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Abstract: This paper is concerned with the accuracy and efficiency of a higher order second derivative blended block linear multistep method for
the approximate solution of stiff initial value problems. The main methods were derived by blending of two linear multistep methods using
continuous collocation approach. These methods are of uniform order ten. The stability analysis of the block methods indicates that the methods
are A—stable, consistent and zero stable hence convergent. Numerical results obtained using the proposed new block methods were compared
with those obtained by the well known ODE solver ODE 15s to illustrate the accuracy and effectiveness. The proposed block method is found to
be efficient and accurate hence recommended for the solution of stiff initial value problems.
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INTRODUCTION

Mathematical modeling of many problems in real life, Science,
Medicine, Engineering and the like gave rise to systems of
linear and non linear Differential Equations. In some cases, the
differential equations could be solved analytically while in
other case like the Holling Tanner equations and the Van Der
Pol equations they are too complicated to be solved by
analytical methods. Thus solving such problems becomes an
uphill task hence the application of numerical methods for
approximate solutions to these differential equations.

In this paper, the application of the nine step order ten

blended block linear multistep method for the numerical
solutions of stiff initial value problems (1) was considered. A
potentially good numerical method for the solution of stiff
system of ordinary differential equations (ODEs) must have
good accuracy and some wide region of absolute stability. One
of the first and most important stability requirements for linear
multistep methods is A-stability as proposed by Enright
(1974). The nine step blended block linear multistep methods
is of a high order and A stable hence the application of the
method here which makes it suitable for the solution of non
linear ODEs.
The solution of stiff system of ODEs has been considered by
Chollom et al (2011) where a block hybrid Adams Moulton
Method was used and Kumleng et al (2013) where ten step
block generalized Adams method was used. Many has
discussed the solution of linear and non linear ODEs from
different basis functions, among them are Onumanyi et
al(1994), Sirisena et al (2004), Kumleng (2012) and so on.
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THE NINE STEP BLENDED LINEAR MULTISTEP
METHOD

The nine step blended linear multistep method is constructed
based on the continuous finite difference approximation
approach using the interpolation and collocation criteria
described by Lie and Norsett (1981) called multistep
collocation (MC) and block multistep methods by Onumanyi
et al. (1994,1999). We define based on the interpolation and
collocation methods the continuous form of the k- step 2nd
derivative new method as
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number of distinct collocation points, h is the step size and
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from Onumanyi et- al (1994), we obtain our matrices D and C = D-1 by the imposed conditions expressed as DC=I, where
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respectively. In this case, k=9, t=1 and m=11 and it continuous form expressed in the form of (6) is
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using the approach of Onumanyi et al (1999). The matrix form of
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Using the Maple software, the inverse of the matrix in (10) is (9) yields the continuous form of our new method. The
obtained and its elements are used in obtaining the continuous continuous form as:
coefficients and substituting these continuous coefficients into
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Evaluating the continues scheme (11) at = 0, h, 2h, 3h, 4h, Sh, 6h, 7h,9h

gives the nine discrete methods which constitute the nine step blended block linear multistep method.
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STABILITY ANALYSIS OF THE NEW METHODS

In this section, we consider the analysis of the newly
constructed methods. Their convergence is determined and
their regions of absolute stability plotted.

Convergence

The convergence of the new block methods is determined
using the approach by Fatunla (1991) and Chollom et.al
(2007) for linear multistep methods, where the block methods
are represented in a single block, r point multistep method of
the form

pr) = 3 a c1 r] (4.1)
i=0 J

Zero Stability of the BBLMM for k=9

To determine the zero stability of the BBLMM we use the
approach of Ehigie (2007) for linear multistep methods where
he expressed the methods in the matrix form as shown below.
Following the work of Ehigie and Okunuga (2014), we
observed that the seven step block method is zero stable as the
roots of the equation

det(r(4 —Cz—DI17) —B) =0

are less than or equal to 1. Since the block method is
consistent and zero-stable, the method is convergent (Henrici
1962).

