
DOI: http://dx.doi.org/10.26483/ijarcs.v9i5.6323
Volume 9, No. 5, September-October 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 93

ISSN No. 0976-5697

A COMPARATIVE STUDY ON VARIOUS PARALLEL COMPUTING
TECHNIQUES USING APRIORI ALGORITHM

Harshavardhan Metla
School of Computer Science and Engineering
Vellore Institute of Technology, Vellore, India

 Yeshwanth Kamisetty
School of Computer Science and Engineering
Vellore Institute of Technology, Vellore, India

Sai Kiran Chintalapudi
School of Computer Science and Engineering

Vellore Institute of Technology
Vellore, India

 Nalluri Rahul

School of Computer Science and Engineering
Vellore Institute of Technology

Vellore, India

Manikandan K

School of Computer Science and Engineering
Vellore Institute of Technology

Vellore, India

 Siddharth Kolagatla

School of Computer Science and Engineering
Vellore Institute of Technology

Vellore, India

Abstract— A popular Association Rule Mining algorithm called Apriori algorithm helps in finding various frequent itemsets in the database.
The constraints for finding these itemsets are given by the user in terms of support - measured by the proportion of transactions in which an
itemset appears, and confidence - measured by the proportion of transactions with an itemset, in which another itemset also appears. The
problem with this algorithm is that it is highly iterative and thus its efficiency rapidly decreases with increase in size or dimension of the dataset.
Our project increases its efficiency with the help of openMP threads. We use data decomposition to split the transaction database into various
parts, each taken by a thread to find the support count of all the candidate itemsets for all the transactions assigned to that particular thread. To
give an example of the application, this project is used to determine the probability of the occurrence of a forest fire. Here, the transaction
database can consist of various occurrences of natural phenomena, in which a few transactions also have the forest fire phenomenon, which
means that it has occurred in the presence of the other itemsets in the transaction. Hence, if a new transaction is taken from the user, then the
probability (or confidence) that a forest fire occurs, given this transaction, is calculated.

Keywords—Apriori, ARM, Forest, Itemsets, Mining, Parallelization, Probability, Transaction

I. INTRODUCTION

 This is the era of data. There are huge amounts of data
being generated every day. Data mining deals with the mining
or the understanding of these data and deriving useful
information from it. A common way of inferring something
from the data is to understand the relationship between the
different instances in the data or tuples in the table. This
particular form of data mining is called Association Rules
Mining (ARM), where associations between the different
itemsets in the database are found with the help of various
algorithms. A popular ARM algorithm is called Apriori
algorithm. This algorithm helps in finding various frequent
itemsets in the database. The constraints for finding these
itemsets are given by the user in terms of support - measured
by the proportion of transactions in which an itemset appears,
and confidence - measured by the proportion of transactions
with an itemset, in which another itemset also appears. The
problem with this algorithm is that it is highly iterative and
thus its efficiency rapidly decreases with increase in size or
dimension of the dataset. Our project increases it’s efficiency
with the help of openMP threads. We use data decomposition
to split the transaction database into various parts, each taken
by a thread to find the support count of all the candidate
itemsets for all the transactions assigned to that particular
thread.

II. LITERATURE SURVEY

 Apriori is an algorithm to learn the association rules
among various transactions in a database. With the recent
explosion of data, datasets are usually large with huge
dimensions. [1] But Apriori traditionally doesn’t perform well
on datasets with large dimensions. So, this paper concentrates
on reducing the dimensions of datasets using QR
decomposition method, which calculated the similarity
between two dimensions using their dot product.

 Association Rule Mining is the mining of datasets to get
information about the item sets that occur frequently in the
dataset and Apriori is a widely used algorithm. [2] But this
algorithm has less efficiency when used on large datasets. So,
this paper focuses on using hash function to divide the dataset
into buckets for easier calculation. It also introduces an idea
for top- down implementation of the Apriori algorithm by
pruning duplicate datasets.

 The Apriori algorithm is made parallel with the help of
Map reduce framework. [3] It normally consists of a map
function and a reduce function. The map function takes an
input from the data set and generates intermediate key pairs as
output. The reduce function receives the output from the map
function and collates together these values to form a set of
values that are smaller than the original using an iterator. It

Harshavardhan Metla et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,93-97

© 2015-19, IJARCS All Rights Reserved 94

outputs a new list of values. Since the map function accepts
one input, all map operations are independent of each other
and completely parallelizable. In the same way, reduce
function can be made to run in parallel on each set of
intermediate pairs with the same key.

