing)

OpenMP is a single hierarchical
programming model used to
parallelize and synchronize the
threads by utilizing the shared
memory-based architecture. It
offers two primary principles:
sequential equivalence and
incremental parallelism.

It provides fine-grained
parallelism by parallelizing
and distributing the data at the
intra-node level via
accelerated GPU devices. It
provides high-performance
support for both
heterogeneous and
homogeneous systems for
parallel applications.

The primary limitation
for this model is that it
only supports shared
memory architecture
on a single node, and
doesn't give the support
for the cluster system.

3 CUDA (Compute
Unified Device
Architecture)

CUDA abbreviated as "Compute
Unified Device Architecture" is an
efficient hybrid model utilizing
accelerated GPUs and threads for
massive parallelism

A useful model to perform
thread level optimization that
facilitates program flexibility.

GPUs supporting
CUDA are only
rendered by Nvidia and
provides lesser
performance as
compared to OpenACC
and supports
heterogeneous

Muhammad Usman Ashraf et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019,76-83

© 2015-19, IJARCS All Rights Reserved 80

computation where
application use both
the CPU and GPU
devices.

4 OpenACC (Open
Accelerators)

OpenACC appeared as a high-level
programming version that makes
use of high-level compiler
directives to detect parallelism
within the code and parallelizing
compiler.

It provides high performance
than CUDA and facilitates
portability to a variety of
computing architecture.

However, it does not
provide flexibility,
thread management,
thread synchronization
and optimization for
the programs, along
with other high-level
features available in
the CUDA framework.

5 OpenCL (Open
Computing
Language)

OpenCL refers to as "Open
Computing Language" is an
efficient parallel programming
model for heterogeneous
frameworks that supports run-time
compilation that excludes
dependencies on instruction sets,
allowing hardware providers to
make remarkable changes to
instruction sets, drivers, and
supporting libraries.

This model provides the
guarantee of correctness and
portability of kernels over a
variety of hardware.

OpenCL demands a
confusing setup, for
example, the formation
of contexts, command
queues, and
compilation of kernel
codes. It doesn't
guarantee that a
selective kernel will
gain peak performance
on various
architectures.

Performance Efficient Programming Models (Dual Hierarchy)

6 MPI + OpenMP The hybrid model of MPI and
OpenMP introduced to improve the
performance for Petascale
computing systems. MPI
parallelizes data at the inter-node
level and provides coarse-grain
parallelism, whereas OpenMP
parallelizes data at the intra-node
level and provide fine-grain
parallelism.

This hybrid model shows
good scalability as compared
to single-hierarchy-level
parallelism.

It gives support only
for homogeneous
systems, not for the
heterogeneous cluster
systems. This model
makes use of multiple
threads in the scheme
that ultimately results
in thread
synchronization and
management overhead.

7 MPI + OpenACC The hybrid of MPI + OpenACC
programming model was
introduced to write the portable and
scalable application for
heterogeneous accelerator clusters.

It provides high performance,
scalability, and portability
from MPI and
programmability &
portability from OpenACC.

This hybrid model
introduces some
inefficiencies such as
unnecessary data
transfer and extreme
synchronization
between the models.

8 MPI + CUDA The hybrid of MPI + CUDA
supports heterogeneous cluster
system in which multiple CPU
processors are configured with
high-speed NVIDIA GPU devices.

This hybrid model achieves
coarse grain and fine-grain
parallelism using MPI and
GPU computations
respectively.

The problem with this
model is that it causes
portability and
scalability issues.

9 MPI + OpenCL The hybrid of OpenCL-MPI is a
hybrid parallelization of the Finite-
difference Time-Domain (FDTD)
[27] technique primarily based on
Open Computing Language
(OpenCL) and the Message Passing
Interface (MPI).

Due to the portability feature
of OpenCL, the advanced
code can not only be used for
distributed shared memory
clusters typically based on
multicore CPUs but can also
be used for GPU-accelerated
clusters.

Due to the remarkable
computational power
of GPUs for massive
enigmas, execution
time could be equal to
the communication
time which leads to the
decline of the
scalability. Moreover,
this model doesn’t
support dynamic
memory handling.

Muhammad Usman Ashraf et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019,76-83

© 2015-19, IJARCS All Rights Reserved 81

10 PGAS (PGAS) the model attempts to use
the Single Program Multiple Data
(SPMD) model generally support
distributed memory systems.

PGAS languages introduced a
one-sided approach where a
process can access directly
the remote memory of
another process without
interrupting its execution.
This model provides explicit
support for parallelism.

It does not support
distributed memory
architecture as used in
GPU clusters. Copies
severely limit the
performance.

