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Abstract: On the design of a reliable programming model for wireless sensor networks (WSN), we must deal with various concerns, such as 
heterogeneousness of sensors, different sensing capabilities, dynamic updates and power consumption. The adhoc-networking characteristic of 
WSNs, its nonviable physical access, and the fact that WNS's are typically programmed in low-level paradigms, and the nonexistence of a robust 
semantic for existing languages are features that burden the task of programming sensor networks.  
A more efficient approach to program WSN is using a high-level programming language combined with robust semantics. This combination is 
not provided by any existing programming languages. Consequently, it is not possible to prove the equivalence between the semantics of the 
language and its implementation. Therefore, a semantic gap is induced.  
The CALLAS project proposes the creation of a calculus for a specific programming language and the corresponding virtual machine. 
Furthermore, it provides the semantic equivalence between the calculus and the virtual machine, thus the type-safety of the language. The main 
contribution of this thesis is the design and the implementation of a virtual machine for the Callas language, as derived from the base calculus 
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I. INTRODUCTION  

Wireless Sensor Networks (WSNs) are collections of 
small and low-cost sensors, also called motes, as a result of 
their small size. These sensors can be deployed over wide 
areas and programmed to sense their environment. They can 
communicate data attributes over radio links using ad-hoc 
networking protocols [2]. It is expected that, in the future, 
thousands of low-cost motes, may be deployed over wide 
areas to provide long term monitoring of conditions and/or 
activity for days, months or even years. 

Wireless Sensor Networks have been challenging the 
research community with an efficient programming model 
for them [3]. This programming model must deal with 
various concerns, such as: a heterogeneous mix of sensors, 
motes with different sensing capabilities, dynamic updates 
and power consumption [9]. WSNs have some very specific 
characteristics that are significantly different from other 
wireless networks, essentially: 

A. The Design of a Sensor Network is Mostly Driven by 
the Target Application [5];  
A. Sensor nodes are highly constrained in terms of CPU 

speed, memory availability and power consumption [5];  
B. Large-scale sensor networks require self-configuration 

and automatic software updates without human       
intervention [5].  
Moreover, the reliability in communication and lifetime 

of a WSN and its nodes is inferior compared to more 
conventional networks [16].  

Wireless sensor networks have no rigid structure, and 
their granularity can vary from tens to thousands of nodes.  

II. PROGRAMMING SENSOR NETWORKS 

In this we have given a brief overview of a different 
variety of programming models for wireless sensor networks, 
focusing on their relative advantages and disadvantages.  

The models can be broadly classified as high-level and 
low-level programming languages or tools [9].  

A. Low-Level Programming: 
The low-level programming of sensor networks can be 

done in distinct layers: directly using binary code, on top of a 
hardware abstract layer such as a virtual machine, and as part 
of a more generous middleware framework [15]. I have 
briefly described each approach, giving examples of 
programming languages/systems for each layer, and focusing 
on their advantages and disadvantages 

B. Virtual Machines: 
There are few virtual machine implementations for 

sensor networks. One of the better known in the literature is 
Mat, a communication-centric virtual machine [14].  

The main focus of this virtual machine is the 
communication between sensors in the network [17]. 
Programming sensor networks with Mat´ can be done using 
the Tiny Script e language or using a higher level 
programming language called Mottle [10]. Programs are 
called capsules and they may be injected in the network, 
when needed, to achieve specific tasks [11]. These programs 
have the capability to move between sensors. There are also 
mechanisms that allow the installation of ad-hoc routing 
algorithms and data aggregation.  

The Distributed Token Machine (DTM), used in the 
Regiment programming language, is another example of a 
virtual machine for sensor networks. DTM is a token driven 
virtual machine, in which, each token is a typed message 
with data/code that triggers a specific handler upon its 
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reception [6]. All the execution and communication is based 
on event handlers. It has an associated intermediate language, 
called Token Machine Language (TML) that can be targeted 
by compilers for higher level systems. 

