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Abstract: High school timetabling problem involves allocation of students, lessons, and teachers into timeslots while respecting constraints, both 
on students, teachers and other available resources. It is one of the Combinatorial Optimization Problems which are known to be NP-Hard and 
therefore no optimal algorithm is known for its solution. The problems differ from one institution to another depending on the educational 
system and administrative structures. In this paper, a Great Deluge Algorithm is developed based on an adaptation which employs a non-linear 
decay rate in the reduction of ‘water level’. This is a case study in the application of the algorithm to Tanzanian high schools. The algorithm is 
tested on three high school systems in Tanzania. Since no such work has been previously done in Tanzania, the algorithm is compared with the 
manually generated timetables for the same schools. It has been shown that, the algorithm performs very well and can be used to greatly improve 
timetabling at Tanzanian high schools. 

Keywords: High School Timetabling, Great Deluge, Combinatorial Optimization.

I. INTRODUCTION

High school timetabling problems consists of assigning 
teachers, lessons and students timeslots subject to some 
constraints on teachers, students and other important 
resources. It is one of the academic timetabling problems; 
others include university course timetabling and 
examinations timetabling which have significantly different 
features [1]. The constraints are normally divided into hard 
and soft, where hard constraints must be satisfied, while soft 
constraints have to be minimized as much as possible. 

Most of the timetabling research has concentrated on 
university course and examination timetabling. High school 
timetabling problems have not been extensively studied 
despite of their importance in optimizing school resources 
[2]. Mathematical programming approaches have been 
attempted with some success [4]. However the problem is 
known to be NP-Hard [5, 6, 7], and therefore it is not
possible to get optimal solutions for all instances within 
reasonable time.

Heuristic approaches are the most prominent in the 
literature. Zang, Liu, Halla and Leung [8] presented an 
algorithm for solving the high school timetabling problem 
using simulated annealing with a new neighborhood 
structure. The new neighborhood structure involves a 
successive set of swaps instead of a single swap of timeslots. 
The algorithm is applied to some benchmark test data with 
promising results. 

Local Search heuristics have been presented by Schaef 
[9] where various types of moves were implemented with the 
use of adaptive relaxation on constraints. The work was 
tested on some large high school problems with good results. 
Schaef [10] implemented Tabu Search techniques as an 
improvement over the use of local search techniques. Same 
test data as in [9] were used which showed some 
improvement over local search. 

Some work on Genetic Algorithms and its variants is 
also found in literature. Kimo, Nurmi, Jari Kyngas [2] 
presented a framework for optimization of highly constrained 
Finnish high school timetabling problem. They modified a 
previous work on Genetic algorithms [3] and tested their 
results on some real-life and artificial problems. Their high 

school model however considers many constraints which are 
not applicable to Tanzanian environment, including the 
flexibility of room use and the possibility of more than one 
teacher teaching the same class at the same time. Random 
non Ascent (RNA) search coupled with Genetic Algorithms 
and parallel processing [11, 15] have been applied on 
synthetic scenarios and real cases in Spanish system with
positive results. 

Graph-based methods using graph coloring on bipartite 
graphs have also been reported [12, 13]. Each node on the 
left of the bipartite graph represents a teacher and each node 
to the right represents a student group; there is one edge 
connecting left and right nodes for each timeslot. The task is 
to find a coloring of edges in such a way that no two edges 
adjacent to any vertex have the same color. The methods 
work very well in removing infeasibilities on hard constraints 
but do not help in dealing with vast number of soft 
constraints.

Other approaches includes evolutionary algorithms and 
their variants [14, 15, 16], cyclic transfers on neighborhood 
structure [17] and four phased approach [18] which combines 
several heuristics in phases. Pupeikiene and Mockus [19] 
presented an analysis of some optimization algorithms for 
high schools in commercial package and compared with their 
algorithm using perturbation methods on Monte Carlo, 
Simulated Annealing, and Bayesian heuristics. They unveiled 
many drawbacks of commercial packages especially on the 
fact that they cannot work for all school requirements. This 
motivates the need to develop and test algorithms for specific 
school environments. 

This paper considers the use of Great Deluge Algorithm 
[20] for solving high school timetabling problems in 
Tanzanian environment. The algorithm has been applied to 
other types of timetabling problems but to our knowledge, no 
work has applied it to the high school timetabling problems. 
The algorithm is modified by changing the decay rate into a 
nonlinear function. We apply the resulting algorithm in three 
high school problems in Tanzania and compare results with 
manually generated solutions. 

