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Abstract: This paper is concerned with the accuracy and efficiency of a higher order second derivative blended block linear multistep method for 
the approximate solution of stiff initial value problems. The main methods were derived by blending of two linear multistep methods using 
continuous collocation approach. These methods are of uniform order ten. The stability analysis of the block methods indicates that the methods 
are A–stable, consistent and zero stable hence convergent. Numerical results obtained using the proposed new block methods were compared 
with those obtained by the well known ODE solver ODE 15s to illustrate the accuracy and effectiveness. The proposed block method is found to 
be efficient and accurate hence recommended for the solution of stiff initial value problems. 
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INTRODUCTION  
 
Mathematical modeling of many problems in real life, Science, 
Medicine, Engineering and the like gave rise to systems of 
linear and non linear Differential Equations. In some cases, the 
differential equations could be solved analytically while in 
other case like the Holling Tanner equations and the Van Der 
Pol equations they are too complicated to be solved by 
analytical methods. Thus solving such problems becomes an 
uphill task hence the application of numerical methods for 
approximate solutions to these differential equations. 

In this paper, the application of the nine step order ten 
blended block linear multistep method for the numerical 
solutions of stiff initial value problems (1) was considered. A 
potentially good numerical method for the solution of stiff 
system of ordinary differential equations (ODEs) must have 
good accuracy and some wide region of absolute stability. One 
of the first and most important stability requirements for linear 
multistep methods is A-stability as proposed by Enright 
(1974).  The nine step blended block linear multistep methods 
is of a high order and A stable hence the application of the 
method here which makes it suitable for the solution of non 
linear ODEs.  
The solution of stiff system of ODEs has been considered by 
Chollom et al (2011) where a block hybrid Adams Moulton 
Method was used and Kumleng et al (2013) where ten step 
block generalized Adams method was used.  Many has 
discussed the solution of linear and non linear ODEs from 
different basis functions, among them are Onumanyi et 
al(1994), Sirisena et al (2004), Kumleng (2012) and so on. 

THE NINE STEP BLENDED LINEAR MULTISTEP 

METHOD 
 
The nine step blended linear multistep method is constructed 
based on the continuous finite difference approximation 
approach using the interpolation and collocation criteria 
described by Lie and Norsett (1981) called multistep 
collocation (MC) and block multistep methods by  Onumanyi 
et al. (1994,1999). We define based on the interpolation and 
collocation methods the continuous form of the k- step 2nd 
derivative new method as  
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number of distinct collocation points, h is the step size and 
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from Onumanyi et- al (1994), we obtain our matrices D and C = D-1 by the imposed conditions expressed as DC=I, where   
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

respectively.  In this case, k=9, t=1 and m=11 and it continuous form expressed in the form of (6) is 
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using the approach of Onumanyi et al (1999). The matrix form of   

 
Using the Maple software, the inverse of the matrix in (10) is 
obtained and its elements are used in obtaining the continuous 
coefficients and substituting these continuous coefficients into 

(9) yields the continuous form of our new method. The 
continuous form as: 
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Evaluating the continues scheme (11) at                                                                

gives the nine discrete methods which constitute the nine step blended block linear multistep method. 
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STABILITY ANALYSIS OF THE NEW METHODS 
 
In this section, we consider the analysis of the newly 
constructed methods. Their convergence is determined and 
their regions of absolute stability plotted. 
 Convergence  
The convergence of the new block methods is determined 
using the approach by Fatunla (1991) and Chollom et.al 
(2007) for linear multistep methods, where the block methods 
are represented in a single block, r point multistep method of 
the form 

 
 
Zero Stability of the BBLMM for k=9  
To determine the zero stability of the BBLMM we use the 
approach of Ehigie (2007) for linear multistep methods where 
he expressed the methods in the matrix form as shown below. 
Following the work of Ehigie and Okunuga (2014), we 
observed that the seven step block method is zero stable as the 
roots of the equation 

     
are less than or equal to 1. Since the block method is 
consistent and zero-stable, the method is convergent (Henrici 
1962). 
These new methods are consistent since their orders are 11, it 
is also zero-stable, above all, there are A – stable as can be 
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seen in figure 1. The new ten step discrete methods that 
constitute the block method have the following orders and 
error constants as shown below.  
The nine step blended block multistep methods has uniform 
order of                                                             
 and error constants of  
 
 
 
 
REGIONS OF ABSOLUTE STABILITY OF THE 

METHODS  
 

The absolute stability regions of the newly constructed 
blended block linear multistep methods (8) and (12) are 
plotted using Ehigie (2007) by reformulating the methods into 
a characteristic equation of the form 
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Fig 1: Absolute Stability Region For BBLMM For K=9. 
 
This absolute stability region is A –stable since it consist of 
the set of points in the complex plane outside the enclosed 
figure.  
 
NUMERICAL EXAMPLES 

 
 We report here a numerical example on stiff problem taken 
from the literature using the solution curve. In comparison, we 
also report the performance of the new blended block linear 
multistep methods and the well-known Matlab stiff ODE 
solver ODE15S on the same problems and on the same axes.  
 
Problem1 Oregonator (Chemical Reaction) Problem  
 
The oregonator chemical reaction model is a theoretical model 
of autocatalytic reaction.  
It is a chemical dynamics of the oscillatory reaction. It is a 

reaction between BrHBrO ,2 and )(IVCe  described by 

Noyes and Field (1974). The Oregonator model is expressed 

mathematically by the following     
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Fig 2 :Solution Curve Of The Problem 1 

Computed By Nine Step BBLMM 
 

Problem 2: Irregular Heartbeat and Lidocaine Model  
The irregular heartbeat and Lidocaine model is expressed 

mathematically by the following     
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Fig 3 : Solution Curve Of The Problem 2 

Computed By Nine Step BBLMM  
 

CONCLUSION 
 
Problem 1  which is a famous chemical reaction with periodic 
solutions and a highly stiff Ordinary Differential Equation 
whose solutions change rapidly over many orders of 
magnitudes. The solution curves in Figures 3 plotted within 
the range of   with step size of 0.1 shows 
active oscillatory regime for different values. The solution 
curves using the BBLMM compare favourably with results 
obtained using the variable step size code ODE (15s). 
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Problem 2 is a model of the relationship between Lidocaine 
and Irregular Heart beat.  Lidocaine  belong to a group of 
drugs known as anti-arrhythmic which work by preventing 
sodium from being pumped out on the  cells of the heart to 
help the heart beat normally. From our solution curves, it was 
observed that normalcy in the heart beat can be attained with 
the use of Lidocaine within the correct dosage. Our solution 
curves coincide with the solutions of ODE 15s. 
The numerical results from figures 2 and 3 reveal the accuracy 
of the newly constructed higher order blended block linear 
multistep methods (BBLMM) for step numbers 9. It can be 
seen clearly from the curve that our new methods perform 
favourably better than the well known ODE15S for the 
problems solved in problem 1and 2.  It was also observed that 
the new methods have better stability regions than the 
conventional Adams Moulton method for step number 9.  
 
RECOMMENDATIONS 
 
This method is recommended for the solution of stiff system 
of ODEs since they are A-stable which implies a wider range 
of stability for effective performance. 
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