C. High Level Programming: 
At network level, the high-level programming can be 

divided in microprogramming or sensor-based programming 
[14]. The main idea of microprogramming systems is that 
applications for sensor networks should be developed as 
typical distributed applications without the need for the 
programmer to specify the role of each computing node 
individually [14]. The approach taken by these systems 
allows the programmer to focus on the application in a high-
level fashion neglecting network architecture and 
communication details [7]. A compiler or a bundle of run-
time libraries should take care of those details [13]. 
Applications in this kind of systems can be implemented 
using two types of behavior: global behavior and local 
behavior.  

In global behavior, applications are implemented 
including all nodes in the network, without using any form of 
hierarchical partitioning of the network in subunits for the 
specification of the computation [6].  

In systems using the local behavior approach, the 
network is partitioned in regions to specify a computation 
[17]. Abstract Regions, HOOD, Regiment, Kairos and 
SNACK are examples of systems and programming 
languages that are based on a local behavior approach. 
Regiment is a great example of this kind of language, as it 
uses network regions and data streams as the elemental 
programming abstractions. It is a functional language that 
does not permit input, output, or direct manipulation of a 
program state. The run-time environment is based on DTM 
virtual machine, previously described in this chapter [16].  

On sensor-based programming systems, the 
responsibility to specify the role of each sensor 
(implementation, compilation and deployment) belongs to 
the programmer [10]. He must possess knowledge of the 
architecture of the sensor network and even perhaps the 
hardware of each sensor node. Smart Messages is based on 
this type of approach. Smart Message’s allows messages 
between sensor nodes to carry code, data and execution state. 
It is based on Java and expands the Java APIs with some 
features, such as support for spatial programming.  

Also in this line of work, project CALLAS tackles the 
problem of providing the WSN with a robust programming 
model in the sense that the languages obtained are type-safe 
and that the semantics of the virtual machine matches that of 
the formal model [9]. The type-safety property of the Callas 
language allows programs to be verified statically and a 
significant set of would-be run-time errors to be detected 
prematurely [8]. Higher level programming in CALLAS is 
achieved by encoding high-level constructs in the core 
programming model, thus preserving semantics. 

III. THE PROGRAMMING MODEL 

Callas is a calculus for programming sensor networks 
that provides primitives for sensor computation, 
communication, code mobility, and updates. It provides a 
type-safe framework for developing programming languages 
and run-time systems [14]. 

A network is represented as S or as 0, being the later the 
representation of an empty network [7]. A network is a 
concurrent composition of sensors devices, represented as 

 
Each sensor device comprises the following elements 

[12]: 
A. C - a call-stack for the running process;  
B. R - a priority queue of runnable processes;  
C. M - a table with the installed code modules; 
D. T - a table of timers for function calls;  
E. I - a queue of incoming messages from the network;  
F. O - a queue of outgoing messages for the network;  
G. p - the current position;  
H. t - the current time.  

The running process uses the C stack, while the runnable 
processes are located at R. The interface between low-level 
networking is done with I and O queues. These queues buffer 
the messages between sensor devices in the network. 
Messages are serialized or packaged function calls of the 
form l [5]. The devices are not only capable of measuring 
their position, p, but can also sense a few physical properties 
of the environment (e.g. temperature, humidity), by calling 
external routines. The code installed in each sensor is 
represented by M and it consists of a set of named functions. 
The later are represented by l = (x)P , where l is the name of 
the function, x are the parameters, and P the code for the 
function. T is a set of timed function calls to functions in M. 
Each timed call is a tuple formed by the call to be triggered, 
the timer period, the time after which the timer expires and, 
the time of the next call.  

The values exchanged between sensor devices are 
represented by v, and comprise basic values b (primitive 
data-types from the sensors), and code M, representing byte-
code modules [16].  

A process P can: call a function (v .l (v)), call an 
external function (extern l (v)), install a module (M.install 
M′), send a message (send l(v)), receive a message (receive ), 
program a timed call (timer l(v) every v expire v), or assign 
values to variables (the let construct). In the module 
installation, the process adds the set of functions in M′ to M. 
send l (v) takes a call, packages it, and places it at the 
outgoing-queue, to be sent over the network. On the other 
hand, a receive gets a packaged call from the incoming-
queue, unpacks it, and places it in the run-queue. In a timed-
call timer l (v) every v expire v, the call l (v) is executed 
periodically until the timer expires. A timed call that does not 
expire is written as timer l (v) every v forever. Finally, the let 
construct permits the processing of intermediate values in 
computations [15]. 