The rest of this paper is organized as follows; Section II
defines the high school timetabling problem and presents a 0-
1 integer programming formulation. Section III presents the 
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Great Deluge algorithm and discusses the adaptation to 
Tanzanian high school timetabling. Section IV analyses the 
performance of the algorithm, and section V provides a 
conclusion and suggests future research directions. 

II. PROBLEM DEFINITION

Tanzanian high schools have been expanding rapidly 
due to the demand for higher education in the country. This 
has provided tremendous challenge in improving 
performance in the use of educational resources. The high 
school in Tanzania is a two years program (Form V and 
Form VI), based on specializations where students have to be 
selected and register for a combination of three subjects. For 
instance, a group of students may register for Physics, 
Chemistry and Mathematics (PCM), while another group 
may register for Physics, Chemistry and Biology (PCB). The 
combinations are predetermined by the education authority 
and students are assigned to them according to their previous 
performances. The following features apply; 
a. Students from different combinations may share 

common subjects. 
b. Not all schools have all combinations; schools offer 

combinations according to interest and availability of 
resources. 

c. Each subject has a fixed number of lessons to be offered 
to a group of students per week and these may differ 
between subjects. 

d. A high school teacher may teach at most two subjects 
and teachers may share lessons of the same subject 
where they may be teaching different student 
combinations or years of study. 

e. Each combination of a particular year uses the same pre-
determined room throughout the academic year. 

f. Students have to take common courses which cuts across 
the year of study. 

g. There are compulsory courses depending on the student 
combination. For instance, a student doing science or 
business related combinations which do not include 
mathematics have to take a Basic Applied Mathematics 
(BAM) course. 

h. There are periods which need to be set aside every week 
for religious studies where clergies from different 
religions are normally using the time to teach religion in 
schools. 

i. Students of the same combinations may be allocated into 
streams depending on their number and the available 
facilities. Thus PCMVA and PCMVB could stand for 
PCM combination for form V students in streams A and 
B respectively. 
Making use of the features above, we need to introduce 

the following definitions; 
Class – a group of students taking the same combination in 
the same year of study and in the same stream and sharing 
the same room. 
Subject group – a subject taught to a group of students who 
belong to the same class. For example, subject group 
MTPCMVA stands for mathematics subject as offered to 
PCM in form V of stream A. 
Lessons – a specific set of instructions associated with a 
particular subject group. A subject group is made up of one 
or more lessons which have to be spread across the 
timetabling week. 
Period – a timeslot that can be assigned to a lesson.

The set of hard constraints is summarized as follows; 
i. A teacher cannot be assigned to more than one lesson at 

the same time 

ii. A class cannot be assigned more than one lesson at the 
same time 

iii. Lessons of the same subject group cannot be assigned to 
the same timeslot 

iv. The religion timeslots must be respected and must be 
common to all students 

v. A timetable must be complete i.e. all lessons must be 
assigned to timeslots 
Soft constraints considered in this implementation are as 

follows; 
a. Lessons of the same subject must be spread as much as 

possible throughout the week. 
b. Minimize the use of early morning timeslots as some 

teachers needs time to commute to work due to traffic 
jams; minimize the use of late afternoon hours for 
similar reasons. 

c. Some teachers prefers to have free slots at some times of 
the week due to other commitments 

d. Some lessons have preferences for free periods during 
the week e.g. Biology classes needs some time to collect 
samples in the field for dissection 

a. Mathematical Programming Formulation:
Suppose there are n lessons, y subjects, z classes and m

timeslots; 

Let },...,{ 21 nlllH  : set of all lessons 

},...,{ 21 mkkkK  : set of all timeslots (periods) 

}...,{ 21 yjjjJ  : set of all subjects groups

},...,{ 21 zcccC  : set of all classes 

jL Number of lessons of subject j

jT A teacher who teaches subject group j

jG A class of a subject group j

MS A set of early morning timeslots 

AS A set of late afternoon timeslots 

RS A set of religion timeslots 
SP = A set of slots which have restrictions due to other 

preferences 






                                       Otherwise            0

 timeslot assignedissubject oflesson if  1 kji
xijk

b. Hard constraints:
i. A teacher of any pair of subjects (p, q) cannot be 

assigned lessons of these subjects in the same timeslot 

ii. 1 jqkipk xx for all (i,j)H, kK, (p,q)J 

qp TT  .

iii. A class c, can be assigned at most one lesson at the 
same timeslot k. 

iv.  
 


