
DOI: http://dx.doi.org/10.26483/ijarcs.v9i5.6289

Volume 9, No. 5, September-October 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

ISSN No. 0976-5697

ASSESSING PERFORMANCE OF AGENTS IN A MAS: AN EXPERIMENTAL
STUDY

S.Ajitha, T. V. Suresh Kumar

 Ramaiah Institute of Technology,
Bangalore-54, India

Abstract: A Multi-Agent System (MAS) is understood as a system consisting of interacting autonomous agents.Research on MASis mainly
concerned with functional properties such as coordination, rationality, and knowledge modeling. A very less attention is paid for the research
activity on the nonfunctional properties performance, scalability and reliability of the MAS. However, as the MAS technologies have gradually
matured to be exploited in building practical distributed applications, the non-functional properties have become increasingly important, and it is
now vital to pay attention to the issues of nonfunctional characteristics of agents. We propose to access the performance of agents in MASand
the system is implemented using JADE. The experimental study provides the opportunity for cause and effect relationships. We considered a
tiered architecture for the MAS. A tiered design can lessen the overall impact of changes to the application and allows modifying a component
without disturbing the next Tier. So with the help of a good deployment plan, we can distribute the layers over multiple physical tiers in
distributed computingto implement a better architecture of the system. The case study considered for illustration is Supply-Chain Management
and the results obtained are validated with the tool SMTQA.

Keywords: Multi-Agent System, Performance, JADE, Tired Architecture, Supply Chain Management, SMTQA.

1. INTRODUCTION

A Multi-Agent System (MAS) is generally understood as a
system comprised of interacting autonomous agents. Multi-
Agent System is relatively a new paradigm in the field of
computer science. This paradigm proposes solutions to
highly distributed problems in self-motivated, open
computational domains. Research on multi-agent systems
has been mainly focused on functional properties such as
coordination, rationality, and knowledge modeling. A very
less attention is paid for the research activity on the
nonfunctional properties such as performance, scalability
and reliability of the MAS. However, as the MAS
technologies have gradually matured in building many
practical distributed applications, the research activities
towards the non-functional properties of the MAS have
become important, and it is now vital to pay attention to the
issues of nonfunctional characteristics of agents.

Software Performance Engineering (SPE) is a process to
predict the performance of software systems early (analysis
phase) in the life cycle and to monitor, report actual
performance against specifications and predictions [1,2].
From the software point of view, the process is based on the
availability of software artifacts that describe the suitable
abstraction of the final software system. Since performance
is measured at run time, performance analysis requires
appropriate descriptions of the software run time behavior.
It may be alternatively referred to as software performance
engineering within software engineering.

Determining performanceafter the development of the
software is a common industrial practice, but this will lead
to the usage ofcostlier, and powerful hardware than what

was originally anticipated. This leads to a rigorous tuning
measures, or redesigning the complete application. The
discovery of unsatisfactory performance, at the later stage of
can cause a costlier redesign and implementation of the
software or hardware and this leads to the delay in delivery
of the system. To overcome such situations, the system’s
performance characteristics must be considered throughout
the development of the software. The goal of SPE is to
guarantee that a software system will meet its
performancegoals before the system is implemented.

2. RELATED WORK

This section gives brief information about the research
activities carried out by different researchers in the field of
MAS. The authors in [3], discussed the different research
and development activities in the field of autonomous agents
and Multi-Agent Systems. They identified the key concepts
and applications, and to indicated how they relate to one-
another. Some of the historical context of the field of agent-
based computing, contemporary research directions are
presented and a range of open issues and future challenges
are highlighted. In [4], the authors presented a survey of
Multi-Agent Systems (MAS) which gives an insight to the
field of agents and the organizational framework of agent
systems. A number of general Multi-Agent scenarios are
also presented by the researchers. The issues that arise for
different scenario are discussed along with the different
techniques that exist to build Multi-Agent Systems. The
presented techniques are not exhaustive, but they highlight
how Multi-Agent concepts can be used to build complex
systems.