A. Semantics: 
The operational semantics is defined with the help of a 

structural congruence as usually in process calculus the 
congruence rules are given in Figure 3.2 [17]. 

Standard rule is [C, R ⊲ M, T ]Ip,  , O ≡ [C, R ⊲ M, T 
]Ip, ,O {0 }, which provides a conceptual membrane to the 
sensor. This membrane is an artifice to prevent sensors from 
receiving duplicate copies of a message during a broadcast 
[3]. 

All sensor’s reductions are carried out without any 
interference. The installation of a module on a sensor is 
controlled by the rules R- INSTALL- INTERFACE and R-
INSTALL – MODULE 
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S1 | S2 ≡ S2 | S1, S | 0 ≡ S, S1 | (S2 | S3) ≡ (S1 | S2) | S3 
(S-monoid-Sensor) 

 
Figure 1: Structural congruence for sensors. 

The first one is responsible for the installation of a 
module on the sensor’s interface, and the second one is 
responsible for the installation of a module on an anonymous 
module. 

B. Language Syntax: 
We have presented some examples written in a concrete 

syntax derived from the calculus for the Callas language. The 
syntax does not use braces to delimit blocks. It is inspired in 
the Python programming language and its indentation style, 
which makes use of white space to delimit blocks. The 
grammar for the concrete syntax may be consulted in [18]. In 
the Callas Language, lines which end with (:) delimit the 
start of a block of code and the consequent lines with the 
same indentation constitute the body of the block.  

The first example is the sampling program presented in 
the previous section, the second one is a simple Ping, and the 
last one computes a maximum value of a data attribute in a 
network [15]. 

#Sink 
run: 
module Sampling as sampling 
def gather(self ,x ,y); 
extern log(x ,y); 
def receiver(self ,x ,y); 
receive sensor. install(sampling); 
send setup(period, interval); 
timer receiver() every dt forever 

Figure 2: Sampling program – Sink 

#Sensor 
run: 
module Sampling as sampling 
def setup(self ,x ,y): 
fire self. sample() every x ,require y  
def sample(self); 
x=extern time() 
y=extern data() 
send gather(x ,y) 
def receiver(self ,x ,y): 
receive 
sensor. install(sampling); 
timer receiver() every dt forever 

Figure 3: Sampling program – Sensor 

IV. VIRTUAL MACHINE 

The idea is to prove, in future work, the equivalence 
between the semantics of the calculus and that of the virtual 
machine, thus establishing the soundness of the virtual 
machine. The virtual machine we present serves as the 
specification for the run-time environment of the Callas 
programming language.  

The programming language chosen to implement the 
virtual machine was Java. This choice was a result of the 
adoption of SunSPOTR platform for the development. The 
SunSPOTR devices run a compact version of a Java virtual 
machine, called Squawk.  

A. Format of Byte –Code: 
In the byte-code format, a program (p) has as its 

constituents: a magic-number, a version, a list of modules, 
and a list of types. Both magic-number and version are basic 
types [13].  

A module (m) is a list of functions (f ), and each 
function is composed by a string with its name, the number 
of local variables, the code with its instructions, and a set of 
constant symbols [13]. All the instructions are given by c, 
and each constant symbol is given by u, that can be one of 
the follow: BOOL k, INTEGER n, FLOAT e, STRING k l, 