Hi cGJj

ijk

j

x 1 for all classes cC, kK.

v. Lessons of the same subject group cannot be slotted 
into the same timeslot 

vi. 1 rjkujk xx for all jJ, kK, (u,r)H  ru 
vii. The religion timeslots must be respected. This is 

simply done by excluding the religion timeslots in the 
whole timetabling process. Thus we re-define the new 
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set of timeslots available for timetabling 

as RSKK \ . 
viii. All lessons of a subject must be slotted in the 

timetable (completeness) 

 
 


Hi Kk

jijk Lx for all subjects jJ

c. Soft constraints:
Soft constraints are used in the construction of the 

objective function as follows; 
i. Spread all lessons of subjects as far as possible by 

maximizing the distance between lessons of the same 
subject. This is achieved by minimizing the inverse of 
the distances i.e. 
minimize

  
   Hii kkKkk xjxJj jkiki

kk),( ),( 1
2

2121 2121 2211
)(

1

ii. Minimize the use of late morning, late afternoon hours
and other restrictions. This is achieved by counting the 
number of times where these odd hours have been used 

i.e. 
 MSk

ijkx , 
 ASk

ijkx and 
 PSk

ijkx

In Mathematical Programming formulation, objective 
function is modeled as a linear combination of the soft 
constraints, where weights are supplied to each objective 
component depending on the priority. Given weights 1, 2, 
3 we have the following model; 

Minimize 
)(xf

  
   Hii kkKkk xjxJj jkiki

kk),( ),( 1
2

21
1

21 2121 2211
)(

1





MSk

ijkx2 



ASk

ijkx3 



PSk

ijkx4

Subject to: 

1 jqkipk xx for all (i,j)H, kK’, (p,q)J qp TT 

 
 


Hi cGJj

ijk

j

x 1 for all classes cC, kK’.

1 rjkujk xx for all jJ, kK’, (u,r)H  ru  . 


 


Hi Kk

jijk Lx for all subjects jJ

}1,0{x , and RSKK \

III. SOLUTION APPROACH

Since the problem is NP-Hard, mathematical 
programming approach for exact solution is not expected to 
give results within reasonable time. The approach mostly 
applied is to use heuristic algorithms which have been shown 
to provide good results within reasonable time, although 
there is no guarantee that the solutions are optimal. The 
proposed solution approach is based on Great Deluge (GD) 
heuristic algorithm. The basic great deluge algorithm is 
designed for a maximization problem. The name is inspired 
by an analogy of a great deluge where a person climbing a 
hill will try to move in any direction that does not get the feet 
wet in the hope of finding a way up as the water level rises.
Therefore, the solution is found by searching randomly on 
the solution space. A ‘water level’ L is designed in such a 

way that a solution can only be searched above the water 
level [20, 21]. Solution S is accepted only if S>L, and as time 
goes on the level is raised up to a point where the solution is 
forced to the peak and stops. The approach is easily mapped 
to a minimization problem by starting the ‘water leve’l at the 
top and accepts solutions only when they are below the 
‘water level’. In this case the water level is lowered to a 
value of zero (minimum) and stops. 

The basic Great Deluge algorithm is as shown in Fig.1. 
Initial solution is generated and ‘water level’ is set to the 
objective function value of this initial solution. A solution S0

from neighborhood of S is accepted only if either f(S0) < f(S) 
or f(S0)<L. This means that a worse new solution can be 
accepted as long as it is below the water level L. Decay rate 
(L) is the only input parameter in this algorithm which 
determines the speed of level reduction (decay). 

