
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 209

Implementing JAVA based Virtual Machine for Embedding Wireless Sensor Network
Nodes

Jayesh N. Rathod*
Computer Science and Engineering Department

Laxmi Naraian Institute of Technology
Indore, India

jnrathod@aits.edu.in

Rashmi S. Agrawal
Computer Science and Engineering Department

Thakral Collage of Technology
Bhopal, India

Rashmi.agrawal@aits.edu.in

Abstract: On the design of a reliable programming model for wireless sensor networks (WSN), we must deal with various concerns, such as
heterogeneousness of sensors, different sensing capabilities, dynamic updates and power consumption. The adhoc-networking characteristic of
WSNs, its nonviable physical access, and the fact that WNS's are typically programmed in low-level paradigms, and the nonexistence of a robust
semantic for existing languages are features that burden the task of programming sensor networks.
A more efficient approach to program WSN is using a high-level programming language combined with robust semantics. This combination is
not provided by any existing programming languages. Consequently, it is not possible to prove the equivalence between the semantics of the
language and its implementation. Therefore, a semantic gap is induced.
The CALLAS project proposes the creation of a calculus for a specific programming language and the corresponding virtual machine.
Furthermore, it provides the semantic equivalence between the calculus and the virtual machine, thus the type-safety of the language. The main
contribution of this thesis is the design and the implementation of a virtual machine for the Callas language, as derived from the base calculus

Keywords: Wireless, Sensor, Network, CALLAS, virtual machine, calculus

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are collections of
small and low-cost sensors, also called motes, as a result of
their small size. These sensors can be deployed over wide
areas and programmed to sense their environment. They can
communicate data attributes over radio links using ad-hoc
networking protocols [2]. It is expected that, in the future,
thousands of low-cost motes, may be deployed over wide
areas to provide long term monitoring of conditions and/or
activity for days, months or even years.

Wireless Sensor Networks have been challenging the
research community with an efficient programming model
for them [3]. This programming model must deal with
various concerns, such as: a heterogeneous mix of sensors,
motes with different sensing capabilities, dynamic updates
and power consumption [9]. WSNs have some very specific
characteristics that are significantly different from other
wireless networks, essentially:

A. The Design of a Sensor Network is Mostly Driven by
the Target Application [5];
A. Sensor nodes are highly constrained in terms of CPU

speed, memory availability and power consumption [5];
B. Large-scale sensor networks require self-configuration

and automatic software updates without human
intervention [5].
Moreover, the reliability in communication and lifetime

of a WSN and its nodes is inferior compared to more
conventional networks [16].

Wireless sensor networks have no rigid structure, and
their granularity can vary from tens to thousands of nodes.

II. PROGRAMMING SENSOR NETWORKS

In this we have given a brief overview of a different
variety of programming models for wireless sensor networks,
focusing on their relative advantages and disadvantages.

The models can be broadly classified as high-level and
low-level programming languages or tools [9].

A. Low-Level Programming:
The low-level programming of sensor networks can be

done in distinct layers: directly using binary code, on top of a
hardware abstract layer such as a virtual machine, and as part
of a more generous middleware framework [15]. I have
briefly described each approach, giving examples of
programming languages/systems for each layer, and focusing
on their advantages and disadvantages

B. Virtual Machines:
There are few virtual machine implementations for

sensor networks. One of the better known in the literature is
Mat, a communication-centric virtual machine [14].

The main focus of this virtual machine is the
communication between sensors in the network [17].
Programming sensor networks with Mat´ can be done using
the Tiny Script e language or using a higher level
programming language called Mottle [10]. Programs are
called capsules and they may be injected in the network,
when needed, to achieve specific tasks [11]. These programs
have the capability to move between sensors. There are also
mechanisms that allow the installation of ad-hoc routing
algorithms and data aggregation.

The Distributed Token Machine (DTM), used in the
Regiment programming language, is another example of a
virtual machine for sensor networks. DTM is a token driven
virtual machine, in which, each token is a typed message
with data/code that triggers a specific handler upon its

Jayesh N. Rathod et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,209-214

© 2010, IJARCS All Rights Reserved 210

reception [6]. All the execution and communication is based
on event handlers. It has an associated intermediate language,
called Token Machine Language (TML) that can be targeted
by compilers for higher level systems.