S.Ajitha et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,19-24

© 2015-19, IJARCS All Rights Reserved 20

Agents are autonomous and can operate in open electronic
environments that are now becoming very popular. Agent
technology allows software engineers to develop solutions,
which can co-exist and operate along with external and
legacy systems. This is important in the context of SCM that
involves many parties, which might use different
technologies. The Multi-Agent approach is “a natural way to
modularize complex systems” [5] which can be easily
adopted for SCM.This method allows splitting different
tasks within the SCM and executing them both
independently and in coordination with each other. The
whole software can be made into separate building blocks;
each module can be focusedto a particular part of the supply
chain. By replacing one building block with another and by
combining them in different ways, different versions of the
system can be developed and analyzed. In this way, the
influence of changes in behavior in each link of the supply
chain can be thoroughly analyzed.

MAS is becoming a currentapproach for modeling and
developing complex systems such as supply chains.
Presently, there exist no standard methodologies for
modeling supply chains using MAS. A generic process-
centered methodological framework, Multi-Agent Supply
Chain Framework is proposed to (MASCF) to simplify
MAS development for supply chain (SC) applications in [6].
Depending on the specific roles of software

agents, a new specific interaction pattern is discussed and
implemented. An emergency control approach to prevent the
wide spread power interruption using MAS is addressed in
[7]. The control algorithm was based on decentralized
architecture of intelligent agents to achieve fast and accurate
response when a catastrophic disturbance is identified in
the system.

The SPE approach proposed by Connie U. Smith was the
first methodology to the integration of software performance
analysis into the software engineering process [1,2]. The
SPE process requires additional data that includes software
resource requirements for processing steps and computer
configuration data. The analysis of the software model gives
information about the resource requirements of the software
system. The obtained results, together with information
about the execution environment, are the input parameters of
the system execution model. The analysis of system model
helps to find out the point of resource contention, sensitivity
of performance metrics to variations in workload
composition, service level objectives, and identification of
bottleneck resources. A process to elaborate the analysis
results and to score performance requirements, model
entities and guilty performance anti-patterns is introduced
by Cortellessa et al [8].For quantitative evaluation of the
performance of the software systems an approach is
proposed by Balsamo et al [9,10]. They developed a
prototype tool for automatic translation of the software
model into a process-oriented simulation model.

Load balancing issues [11], with reference to agent
properties and load balancing techniques and the space of
load-balancing design choices in the arena of multi-agent
computing is explained in detail. In view of the special agent
characteristics, a communication-based load-balancing

algorithm is proposed, implemented, and evaluated. This
algorithm works by associating a credit value with each
agent. For an agent based system development, [12] an
analytical approach for performance improvement is
discussed. This approach avoids the need for a prototype
implementation since architects can determine the overall
form of the performance equation from the architectural
design description and can enhance the system architecture
to derive optimal architecture from the analytical model.A
framework and a number of negotiation performatives[13],
which can be used to construct pair wise and third party
negotiation protocols for functional agent working is
explained by the authors. They also explained how to
formally model the negotiation process by using Colored
Petri Nets (CPN) and provided an example of establishing a
virtual chain by solving a distributed constraint satisfaction
problem. The authors presented a methodology for the
assessing the performance of the distributed multi agent
system [14]. They considered the characteristics of the
system and spotted performance metrics.In [15] the authors
developed a supply chain model that uses agent
communication, coordination and negotiation between the
agents to achieve the intended business goals. They used
Java Agent Development Framework (JADE) to implement
the supply chain environment. In [16] the authors outline a
Collaborative Material Procurement System architecture,
which automatically retrieve software based services for the
agents that coordinate the supply chain form a service
repository.

3. ARCHITECTURES CONSIDERED FOR THE
STUDY

The agent technology has become the most popular tool for
designing distributed applications. SupplyChain
Management (SCM) systems is a best choice as it provides
an adaptable and dynamic way for managing separate links
within the chain. Unlike centralized approaches, agent-based
SCM systems can respond quickly to changes and
disturbances (either internal or external) through local
decision making. Another advantage of designing the SCM
solution as a Multi-Agent System (MAS) is that it allows
different tasks within the SCM to be separated and explored
both independently and in relation to each other. The case
study we considered for the implementation of the SCM
consists of five agents namely Manager Agent (MA),
Production Agent (PA), Inventory Agent (IA), Supply Agent
(SA) and Delivery Agent (DA). We have implemented the
model using JADE environment. The results are obtained by
considering different tiers.