Great Deluge Algorithm { 
Specify initial solution So; 
Initial level L = f(So), where f is the objective function;
Input decay rate L;
while further improvement is possible { 

Define Neighbourhood N(So); 
Randomly select a candidate solution SN(So)) 
Calculate f(S); 
if f(S) ≤ f(So){ 

Accept S (So = S); 
else if f(S) ≤ L{ 

Accept S (So = S); 
Lower the level ( L = L - L)
} 
return So as the best solution; 

} 

Figure 1. Basic Great Deluge Algorithm

The basic Great Deluge has been applied to several 
problems with success including the works by Burke, Bykov, 
Newall and Petrovic [20]. However, this linear function is 
restrictive on the search space and may skip better solutions 
on the way to lowest level. This prompted researchers to 
consider the use of non-linear decay functions so as to further 
relax restrictions on the search space. Landa-Silva and Joe 
orbit [22] presents a new nonlinear decay rate function as 
applied to course timetabling problem in Universities. The 
same authors presented a follow up work which combines 
evolutionary algorithm and non-linear Great Deluge for 
course timetabling problem [23]. Computational studies on 
nonlinear Great Deluge are also reported by Orbit and 
Landa-Silva which shows the strength of the algorithm by 
tackling complex course timetabling problems [24]. The 
proposed nonlinear function is given as follows; 

   )),((( MaxMinrandomeLL .

Parameters , Min and Max controls the speed of decay, 
while  controls the shape of the decay function. The higher 
the values of Min and Max, the faster the ‘water level’ goes 
down, and consequently, the search quickly achieves 
improvement, but at the expense of getting stuck early in the 
local optima. Parameter  represents the minimum expected 
penalty corresponding to the best solution, and in our case 
this is =0. This approach is introducing extra parameters 
which may require tuning for better results. However, the 
range of parameters proposed by Landa-Silva and Orbit [23] 
seem to work well in our high school model. The best 
parameters found in our model computations are; =510-8, 
Min=100,000, Max=300,000 and =0. 
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a. Adapting Non-Linear Great Deluge (NLGD) to 
High School Timetabling Problem:

Applying NLGD requires defining a solution 
configuration, identifying the neighborhood of the current 
solution and setting the parameters. For this problem, a 
solution is represented by a three-dimensional 0-1 matrix X

of dimensions n|L|m, where each Xxijk  has a value of 

1 if lesson i of subject group j is slotted in timeslot k and 0 
otherwise. The number of periods per day differs from one 
school to another; a typical school has ten 40-minute periods 
per day. These are numbered consecutively from 1 on 
Monday to 50 on Friday as shown in Table I. 

Table I. Numbering of timeslots from Monday to Friday 

Timeslot numbers
Mon 1 2 3 4 5 6 7 8 9 10
Tue 11 12 13 14 15 16 17 18 19 20
Wed 21 22 23 24 25 26 27 28 29 30
Thu 31 32 33 34 35 36 37 38 39 40
Fri 41 42 43 44 45 46 47 48 49 50

Teachers are pre-assigned to subject groups and 
therefore identified through subject-group number. An array

T is defined such that Tt j  is a teacher of the subject 

group j.
A neighbor of the current solution S is obtained by 

swapping timeslots of S. A pair of subject-group lesson 
assignments is identified randomly and the corresponding 
timeslots are swapped to obtain a new neighbor solution. 
This arrangement does not guarantee feasibility of the 
resulting neighbor. These are taken care of by penalties in the 
objective function. 

Objective function is a linear combination of all 
constraints, both hard and soft; more weights are assigned to 
the hard constraints so as to discourage infeasibilities. 

Thus, objective function is of the form 

)()()()(

)()()()()(

88776655

44332211

xfxfxfxf

xfxfxfxfxf







Where i= weight given to constraint i. 
The functions f1 to f8 are defined as follows; 

a. f1(x) spread lessons of a subject group throughout the 
week i.e.

  
   



Hii kkKkk xjxJj jkiki
kk

xf

),( ),( 1
2

21
1

1

21 2121 2211
)(

1

)(


.

b. f2(x) minimizes the use of early morning hours;

specifically 



MSk

ijkxxf 22 )(  .

c. f3(x) minimizes the use of late afternoon hours; that is to 

say, 



ASk

ijkxxf 33 )(  .

d. f4(x) minimizes the use of other non-preference 
timeslots,





PSk

ijkxxf 34 )( 

 f5(x) sums up the cases where assigned lessons of a 
subject are incomplete i.e.

 
 


Hi Kk

jijk
Jj

Lxxf )()( 45  . 

 f6(x) counts the number of times w a class has been 
assigned more than one lesson in the same timeslot i.e. 

f6(x) = 6w,

Where 




 


 

  

          Otherwise       0

1if  1
Kk Hi cGJj

ijk

j

x
w

 f7(x) counts the number of lesson collisions u, explicitly;

uxf 77 )(  . 