B. Specification: 
The syntactic categories of the virtual machine are 

defined in Figure 4.2. A byte-array of Callas byte-code is 
represented by b of a set B. A word w of set (W) used in the 
virtual machine can be a boolean, an integer, a float, a string, 
or a module m of set M, which is a map String 7→ B 
representing a set of functions [11]. The virtual machine has 
both incoming, and outgoing queues of sets I and O for 
network purposes. Both queues manipulate frames of set F, 
which are sequences of words. A priority queue, of set R, is 
also present. This queue is a sequence of runnable processes 
of set H [12]. A runnable process is composed of a tuple 
with: an operand-stack of set S and a byte-array of set B. On 
the other hand, the running-process is executed in a call stack 
of set C that contains tuples, of set G, with: an operand-stack, 
byte-code, an environment frame, and a program counter [7]. 
Finally, timed-calls are represented as tuples, of set T , with 
an operand-stack and tree integers representing the period, 
expire time, and the time of the next call. Finally, a machine 
state is a tuple of set: 
Int ×M× T × C × R × I × O ∪ {halt} 

C. Semantics: 
In this section we present the operational semantics of 

the Callas virtual machine. The semantics is based on the 
reduction semantics for the calculus presented in [5], and is 
parametric in the program p. 

byte array        b ∈ B  
word                   w ∈ W = Bool ∪  Int ∪  Float ∪  
String ∪M  
frame                    F = h ~W i 
operand-stack       S = ~W 
timer       T = S × Int × Int × Int 
incoming-queue            I = ~F 
outgoing-queue             O = ~F 
runnable process  H = S × B 
run-queue   R = ~H 
running process  G = S × F × Int × B 
call-stack   C =~G 
module   m ∈ M= String 7→  B  
machine state   Int ×M× T × C × R × I × O ∪ 
{halt} 

Figure 4: The syntactic categories of the virtual machine. 

n-initialized          h<w>k≡<w1,...,wn, 01, . . . . . . , 0k>, k ≥ 0 
k-extra frame           
frame     <w> ≡ <w>0 
stacks of syntactic category   α α1 : ・ ・ ・ : αn |Q 

queues of syntactic category  α α1 :: ・ ・ ・ :: αn | Q 

Figure 5: Notation for the components of the virtual machine. 
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D. Implementation: 

In this section we focus on the implementation of the 
virtual machine. The main objective was to use the virtual 
machine’s operational semantics as a specification. 

The data-structures we require map one-to-one with 
those of the formal semantics (Table 4.4). The 
implementation was done in the Java programming language, 
to run on the Squawk virtual machine installed in SunSPOTR 
devices [9]. The source code of the virtual machine is 
provided with this thesis in Appendix A. 

Tabal : 1 Data-Structures map 

 
The virtual machine’s primary structure is the class 

Program, which keeps run-time information about the 
program’s byte-code p. 
Class  Program  
private  int  magicNumber ; 
private byte version ; 
private  Vector modules ; 
private   Vector types; 
private  byte [ ] byteCode ; 
Program(int magicNumber ,byte version,Vector modules 
,Vector typesbyte [ ] byteCode) 

{  
. . .  

} 
} 

Class Program has the following elements: a magic 
number, a version, a vector that keeps the program’s 
modules, and a vector that keeps the type information. The 
number of modules and types can be extracted from the 
Vector object. 

As we saw, a Program has a list of modules and each 
element of this list has its own structure. Next, we present the 
definition of the Module class. 
Class Module { 

protected byte open ; 
protected Vector functions; 
Module( )  
{ . . .  
} 

} 
The class Module has only two elements: a byte that 

indicates whether a module has free variables, and a vector 
with the functions that make up the module [16]. To be more 

conservative in terms of memory we use a vector instead of a 
hash table, we consider that we do not have a large number 
of functions in a module. In future work, the use of a hash 
table will be preferable. 

Class Function has the following attributes: the name, 
the number of locals, the bytecode, and the symbols. The 
function’s symbols are constants that can be referred to in the 
byte-code and can be one of the following types: integer, 
float, boolean, string, or a module [9]. We extract the 
symbols associated with every function from its bytecode to 
make the implementation simpler. The field byteCode of the 
class Function should then be understood as composed of the 
machine instructions for the body of the function. 
C lass Function  
{ 
private  String name ; 
private byte [ ] byteCode ; 
private Vector symbols ; 
private byte numberOfLocals; 
Function( ) 
{ . . . } 
} 

These data-structures completely describe the program’s 
byte code. 