 This paper improves the efficiency of Aprori algorithm by
using an important method known as “Cutting data mining”.
[4] This paper analyzes the Apriori algorithm for association
rules mining, and make some improvement in the algorithm
based on the features of cutting database.

 Frequently occurring items in a large data set is really a
time taking process. [5] So, Apriori algorithm is used to find
the frequent pattern in itemsets. Apriori algorithm is
parallelized using java concurrency libraries in multi core
processors. Java concurrency framework is originally a library
which enables us to perform parallel processing in multi core
processors. This framework provides then multi-threading
feature where various threads are executed simultaneously by
writing concurrent applications. Both the serial and parallel
code performance can be measured on multicore processors by
calculating the time.

 In order to handle the high Input/Output time, a work flow
model called Spark has been introduced. [6] This approach
exceeds the Map Reduce implementation of Hadoop in both
efficiency and performance. The R-apriori uses both Map
Reduce and Spark for converting the normal Apriori algorithm
to parallel. The R-apriori is the most efficient algorithm which
overcomes the Spark apriori and Map Reduce Apriori on
Hadoop in speedup and lower execution of time.

 In this method GPU is also run along with the CPU to
decrease the execution time of the algorithm, this is called
GPU accelerated computing. [7] Apriori algorithm is
parallelized using on Graphic Processing Unit. Speed up of
Apriori algorithm is measured in both sequential and parallel
execution if the code. Some part of the code which can be
executed in parallel uses GPU with CUDA parallel
architecture.

 This paper brings a more efficient algorithm after the
analysis of classical Apriori algorithm. [8] By examining the
database only once, all the transactions are refactored into the
components of a two-dimensional array. The calculation turns
out to be more accurate by introducing weight. In addition to
this, the deletion of redundant data, joining and pruning steps
become simple. Therefore, this enhances the efficiency of the
Apriori algorithm.

 This algorithm performs a new method to decrease the
repetitiveness of sub-things during pruning the competitor
itemsets. [9] This can shape straightforwardly and directly the
arrangement of successive itemsets and take out the competitor
having a subset that is not visited. This algorithm can increase
the probability of retrieving information in scanning the
database and also reduce the potential scale of itemsets.

 Apriori algorithm is parallelized using openMP and
multicore-processors (Quad core). [10] The main objective is
to measure the performance of Apriori algorithm in serial and
parallel execution using openMP on a quad core processor.

OpenMP is an API (Application Programming Interface),
which uses fork and join model for performing parallelism. In
this model, some part of the program is sequentially executed
in master thread and the other part that is parallel is run on
child threads. Master thread creates a group of child threads to
run the parallel part. The work which is shared equally among
the child threads are synchronized and evaluated.

 Traditional methods for forest fire forecasting by applying
the weather data can only be used as a prediction for an
administrative division or province level, and it does not
favour the farmers who are mainly affected, because there is
no accurate forest fire prediction due to lack of forest fire
monitoring. [11] Hence, Apriori, an association rule algorithm,
is applied to analyze the probability and intensity of a forest
fire effectively with coarse forest fire data. It helps the farmers
at the ground level to predict the forest fire applying this
coarse weather data.

III. EXISTING METHODOLOGY

Serial Code for Apriori Algorithm

 A frequent itemset is an itemset whose support count is
greater than the user specified minimum support count. (Lk
where k is the size of the itemset). A candidate itemset is an
itemset from where frequent itemset is extracted. In Apriori
algorithm, initially a candidate item set of size k=1 is created
and from them a frequent itemset is generated by pruning the
candidates with the support count less than given support
count.

 The candidate item set of size k is generated from the
frequent itemset of size k-1. If there are two frequency
itemsets p and q of size k-1 then the candidate itemset is
generated if all the items of p and q match except the last one.
This is done for all the possible pairs of frequent itemsets of
size k-1. Now for these itemsets, pruning is done. If any subset
of size k-1 in any of these sets is not in the frequency itemsets
then that set if removed. After this the database is scanned to
find the support of each of these candidate sets and the ones
with the support greater than threshold are put in the frequent
item set Lk.

 This algorithm is an iterative algorithm and at every next
step the frequency itemset of size k is generated. The size of k
increases by 1 in every iteration. This algorithm goes on until
no frequent itemset of size k is found.

 void C1(string file_name) - This function generates
the first candidate list.

 void output(structure T) - It prints all the candidates
or the frequency list along with their count.

 void L1() - it generates the first frequency list.
 void generate_C() - It generates all the candidates of

size k from frequency list of size k-1.
 bool check_compatibility(VI a,VI b) - This function

checks if the two frequency itemsets are same or not.
 void prune() - It removes all the candidates of size k

whose subsets are not present in the frequent itemsets
of size k-1.