Performance Efficient Programming Models (Tri Hierarchy)
11 MOC (MPI + OpenMP

+CUDA)
MPI is used to achieve coarse-grain
parallelism and to distribute data
overall connected nodes at inter-
node. OpenMP is used to achieve
fine-grain parallelism and to
parallelize CPU threads over intra-
node. CUDA is used to achieve
finer grain parallelism by executing
data over accelerated GPU cores.

It provides Coarse, Fine and
Finer Granularity. This model
minimizes energy
consumption and enables
computing on inter-node,
intra-node and accelerated
GPU devices.

United States
Department Of Energy
(DOE) has pointed out
some primary
constraints that include
power consumption
not more than 25 to 30
Mega Watts, system
development cost near
about to 200 million
USD, system time to
delivery almost 2020
and integrated multi-
cores no more than 100
million [7]. MOC
model does not
provide the Exa-scale
level of performance
even by using all the
resources mentioned
above.

Models To Reduce Intra-Node Communication
12 Userspace memory

copy
Userspace memory copy-based
design utilizes the advanced
features of modern systems NUMA
and CMP to promote MPI intra-
node communication.

This technique is more
portable than the kernel-
assisted memory mapping
scheme as it does not demand
any services from the kernel
thus providing high
bandwidth and low latency
among processes, offering
better performance than the
NIC-based loopback scheme.

Some limitations of
this approach include
that it could not
improve CPM latency
for large message size
and it wastes CPU
cycles and bandwidth
for large messages.
Further, it depends on
a cache-block
replacement scheme to
complete its job.

13 vShark, A C++ Library vShark introduces a thread-based
architecture to reduce the overhead
of intra-node communication in
clusters of SMPs. It entails a shared
memory area so that the processes
can utilize it as a communication
channel.

One advantage of this library
is that it avoids deadlocks and
extra memory requirements
through the use of
communication protocol.

The limitations of the
vShark library are, it
uses additional
communication
protocol and reduces
the bandwidth for large
number of processors.

14 Kernel-based memory
mapping

A method to enhance intra-node
communication is Kernel-based
memory mapping which takes help
from the operating system kernel to
duplicate information without
delay from one user process to any
other without any shared memory
region.

The benefits of this approach
are, it involves only one
message copy with fewer
memory transactions and
utilizes cache efficiently.

Limitations of this
approach are, it
disturbs OS kernel and
has memory mapping
overhead.

15 NIC Loopback The Network Interface Card offers
NIC-level loopback. When the
message is initiated from the
source, NIC locates the position of
the destination address. If the

NIC loopback provides high
latency and eliminates
overheads on the network
link.

The limitations of NIC
loopback are, it does
not distinguish inter-
node or intra-node
traffic and not utilize

Muhammad Usman Ashraf et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019,76-83

© 2015-19, IJARCS All Rights Reserved 82

source and destination are the
identical nodes, it merely loopback
as opposed to injecting it into the
network.

the cache effect, and
somewhat it depends
on NIC to locate
source and destination.

IV. DISCUSSIONS AND RECOMMENDATIONS

The most challenging step towards Exascale computing

systems is that it does not exist yet. However, the performance of
HPC systems has been improved on the basis of current results
and predictions to achieve Exascale performance. Also, it would
require applications to take advantage of billion-way parallelism
provided by an estimated Exascale system. The technology
challenges mentioned in this paper would require targeted
investments to acquire Exascale computing. This is about a
quarter million-way parallelism in contrast with modern-day
Petascale systems. Performance and power consumption are the
two primary HPC metrics that have been taken into consideration
the most challenging factors for Exascale computing systems.
Node architectures are predicted to change dramatically within the
subsequent decade with the increase of power and cooling
constraints restriction in microprocessor clock speeds. Therefore,
computer corporations are dramatically growing on-chip
parallelism to enhance performance. The conventional doubling
of clock speeds each eighteen to twenty-four months make the
system less efficient. Moreover, doubling the number of cores
increased the number of resources and as a result, it automatically
increased the power consumption for computation. These
techniques are being replaced by doubling of threads or different
parallelism mechanisms. Exascale systems will be designed to
gain excellent performance within both power and cost
constraints. Additionally, hardware breakthroughs might be
required to gain beneficial Exascale computing, at least within an
affordable power and price range. In step with improvement to
Exascale systems, it has been foretold that it will likely be created
from a massive variety of heterogeneous systems in which each
system will be configured with traditional multicore CPUs and
many-core high-speed GPU devices.