We now turn to the virtual machine data-structures. One 
of these structures is represented by class RunnableProcess, 
which represents a run-queue tuple H for a given function 
and environment frame. 

E. Developing and Running Callas Applications: 
For the development of the virtual machine for the 

Callas language and of Callas applications we have chosen 
the Eclipse platform [13]. The reasons behind this choice 
were the fact that it runs on multiple platforms and has an 
excellent support for Java based development. 

Here, we have presented a small example session that 
builds Callas applications and runs it on the SunSPOTR 
simulation tool Solarium. We will use the Ping program, and 
two sensors: Sensor and Sink. Both are Java projects, and 
have an embedded Callas virtual machine. 

In Figure 4.5 we see the SunSPOT SDK libraries used 
by the virtual machine and the applications. 
 

 
Figure 6: Referenced libraries. 
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Each project has a build.xml file (same as the Demos 
application projects supplied with the SunSPOT SDK), and a 
MANIFEST.MF file with the following configuration: 
MIDlet−Name: VirtualMachine 
MIDlet−Version: 1. 0. 0 
MIDlet−Vendor: Sun MicrosystemsInc 
MIDlet −1: , , org.callas.vm.VirtualMachine 
MicroEdition−Profile: IMP−1.0 
MicroEdition−Configuration : CLDC−1.1 
This indicates the entry point to the application. 

An application is formed by the Java code of the virtual 
machine plus a byte-array that holds the Callas program 
byte-code. Upon initialization in the sensor, the virtual 
machine reads the byte-array and extracts this data into a run-
time representation of the program. 

The SPOT Emulator is able to run SunSPOT applications 
in desktops. Further, it has almost the same features as a 
real SunSPOT namely: a configurable sensor panel 
instead of a physical sensor board, configurable leds, and 
communication via radio [17]. 
To create a virtual SPOT we can use the interface, Figure 
4.6. 

 
Figure 7: Creating a virtual SunSPOT. 

To proceed with the Ping example we hit the Deploy 
MIDlet bundle action (Figure 4.8), which allow us to deploy 
an application onto the virtual SPOT.We select the build.xml 
file corresponding to the project, or an existing project’s jar 
file that we want to deploy to the virtual SPOT. Another 
action that we use, the Display application output, allows us 
to view the output from applications running on the virtual 
device. We can also use the Set Name command to label 
virtual SPOTs, in this case sensor or sink (Figure 4.9). 
 

 
 

                 (a) Sensor                                     (b) Sink 

Figure 8: Set the name of the virtual SPOTs. 

The application consists of two projects with the source 
of the Callas virtual machine and the byte-code to be 
executed. 

Next, we set the name of each virtual SPOT: one as 
Sensor, the other as Sink. In Figure 4.9 we can view that the 
left virtual SPOT is the Sensor and the right is the Sink. 

After this, we deploy both projects in their respective 
virtual SPOT (Figures 4.10 and 4.11) by selecting the 
appropriate build.xml files in each of the ping project/sensor 
and ping project/sink directories. 
 

 
Figure 9: Deploy Sink project. 

 

 
Figure 10: Deploy Sensor project. 

The first one is responsible for the installation of a 
module on the sensor’s interface, and the second one is 
responsible for the installation of a module on an anonymous 
module. 

V. CONCLUSIONS 

In this thesis we have presented the base calculus, 
presenting its reduction semantics, proved before being type-
safe. 

We have worked on specifying an operational semantics 
for a virtual machine for Callas based on the same calculus, 
maintaining as closest as possible from that of the calculus. 
Based on this operational semantics, we have developed an 
implementation of a virtual machine for the SunSPOT 
platform, which runs on top of a Squawk virtual machine. 
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We have written some programs in Callas language and 
created correspondent projects, and tested them in the 
SunSPOT devices, and in the Solarium tool. All of the 
programs written are type-safe. 

For future work, we are intending to create high-level 
programming languages, add more abstractions to the 
semantics (e.g. regions), and prove the semantic equivalence 
between the calculus and the virtual machine, thus proving 
the type-safety of the language. 
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