Harshavardhan Metla et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,93-97

© 2015-19, IJARCS All Rights Reserved 95

 void scan_D(string file_name) - It scans the
database and calculates set_count, i.e, calculating the
support count for each transaction.

 void set_count(VI a) - It increments the support
count of the candidates if exists in the database
transaction. it is done for all the candidates.

 void generate_L() - It finds the frequent itemsets of
size k by removing all the candidate item sets whose
support count is less than the min support count.

IV. PROPOSED METHODOLOGY

A. Parallelizing the Serial Code for Speedup

 Since our implementation of Apriori algorithm include 9
functions, it is very important to recognize the part of the code
to be parallelized. The Apriori algorithm is itself an iterative
algorithm and each iteration depends on the values obtained by
the previous one, i.e. there exists a real loop dependency
between the iterations. Since each iteration take significant
amount of time, each iteration needs to be parallelized. From
the previous studies, it has been found that about 90% of the
time is consumed in scanning the transactions in the database
to find out whether a particular candidate is present in the
transaction or not. The function which scans the database if
scan_D(). It also calls set_count to calculate the support for
each candidate which also contributes to the large amount of
the time spent.

 We use data decomposition technique to divide our
transaction data into the number of threads. Since the
transactions are divided into the number of threads, now for
every candidate the scanning and calculating the set_count is
done parallelly by different threads and leading toward the
speedup. After the set_count is calculated by different threads
for each candidate, all the set_counts for each candidate are
added and hence final set_count for every candidate is found.
These counts for all the threads are added in the critical
section.

 The critical section in the program is implemented using
Barrier Synchronization. barrier synchronization has been used
to add the calculated set_count values and find the final
support for each candidate. A barrier for a group of threads in
a section of code means that any thread /process must stop at
this point and cannot proceed until all other threads/processes
reach this barrier. So, in our code, until all the threads
calculate the set_count for each candidate, the summation of
set_counts cannot be done.

B. Forest Fire Application

 As an application to Apriori algorithm, we have chosen to
detect whether the forest fire will occur after a certain set of
events has already occurred. Our database consists of the
numbers indicating different events occurring the forest.
Number 12 indicates the occurrence of a forest fire.

 We, hereby calculate the confidence score as the
probability of occurrence of forest fire after certain events
have happened. So, if the new transaction is called T, then,

 The function used in our code for this purpose is:
float predict(string input) - This function uses the structure F
which collects all the levels that have been generated in the
Apriori algorithm. Now, this function takes the input
transaction as a parameter and converts it into a vector<int>
template by converting each individual element in the
transaction from a character to an integer. The function then
finds the count of this transaction from the structure F. This is
the support/frequency/count of the transaction. Now, the
support of the transaction along with the number 12, which
mimics the occurrence of a forest is found out from the same
structure F. Now, the two support values that we have will
give us the confidence (or probability) that 12 will occur after
the given transaction. This is done by dividing the former
support count by the later support count.

Flow of execution

Harshavardhan Metla et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,93-97

© 2015-19, IJARCS All Rights Reserved 96

V. RESULTS AND DISCUSSION

A. Serial

 Here, the original Apriori algorithm was implemented in
C++ and the time of execution was calculated using the
omp_get_wtime() function from the <omp.h> header file. The
program starts of by calculating the first candidate list by
reading the text file and counting the support value of each
distinct item in the database. This forms the first candidate list
of the transactions. This candidate list is then filtered against
the MIN_SUP value, i.e., the minimum support value that can
be accepted. This forms the first level of the Apriori algorithm.
The items of this level are then joined to make a candidate list
for the next level (2 items in an itemset). First this candidate
set is pruned by the Apriori algorithm. This removes all the
itemsets whose subsets aren’t frequent itemsets. Now, the
count of the rest of the itemsets are found by going through the
transactions database. Once the count for each of the itemset is
found, the new candidate set is filtered against the MIN_SUP
value and the new level of the apriori algorithm is found. This
process is repeated for all the possible levels that can be
formed from the items in the given transaction.

B. Parallel

 To overcome the need of the Apriori algorithm to perform
an impractically large number of iterations over the database
every time it needs to generate the candidate list, we have
implemented it in a parallel style using the OpenMP library in
C++. Whenever the algorithm needs to scan the database to
find the support of every element in the candidate list, it
performs a read of the database. This is the main portion of
repetitiveness in the algorithm. Hence, this portion of the code
has been parallelized. Here, data decomposition is performed
by splitting the database into the number of threads that are
running. Each thread starts at a particular point in the file and
reads till another point where the other thread would have
started from. Each of these threads finds the support count of
the itemsets, in the candidate list that has called this function.
These counts are then summed up through a barrier OpenMP
directive. This method has shown to significantly reduce the
time taken to perform the apriori algorithm. To show an
application of this algorithm it has been implemented to
predict the occurrence of forest fires, more about this is dealt
with the next section.