Where 




 


 

 

                 Otherwise          0

)1(if1
', ),(

rjkujk
KkJj ruru

xx
u

 f8(x) counts the number of teacher collisions v, that 

is vxf 88 )(  . 

Where 




 


 

 

                         Otherwise          0

)1(if  1
,),( ),(

jqkipk
KkHji TTqp

xx
v qq

A solution is feasible only if the sum of objective values 
of the hard constraints is zero. 

Initial solution used in this case study is a simple 
assignment of lessons to timeslots. Going through each 
subject-group, all lessons of the subject-group are assigned to 
the timeslots from 1 to 50. Once at the end, the next set of 
lessons are assigned from left to right (from 1 to 50) in the 
same fashion until all lessons have been allocated. This 
approach is simple and it minimizes the possibilities of 
lesson collisions by allocating all lessons of a subject-group 
into different timeslots as much as possible. However, the 
resulting solution is most likely infeasible and does not 
spread lessons of a subject-group as far as possible. The 
simplicity implies that an initial solution is obtained rather 
quickly and infeasibilities can be pruned down by penalties 
in the objective function. The details of the NLGD are shown 
in Fig. 2. 

Non-Linear Decay Rate Great Deluge Algorithm { 
Specify initial parameters (, Min, Max, ); 
Specify initial solution So; 
Initial level L = f(So), where f is the objective function; 
while L > 0 { 

Define Neighbourhood N(So); 
Randomly select a solution SN(So)) 
Calculate f(S); 
if f(S) ≤ f(So){ 

Accept S (So = S); 
else if f(S) ≤ L{ 

Accept S (So = S); 
else Reject solution (S); 

Lower the level    )),((( MaxMinrandomeLL
} 

return So as the best solution; 
} 

Figure 2. Non-Linear Great Deluge Algorithm

IV. COMPUTATIONAL RESULTS

The algorithm was tested on three high school timetables 
in Tanzania whose timetables are currently prepared
manually. It was written in C++ and tested on a 3GHz 
processor on a Windows platform. Table II shows properties 
of the tested problems. 
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Table II. : Properties of the tested problems 

Problem Subject 
groups

Lessons Timeslots Teachers

1(Azania) 62 462 45 30
2(Jangwani) 46 332 40 26
3(Tambaza) 118 919 50 50

Through experimentation, the following weights were 
determined and used in the objective function (Table III);

Table III. Weights in the objective function 

Weight Value Description

1 5 Lesson spread

2 3 Early morning hours

3 3 Late evening hours

4 3 Non-preference timeslots

5 10 Lesson completeness

6 10 Class collision

7 10 Lesson collision

8 20 Teacher collision

The NLGD algorithm was tested on both problems with 
varying set of parameters; Table IV shows the results when 
tested on problem 1. Clearly, case 5 performed better than all 
other cases. Cases 1, 4 and 6 produced solution values which 
are close to number 5, however, the quality of solution in
case 5 is still significantly better than the rest. Furthermore, it 
only took 239 seconds (less than 4 minutes) to get the
solution which is tolerable. The same trend was observed for 
different problems, indicating that the best parameters for 
NLGD in the case study are; Min = 100,000, Max = 300,000 
and  = 510-8. 

Table IV. Performance by parameter selection (Problem 1-Azania) 

Case Min Max  Solution Time
1 10000 20000 510-7 309.005 298
2 10000 20000 510-8 312.003 1,733
3 10000 20000 510-9 312.003 16,008
4 100000 300000 510-7 309.008 54
5 100000 30000 510-8 306.002 239
6 100000 30000 510-9 309.004 1015

Table V presents a comparison of performances between 
the basic Great Deluge and NLGD using the best tuned 
parameters for each algorithm. The best Niters for basic Great 
Deluge was found at Niters=4000. 