Performance of a software system is closely tied to the
software architecture it follows. It is advantageous to
analyze the performance of software from its architecture as
such an analysis can be done early in its development. The
software architecture determines the way the different
components that make the software, interact with each other.
Moreover, it also defines the deployment or the arrangement
of the components in the available hardware. Thus, while
analyzing the performance of any software system taking its
architecture into account becomes very important. It is
advisable to evaluate a software, early in its development for
performance attributes such as the response time,

S.Ajitha et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,19-24

© 2015-19, IJARCS All Rights Reserved 21

throughput, etc. This allows the designer to ascertain how
the system will perform once it is ready. Moreover, the
behavior of the system with regards to changes in the
workload, such as an increase in the number of users on
system performance is also useful to know while designing
the system. Such evaluation is helpful for existing systems,
to ascertain their performance behavior under different
workloads. Keeping in view of this, we conducted a study
on three different types of architectures.

3.1 Single Tier Architecture

We first implemented our case study as single tier
architecture. We have considered five agents for our
application. The agents considered are Manager Agent,
Production Agent, Inventory Agent, Supplier Agent and
Delivery Agent. Fig1presents the set up, we considered for
the single tier architecture.

Fig.1. Representation of single tier architecture

3.2 Two Tier Architecture

Next we implemented the case study by considering two tier
architecture. We have considered a total of seven agents for
implementation. In tier one only Interface Agent is
considered. In the second tier, we have considered the Sales

Agent, Factory Agent, Inventory Agent and Supplier Agent.
In this setup, we considered one agent as a Manager agent
for the remaining agents in the second tier. The scenario we
considered is presented in Fig2.

Fig.2.Representation of two tier architecture

3.3 Three Tier Architecture

Next we implemented the case study by considering the
three tier architecture. Three tiered architectures fully
insulate clients from business rules, the underlying data
storage, and concurrency issues, resulting in complete
encapsulation. Because clients only interact with three tiered
architectures, changes can be made in the database without
having to touch a single line of code at the client.

Applications have an open architecture and are fully
scalable. Applications built with three tiered architectures is
also much more maintainable. The architecture separates
responsibility into loosely coupled layers (i.e., user
interface, three-tiered architecture, and data storage).
Because of this separation of responsibility applications can
be modified more easily when the business needs change.
All business logic and data storage code reside on other
machines across the network.

S.Ajitha et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,19-24

© 2015-19, IJARCS All Rights Reserved 22

 We have considered a total of thirteen agents. In tier one,
we considered the interface agent, in tier two the sales
agents are considered and in tier three all the inventory,
factory and supplier agents are considered. Fig3 represents
the architecture of the three tier setup. The whole system is

implemented in Java 1.6 and is implemented on a LAN of
thirteen machines, which comprises of Windows XP
professional connected to 10 Mpbs LAN network.

Fig.3.Representation of three tier architecture

4. Experimental Setup

The experiment was conducted in the Software Engineering
Lab, Department of Computer Applications at M.S.
Ramaiah Institute of Technology Bangalore. There is one
server with fifteen terminals in the lab. The configuration of
the server is, Model Name: IBM XSERIES 3650,2U rack
server with quad core dual Xeon processor @ 2.0 GHZ,
8MB L2 Cache, 1333 MHz DUAL Gigabit Ethernet
10/100/1000 Embedded, 4GB DDR2 RAM, IBM SAS 8K
RAID Controller with 256 MB CACHE IBM 10RPM, SAS
300GB Hard disk*3 No’s =Total capacity 600GB. The
configuration of the nodes used is , Model Name: IBM
Think Center 8985 B63, Intel Core 2 DUO processor @
2.2GHZ, 2 GB Ram, 160GB Hard disk, IBM Keyboard &
Scroll Mouse, 20X DVD Writer & 19” IBM TFT Color
Monitor L194 with the Internet Leased line with 60 Mbps
data speed.

4.1 Execution Environment

The model is implemented using the software JADE, which
is a Framework implemented in Java language which can be
readily used for the implementation of multi-agent systems
through a middleware that obeys with the Foundation for
Intelligent Physical Agents (FIPA) specifications. It has a
very good set of graphical tools that supports the debugging
and deployment phases. The agent platform can be

distributed across machines and the configuration can be
controlled via a remote GUI. The configuration can be even
changed at run-time by moving agents from one machine to
another one, as and when required. JADE is completely
implemented in Java language and the minimal system
requirement is the version 1.4 of Java. Container is a
running instance of the JADE running environment
containing several agents. A single Main Container must
always be active in a platform and all other containers
register with it as soon as they start. Main Container holds
two special agents Agent Management System (AMS) that
provides the naming service; name, ensure uniqueness,
create/destroy agents and Directory Facilitator (DF) that
provides a Yellow Pages service by means of which an
agent can find other agents providing the services he
requires in order to achieve his goals.