The primary goal of Exascale computing systems is to
handle massive data HPC applications. For this purpose, many
Parallel Programming Models has been introduced to enhance
the performance of HPC systems such as:

− Single Hierarchy Models: To attain Terascale (1012
calculations per second)

− Dual Hierarchy Models: To achieve Petascale (1015
calculations per second)

− Tri Hierarchy Models: To accomplish Exascale (1018
calculations per second)

Furthermore, different mechanisms come up expressly to
limit the power consumption along with the performance
improvement of HPC systems such as:

− User Space Memory Copy Mechanism
− Vshark, A C++ Library
− Kernel-Based Memory Mapping Mechanism
− NIC Loopback Mechanism

In this report, we have observed that a tri-level MOC
(MPI+OpenMP+CUDA) model has achieved a tremendous
performance by providing coarse-grained, fine-grained and finer
granularity parallelism. This model has not only focused on inter-
node and intra-node level but also on accelerated GPU devices
anticipated for Exascale performance. Many pioneers have
critically analyzed the performance of the MOC model. The
experimental results have shown that achieved performance is up
to 1 Teraflops within 130W power consumption by using the
MOC model. Though attaining 1TeraFlops is not a big deal but in

contrast, consuming just 130W is an efficient way of utilizing
resources. If we try to find more approaches that work in parallel
with the MOC model, performance could be enhanced. It could be
a promising approach for the Exascale level of performance if the
communication at inter-node or intra-node level is reduced to
some extent that will reduce the power consumption and
ultimately enhance the performance.

V. CONCLUSION

Towards the race of achieving Exascale performance, the
power has been the most significant constrained resource
among all the other constraints. Therefore, achieving practical
Exascale computing with optimum performance will be under
the control of power constraint. This advanced computing
system will deliver a thousand-fold performance improvement
contrasted to the current Petascale computing practice and
mandate a need for new, system-wide methodologies and
methods for power monitoring and administration. Although
the novel programming models and programming
methodologies are being proposed day-by-day in HPC culture;
but the quest for enhanced programming models always exists.
There are significant questions and research regarding the
models that will be used at Exascale level to achieve better
performance than the current Petascale systems. Contributing
to the quest for the optimum programming model for Exascale
systems, a comprehensive analysis has been conducted on the
existing programming models and approaches. Based on a
critical analysis, current study suggested that the MOC model
(a tri-level hybrid of MPI +OpenMP + CUDA) a promising
model which can be taken into consideration for emerging
Exascale computing system to gain massive performance
under the power consumption constraints.

VI. ACKNOWLEDGEMENT

This work was performed under the auspices of the

Department of Computer Science and Information
Technology, Govt. College Women University, Sialkot,
Pakistan by Heir Lab-78. The Authors would like to thank Dr
M. Usman Ashraf for his insightful, and constructive
suggestions throughout the research.

VII. REFERENCES

[1] Perarnau, Swann, Rinku Gupta, and Pete Beckman. "Argo:

An Exascale Operating System and Runtime." (2015).
[2] Shalf, John, Sudip Dosanjh, and John Morrison. "Exascale

computing technology challenges." International
Conference on High Performance Computing for
Computational Science. Springer Berlin Heidelberg, 2010.

[3] B. S. J. E. A. R. D. ATKINSON, “The Vital Importance of
HighPerformance Computing to U.S. Competitiveness.”

(2016).
[4] Reed, Daniel A., and Jack Dongarra. "Exascale computing

and big data."Communications of the ACM 58.7 (2015):
56-68. Cappello, Franck, et al. "Toward exascale
resilience." International Journal of High Performance
Computing Applications (2009).

[5] Zhou, Min. Petascale adaptive computational fluid
dynamics. Diss. RENSSELAER POLYTECHNIC
INSTITUTE, 2009.

Muhammad Usman Ashraf et al, International Journal of Advanced Research in Computer Science, 10 (2), March-April 2019,76-83

© 2015-19, IJARCS All Rights Reserved 83

[6] Dongarra, Jack J., and David W. Walker. "The quest for
petascale computing." Computing in Science &
Engineering 3.3 (2001): 32-39.

[7] Reed, Daniel, et al. DOE Advanced Scientific Computing
Advisory Committee (ASCAC) Report: Exascale
Computing Initiative Review. USDOE Office of Science
(SC)(United States), 2015.

[8] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S.
Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson,
A. A. Chien, P. Coteus, N. A. Debardeleben, P. Diniz, C.
Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F.
Johnson, S. Krishnamoorthy, S. Leyffer, D. Liberty, S. Mitra,
T. Munson, R. Schreiber, J. Stearley, and
E. V. Hensbergen, “Addressing failures in exascale
computing,” Tech. Rep. ANL/MCS-TM-332, Argonne
National Laboratory, Mathematics and Computer Science
Division, Apr. 2013

[9] DOE. Report from the Architectures and Technology for
Extreme Scale Computing Workshop, 2009.