These new methods are consistent since their orders are 11, it
is also zero-stable, above all, there are A — stable as can be
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seen in figure 1. The new ten step discrete methods that
constitute the block method have the following orders and
error constants as shown below.

The nine step blended block multistep methods has uniform

order of (10.10.10,10,10,10,10,10,10)"

and error constants O

S B B DU R w5 W -018
00000 1000000 1000000” 100000’ 1000000 10000000” 1000000 1000000 1000005

REGIONS OF ABSOLUTE STABILITY OF THE

METHODS

The absolute stability regions of the newly constructed
blended block linear multistep methods (8) and (12) are
plotted using Ehigie (2007) by reformulating the methods into
a characteristic equation of the form

VVVVVV

Fig 1: Absolute Stability Region For BBLMM For K=9.

This absolute stability region is A —stable since it consist of
the set of points in the complex plane outside the enclosed
figure.

NUMERICAL EXAMPLES

We report here a numerical example on stiff problem taken
from the literature using the solution curve. In comparison, we
also report the performance of the new blended block linear
multistep methods and the well-known Matlab stiff ODE
solver ODE15S on the same problems and on the same axes.

Problem1 Oregonator (Chemical Reaction) Problem

The oregonator chemical reaction model is a theoretical model
of autocatalytic reaction.
It is a chemical dynamics of the oscillatory reaction. It is a

reaction between HBrO,,Br~ and Ce(IV') described by

Noyes and Field (1974). The Oregonator model is expressed

mathematically by the following

¥ = ?5.2?[{,: I ¥ (1 8.375 %10 6y
Py =

7 = o7 [ — (14 vy

v = 01610y, — 1)
¥ (0 = 0.y © —1 ¥ (0) =1

¥z }]
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Fig 2 :Solution Curve Of The Problem 1
Computed By Nine Step BBLMM

Problem 2: Irregular Heartbeat and Lidocaine Model
The irregular heartbeat and Lidocaine model is expressed

mathematically by the following
y, = —0.09 ¥, + 0.038 v,
y, = 0066 y, —0.038y,
}’1(':0 =¥ (0)= Yo
¥y = Maximum Safe Dosage = 3mw/
0<x<700, A=0.1

——y1BBLMM 9
——y2BBLMM 9
----- y1 ODE 155

¥2 ODE 155

600 700

x-axis

Fig 3 : Solution Curve Of The Problem 2
Computed By Nine Step BBLMM

CONCLUSION

Problem 1 which is a famous chemical reaction with periodic
solutions and a highly stiff Ordinary Differential Equation
whose solutions change rapidly over many orders of
magnitudes. The solution curves in Figures 3 plotted within
the range of () = x = 7000 with step size of 0.1 shows
active oscillatory regime for different values. The solution
curves using the BBLMM compare favourably with results
obtained using the variable step size code ODE (15s).
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Problem 2 is a model of the relationship between Lidocaine
and Irregular Heart beat. Lidocaine belong to a group of
drugs known as anti-arrhythmic which work by preventing
sodium from being pumped out on the cells of the heart to
help the heart beat normally. From our solution curves, it was
observed that normalcy in the heart beat can be attained with
the use of Lidocaine within the correct dosage. Our solution
curves coincide with the solutions of ODE 15s.

The numerical results from figures 2 and 3 reveal the accuracy
of the newly constructed higher order blended block linear
multistep methods (BBLMM) for step numbers 9. It can be
seen clearly from the curve that our new methods perform
favourably better than the well known ODE15S for the
problems solved in problem land 2. It was also observed that
the new methods have better stability regions than the
conventional Adams Moulton method for step number 9.

RECOMMENDATIONS

This method is recommended for the solution of stiff system
of ODEs since they are A-stable which implies a wider range
of stability for effective performance.
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