4.2Results obtained from implementation

From the graphs, it is observed that in all the three different
tiers considered, the interface agent has taken the highest
response time, the supply agent has taken the least response
time and the inventory agent has taken the average response
time. The maximum response time taken by the single tier is
4000msec, the maximum response time taken by the two
tiers is 3500 msec, and the maximum response time taken by
the three tiers is 2000 msec. From this we can infer that we
can achieve better response time by increasing the number

S.Ajitha et al, International Journal of Advanced Research in Computer Science,

of tiers. Thus we can suggest that the experimental study
helps to decide the number of tiers while deploying the
agents in the system.

Fig

Fig

Fig
4.3 Comparison of Results with simulation results

We used the SMTQA[17] tool to validate the results
obtained from the experimental study. We simulated for
1000 requests for the scenario one tier, two tier and three
tier and the results are tabulated in Table1, Table2 and
Table3 respectively. To compare with the experimental

0

1000

2000

3000

4000

5000

R1 R2

R
es

po
ns

e
T

im
e

0
500

1000
1500
2000
2500
3000
3500
4000

R1 R2

R
es

p
on

se
 T

im
e

Response Time for II Tier

0

500

1000

1500

2000

2500

R1 R2

R
es

po
ns

e
T

im
e

International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,

Thus we can suggest that the experimental study
helps to decide the number of tiers while deploying the

Fig..4.Response Time in Single Tier

Fig.5. Response Time in Two Tiers

Fig.6. Response Time in Three Tiers
Results with simulation results

tool to validate the results
obtained from the experimental study. We simulated for
1000 requests for the scenario one tier, two tier and three

1, Table2 and
Table3 respectively. To compare with the experimental

study, we considered the replicas in two tier and three tier.
From the results, we observed that the response time for
agents is better when we added replicas for the agents in
both the cases. For the Interface agent we have not
considered any replica and in all the three setup we got the
same response time 0.010. In tier II we considered replicas
for Inventory and Factory Agent and we got better

R3 R4 R5 R6 R7 R8

Requests

Response Time for Single Tier

Interface

Sales

Inventory

factory

supply

R3 R4 R5 R6 R7 R8

Requests

Response Time for II Tier

Interface

Sales1

Sales2

Inventory1

Factory1

Supplier1

R3 R4 R5 R6 R7 R8

Requests

Response Time for III Tier
Interface

Sales1

Sales2

Inventory1

Inventory2

Factory1

Factory2

Supplier1

Supplier2

8,19-24

study, we considered the replicas in two tier and three tier.
From the results, we observed that the response time for
agents is better when we added replicas for the agents in
both the cases. For the Interface agent we have not

d in all the three setup we got the
same response time 0.010. In tier II we considered replicas
for Inventory and Factory Agent and we got better

Interface

Sales

Inventory

factory

supply

Interface

Sales1

Sales2

Inventory1

Factory1

Supplier1

Interface

Sales1

Sales2

Inventory1

Inventory2

Factory1

Factory2

Supplier1

Supplier2

S.Ajitha et al, International Journal of Advanced Research in Computer Science, 9 (5), Sept-Oct 2018,19-24

© 2015-19, IJARCS All Rights Reserved 24

performance for these agents. In three tier, we considered
two Sales Agent, three Supply Agent, two Inventory Agent
and three Factory Agent and observed similar results. Thus,
results show when more agents are used we get better
performance.

Table1. Simulation Results for Tier One

Agents
Average Response Time

Interface Agent

0.010

Sales Agent 0.020

Supply Agent 0.023

Inventory Agent 0.025

Factory Agent 0.023

Table1.Simulation Results for Tier Two

Agents Average Response Time

Interface Agent 0.010

Sales Agent 0.020

Supply Agent 0.0225

 Inventory (2)Agent 0.012

Factory (2) Agent 0.011

Table2.Simulation Results for Tier Three

5. CONCLUSION

We conducted this experimental study in our Software
Engineering laboratory and the results are compared with
the tool SMTQA. We implemented a case study using JADE
environment. We considered a simple Supply-Chain
Management system and executed the application by
considering a one tier, two tier and three tier architecture.
We implemented the application by deploying the agents in
different physical machines. The obtained results are
collected and the performance metrics response time is
calculated for the different Agents. The results are validated
by simulating the same scenario using the tool SMTQA and

observed similar results for the Agents considered for
discussion.