[10] K. Yoshii, K. Iskra, R. Gupta, P. Beckman, V. Vishwanath,
C. Yu, and S. Coghlan. Evaluating power-monitoring
capabilities on IBM Blue Gene/P and Blue Gene/Q. In
Proceedings of the IEEE International Conference on
Cluster Computing (CLUSTER ’12), Beijing, China, 2012.
(to appear).

[11] Rajovic, Nikola, et al. "The low power architecture
approach towards exascale computing." Journal of
Computational Science4.6 (2013): 439-443.

[12] P. M. Kogge and J. Shalf. “Exascale computing trends:
Adjusting to the new normal’ for computer architecture.”
Computing in Science and Engineering, 15(6):16–26,
2013.

[13] P. Participants. “Workshop on programming abstractions
for data
locality,PADAL’15”.https://sites.google.com/a/lbl.gov/pa
dalworkshop/,2015.

[14] Shafto, Mike, et al. "Modeling, simulation, information
technology & processing roadmap." NASA, Washington,
DC, USA, Tech. Rep 11 (2012).

[15] Gabriel, Edgar, et al. "Open MPI: Goals, concept, and
design of a next generation MPI implementation."
European Parallel Virtual Machine/Message Passing
Interface Users‟ Group Meeting. Springer Berlin
Heidelberg, 2004.

[16] Message passing Interface,
https://computing.llnl.gov/tutorials/mpi/ , 20 June, 2017
[03 Aug, 2017]

[17] Dinan, James, et al. "An implementation and evaluation of
the MPI 3.0 onesided communication interface."
Concurrency and Computation: Practice and Experience
(2016).

[18] Jin, Shuangshuang, and David P. Chassin. "Thread Group
Multithreading: Accelerating the Computation of an
Agent-Based Power System Modeling and Simulation
Tool--C GridLAB-D." 2014 47th Hawaii International
Conference on System Sciences. IEEE, 2014.

[19] Martineau, Matt, Simon McIntosh-Smith, and Wayne
Gaudin. "Evaluating OpenMP 4.0's Effectiveness as a
Heterogeneous PP Model." Parallel and Distributed
Processing Symposium Workshops, 2016 IEEE
International. IEEE, 2016.

[20] Terboven, C., Hahnfeld, J., Teruel, X., Mateo, S., Duran,
A., Klemm, M., Olivier, S.L. and de Supinski, B.R., 2016,
October. Approaches for Task Affinity in OpenMP. In
International Workshop on OpenMP (pp. 102-115).
Springer International Publishing.

[21] Podobas, Artur, and Sven Karlsson. "Towards Unifying
OpenMP Under the Task-Parallel Paradigm."
International Workshop on OpenMP. Springer
International Publishing, 2016.

[22] NVIDIAAcceleratedComputing
“developer.nvidia.com/cuda-downloads”, 02 Nov 2016.

[23] Ashraf, Muhammad Usman, FadiFouz, and Fathy Alboraei
Eassa. “Toward Exascale Computing Systems: An
Energy Efficient Massive Parallel Computational Model”,
International Journal of Advanced Computer Science and
Applications, 2018

[24] The OpenACC Application Programming Interface
Version 1.0, 2011.[Online]. Available: http://openacc.org

[25] Khronos OpenCL Working Group, The OpenCL
Specification Version 1.2, November 2011. [Online].
Available: http://www.khronos.org/

[26] NVIDIA Corporation, OpenCL Best Practices Guide,
2011.

[27] C. Ong, M. Weldon, D. Cyca, and M.Okoniewski,
"Acceleration of large-scale FDTD simulations on high
performance GPU clusters," in Proc. IEEE APS/URSI
'09, 2009.

[28] Jin, Haoqiang, et al. "High performance computing using
MPI and OpenMP on multi-core parallel systems."
Parallel Computing 37.9 (2011): 562-575.

[29] Mininni, Pablo D., et al. "A hybrid MPI–OpenMP scheme
for scalable parallel pseudospectral computations for fluid
turbulence." Parallel Computing 37.6 (2011): 316-326.

[30] E. T. U. S. P. L. V. K. e. Akhil Langer, “Energy-efficient
Computing for HPC Workloads on Heterogeneous
Manycore Chips”, pp. 11-19, 2015.

[31] L. C. A. H. D. K. Panda, “Designing High Performance and
Scalable MPI Intra-node Communication Support for
Clusters”, 2006.

[32] S. H. a. T. Rauber, “Reducing the Overhead of Intra-Node
Communication in Clusters of SMPs”, 2005.