Table V. : Performances of NLGD compared to basic GD

Pr
ob

le
m

P
ro

pe
rt

y

B
as

ic
 G

D

N
L

G
D

 

1

Initial cost 630.67 630.67
Final Cost 306.003 306.002
Lesson Collision 0 0
Teacher Collision 0 0
Completeness violation 0 0
Lesson spread 0.00313 0.00248
Class Collision 0 0
Morning violation 153 153
Evening violation 153 153
Time (Seconds) 193 169

2
Initial cost 500.67 500.67
Final Cost 252.004 249.005
Lesson Collision 0 0

Teacher Collision 0 0
Completeness 0 0
Lesson spread 0.00365 0.00489
Class Collisions 0 0
Morning violation 126 126
Evening violation 126 123
Time (Seconds) 126 110

3

Initial cost 2190.67 2190.67
Final Cost 632.005 549.006
Lesson Collision 0 0
Teacher Collision 80 0
Completeness violation 0 0
Lesson spread 0.00459 0.00571
Class Collision 0 0
Morning violation 276 276
Evening violation 276 273
Time (Seconds) 573 526

NLGD performed better than basic GD in both cases. 
Both algorithms managed to get feasible solutions, but the 
best solution found is better in NLGD than basic GD for all 
cases; NLGD managed to prune further on soft constraints 
and took shorter time. It is worth noting however that both 
methods managed to solve the problems within a few 
minutes (less than nine minutes), which is tolerable for 
timetabling problems. 

An observation of the performance of the algorithm 
through iterations by level, decay rate and cost reduction is 
shown in Figure 5 for problem 3. Initially, at higher levels, 
we observe fast reduction of cost which is closely related to 
the decay rate. At lower levels however, as decay follows a 
smooth curve, the cost function shows some long periods of 
stationary moves without improvement, followed by sharp 
drops to another level. This is an indication that stopping 
criteria must be very carefully designed to ensure exhaustive 
search. Otherwise the algorithm might stop prematurely after 
some long periods of stationary moves, while further 
improvement could be realized in the longer searching 
periods. 
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Figure 3. Performance improvement by iterations 



Allen Rangia Mushi et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 584-590

© 2010, IJARCS All Rights Reserved                        589

Furthermore, it was worth comparing the performance of 
the algorithm to the manual system that is currently in place. 
The results are presented in Table VI for the three high
school timetabling problems. Obviously, manual timetable is 
also feasible as shown in the table; otherwise it would not 
have been practical. However, the manual system provides 
tremendous disadvantages by failing to satisfy a lot of soft 
constraints. Both soft constraints have been addressed better 
by the automatic system despite of the fact that it took many 
days to prepare manual timetables. Clearly, NLGD provides 
tremendous advantages over manual system. 

Table VI. : Manual versus NLGD Performances 

P
ro

bl
em

M
an

ua
l

N
L

G
D

 

1

Solution cost 339.108 306.002
Lesson Collision 0 0
Teacher Collision 0 0

Completeness violation 0 0
Lesson spread 0.1083 0.00248
Class Collision 0 0
Morning violation 171 153
Evening violation 168 153

2

Solution cost 311.014 249.005
Lesson Collision 0 0
Teacher Collision 0 0

Completeness violation 0 0
Lesson spread 0.01445 0.00489
Class Collision 0 0
Morning violation 154 126
Evening violation 157 123

3

Solution cost 611.571 549.006
Lesson Collision 0 0
Teacher Collision 0 0

Completeness violation 0 0
Lesson spread 0.57111 0.00571
Class Collision 0 0
Morning violation 372 276
Evening violation 239 273

V. CONCLUSION AND FURTHER RESEARCH 

This paper presented a non-linear Great Deluge 
algorithm which incorporated an exponential decay function. 
This is a modification from the basic Great Deluge 
algorithm. The algorithm was adapted to the high school 
timetabling problems in Tanzanian schools and tested on 
three high schools. Moreover, solutions were compared to 
manually generated ones. It is shown that, the approach 
works well in the case study and performed better than 
manual system. The NLGD has also been shown to 
outperform the basic GD algorithm. This indicates that the 
non-linear function relates well to the ‘water level’ and cost 
reduction functions. 

Since this is the first paper in the Tanzanian high schools 
to the best of our knowledge, it is clearly a good starting 
point for further research in the direction. It would be 
interesting to investigate other heuristic algorithms which 
have been well researched in similar problems. More data 
collection from varying schools and testing on the algorithm 
could bring more light into the properties and challenges of 
the problem. It is worth investigating further decay function 
which may come closer to the reduction function than the 
current situation. 

It is concluded that, given careful tuning of parameters, 
the Non-Linear Great Deluge algorithm is a viable approach 

to high school timetabling problems in the Tanzanian 
environment. 
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