REFERENCES

[1] C.U. Smith and L.G. , Williams., Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software. s.l.:
Addison Wesley, 2002.
[2] www.perfeng.com. Visited 17-4-2017[Online]
[3] Nicholas.R.Jennings, Katia Sycara, K.Wooldridge, M.: A
roadmap of agent research and development. International
Journal of Autonomous Agents and Multi-Agent Systems (1998)
7–38.
[4]PeterStone,Manuela eloso(2000),“Multi agent Systems: A
Survey from a Machine Learning Perspective”, In
Autonomous Robotics volume 8,Number 3,July 2000. Carnegie
Mellon University, Pittsburgh.
[5] T. Moyaux, B. Chaib-draa, and S. D’Amours, Multiagent
based Supply Chain Management, Springer-Verlag, Berlin
Heidelberg, 2006.
[6] Ramakrishna Govindu, Ratna Babu Chinnam (2007),”
MASCF: A generic process-centered methodological framework
for analysis and design of multi-agent supply chain systems”,
Computers & Industrial Engineering 53 (2007) 584–609.
[7] Chang-Hyun Jo , Jeffery M. Einhorn(2003),“A Process for
BDI Agent-based Software Construction”, IMCSE 2003 –
SERP’03,Las Vegas, Nevada, USA.
[8] V. Cortellessa, G. Iazeolla and R. Mirandola,., "Early
Generation of Performance Models for Object-Oriented
Systems." 2000, Vol. vol.147, pp. pp. 61-72.
[9] S. Balsamo and M. Marzolla., Simulation-Based
Performance Modeling of UML Software Architectures. Ph. D
thesis, Ca' Foscari University of Venice. Italy : s.n., 2004.
[10] Simonetta Balsamo and Moreno Marzolla., "Performance
Evaluation of UML Software architectures with Multiclass
Queueing Network Models." Spain : s.n., July 2005. Proc. 5th
International Workshop on Software and Performance . pp. pp.
37-42.
[11] Ka-Po Chow and Yu-Kwong Kwok “On Load Balancing
for Distributed Multiagent Computing”, ieee transactions on
parallel and distributed systems, vol. 13, no.8, 2002. Object
Management Group (OMG) UML 2.1.1 Superstructure
Specification, 2007.
[12] Hyunsang Youn, Suhyeon Jang, Eunseok Lee, A Novel
Approach for Performance Improvement of Multi-Agent based
System Architecture, International Journal of Software
Engineering and Its Application,Vol. 2, No. 1, January, 2008.
[13] Ye Chen , Yun Peng , Tim Finin , Yannis Labrou , Bill Chu
, Jian Yao , Rongming Sun , BobWillhelm , Scott Cost, A
negotiation-based Multi-agent System for Supply Chain
Management ,In Proceedings of Agents 99 Workshop on Agent
Based Decision-Support for Managing the Internet-Enabled
Supply-Chain,pp 15-20.
[14] A. Ali, M. Aslam, J. I. Janjua and M.U. Chaudhry,
Methodology for Performance Evaluation of Distributed Multi
Agent System. The Nucleus 54, No. 2 (2017) 75-82.
[15] L. C. M. Perera & A. S. Karunananda. Using a Multi-
Agent system for supply chain management,Int. J. of Design &
Nature and Ecodynamics. Vol. 11, No. 2 (2016) 107–115.
[16] Kamalendu Pala, Bill Karakostas,A Multi Agent-Based
Service Framework for Supply Chain Management ,Procedia
Computer Science 32 (2014) 53 – 60.
[17]D E Geetha and T V S Kumar. Performance Modeling and
Evaluation of Distributed Systems, Ph.D thesis, Visvesvaraiah
Technological University, Karnataka, 2012

Agents Average Response Time

Interface Agent 0.010

(2) Sales Agent 0.010

(3) Supply Agent 0.006

(2) Inventory Agent 0.008

(3) Factory Agent 0.006