C. Forest Fire Application

 To see how the Apriori algorithm works in a real-world
application, it is implemented to forest fire prediction. Here
each transaction in the database is considered to consist a set
of items each of which mimic a particular natural
phenomenon. So, here the item 12 is considered to be the
event that a forest fire occurs. If a new transaction is entered
by the user, then the probability the occurrence of 12 along
with it is calculated and this is shown as the probability of the
occurrence of a forest fire, given that all the natural
phenomena given to the algorithm in the form of a transaction.

VI. CONCLUSION AND FUTURE IMPLEMENTATION

Thus, the parallel implementation of the Apriori algorithm
reduces the time taken for the algorithm to scan the database.
This increases the efficiency of the algorithm and also makes it
more usable for real time applications.
The Forest Fire prediction application is one such real time
application where the apriori algorithm is used to predict the
occurrence of a forest fire.
The parallel implementation of the algorithm is just the first
step in increasing the efficiency. Further down the road, a data
structure can be implemented to retrieve the entire dataset
from the database and store it in the memory. This would
drastically decrease the time as the whole process of reading
the database is eliminated. Also, better pruning methods can
be used to remove the unwanted itemsets from the candidate
list before forming the Apriori level.
Till the discussion was limited to the basic Apriori algorithm.
But a lot of variations of the algorithm have been made and
there are other frequent data mining algorithms also present.
Some of which perform better than the original Apriori
algorithm in a few cases. Even these algorithms can be worked
on.

REFERENCES

[1] Hu, L., Zhuo, G., & Qiu, Y. (2009, August). Application of

Apriori algorithm to the data mining of the wildfire. In
Fuzzy Systems and Knowledge Discovery, 2009. FSKD'09.
Sixth International Conference on (Vol. 2, pp. 426-429).
IEEE.

[2] Korde, N. S., & Shende, S. W. (2014). Parallel
Implementation of Apriori Algorithm. IOSR Journal of
Computer Science, 01-04.

[3] Chai, S., Yang, J., & Cheng, Y. (2007, June). The research
of improved apriori algorithm for mining association rules.
In Service Systems and Service Management, 2007
International Conference on (pp. 1-4). IEEE.

[4] Changsheng, Z., Zhongyue, L., & Dongsong, Z. (2009,
March). An improved algorithm for apriori. In Education
Technology and Computer Science, 2009. ETCS'09. First
International Workshop on (Vol. 1, pp. 995-998). IEEE.

Harshavardhan Metla et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,93-97

© 2015-19, IJARCS All Rights Reserved 97

[5] Spandana, K., Sirisha, D., & Shahida, S. (2016).
Parallelizing Apriori Algorithm on GPU. International
Journal of Computer Applications, 155(10).

[6] Rathee, S., Kaul, M., & Kashyap, A. (2015, October). R-
Apriori: an efficient apriori based algorithm on spark. In
Proceedings of the 8th Workshop on Ph. D. Workshop in
Information and Knowledge Management (pp. 27-34).
ACM.

[7] Parsania, V., Kamani, G., & Ghodasara, Y. R. (2014).
Mining Frequent Itemset Using Parallel Computing Apriori
Algorithm.

[8] Wang, G., Yu, X., Peng, D., Cui, Y., & Li, Q. (2010, June).
Research of data mining based on Apriori algorithm in
cutting database. In Mechanic Automation and Control
Engineering (MACE), 2010 International Conference on
(pp. 3765-3768). IEEE.

[9] Li, N., Zeng, L., He, Q., & Shi, Z. (2012, August). Parallel
implementation of apriori algorithm based on mapreduce.
In Software Engineering, Artificial Intelligence,
Networking and Parallel & Distributed Computing (SNPD),
2012 13th ACIS International Conference on (pp. 236-241).
IEEE.

[10] Shah, A. (2016, July). Association rule mining with
modified apriori algorithm using top down approach. In
Applied and Theoretical Computing and Communication
Technology (iCATccT), 2016 2nd International Conference
on (pp. 747-752). IEEE.

[11] Harikumar, S., & Dilipkumar, D. U. (2016, August).
Apriori algorithm for association rule mining in high
dimensional data. In Data Science and Engineering
(ICDSE), 2016 International Conference on (pp. 1-6).
IEEE.