C. High Level Programming:
At network level, the high-level programming can be

divided in microprogramming or sensor-based programming
[14]. The main idea of microprogramming systems is that
applications for sensor networks should be developed as
typical distributed applications without the need for the
programmer to specify the role of each computing node
individually [14]. The approach taken by these systems
allows the programmer to focus on the application in a high-
level fashion neglecting network architecture and
communication details [7]. A compiler or a bundle of run-
time libraries should take care of those details [13].
Applications in this kind of systems can be implemented
using two types of behavior: global behavior and local
behavior.

In global behavior, applications are implemented
including all nodes in the network, without using any form of
hierarchical partitioning of the network in subunits for the
specification of the computation [6].

In systems using the local behavior approach, the
network is partitioned in regions to specify a computation
[17]. Abstract Regions, HOOD, Regiment, Kairos and
SNACK are examples of systems and programming
languages that are based on a local behavior approach.
Regiment is a great example of this kind of language, as it
uses network regions and data streams as the elemental
programming abstractions. It is a functional language that
does not permit input, output, or direct manipulation of a
program state. The run-time environment is based on DTM
virtual machine, previously described in this chapter [16].

On sensor-based programming systems, the
responsibility to specify the role of each sensor
(implementation, compilation and deployment) belongs to
the programmer [10]. He must possess knowledge of the
architecture of the sensor network and even perhaps the
hardware of each sensor node. Smart Messages is based on
this type of approach. Smart Message’s allows messages
between sensor nodes to carry code, data and execution state.
It is based on Java and expands the Java APIs with some
features, such as support for spatial programming.

Also in this line of work, project CALLAS tackles the
problem of providing the WSN with a robust programming
model in the sense that the languages obtained are type-safe
and that the semantics of the virtual machine matches that of
the formal model [9]. The type-safety property of the Callas
language allows programs to be verified statically and a
significant set of would-be run-time errors to be detected
prematurely [8]. Higher level programming in CALLAS is
achieved by encoding high-level constructs in the core
programming model, thus preserving semantics.

III. THE PROGRAMMING MODEL

Callas is a calculus for programming sensor networks
that provides primitives for sensor computation,
communication, code mobility, and updates. It provides a
type-safe framework for developing programming languages
and run-time systems [14].

A network is represented as S or as 0, being the later the
representation of an empty network [7]. A network is a
concurrent composition of sensors devices, represented as

Each sensor device comprises the following elements

[12]:
A. C - a call-stack for the running process;
B. R - a priority queue of runnable processes;
C. M - a table with the installed code modules;
D. T - a table of timers for function calls;
E. I - a queue of incoming messages from the network;
F. O - a queue of outgoing messages for the network;
G. p - the current position;
H. t - the current time.

The running process uses the C stack, while the runnable
processes are located at R. The interface between low-level
networking is done with I and O queues. These queues buffer
the messages between sensor devices in the network.
Messages are serialized or packaged function calls of the
form l [5]. The devices are not only capable of measuring
their position, p, but can also sense a few physical properties
of the environment (e.g. temperature, humidity), by calling
external routines. The code installed in each sensor is
represented by M and it consists of a set of named functions.
The later are represented by l = (x)P , where l is the name of
the function, x are the parameters, and P the code for the
function. T is a set of timed function calls to functions in M.
Each timed call is a tuple formed by the call to be triggered,
the timer period, the time after which the timer expires and,
the time of the next call.

The values exchanged between sensor devices are
represented by v, and comprise basic values b (primitive
data-types from the sensors), and code M, representing byte-
code modules [16].

A process P can: call a function (v .l (v)), call an
external function (extern l (v)), install a module (M.install
M′), send a message (send l(v)), receive a message (receive),
program a timed call (timer l(v) every v expire v), or assign
values to variables (the let construct). In the module
installation, the process adds the set of functions in M′ to M.
send l (v) takes a call, packages it, and places it at the
outgoing-queue, to be sent over the network. On the other
hand, a receive gets a packaged call from the incoming-
queue, unpacks it, and places it in the run-queue. In a timed-
call timer l (v) every v expire v, the call l (v) is executed
periodically until the timer expires. A timed call that does not
expire is written as timer l (v) every v forever. Finally, the let
construct permits the processing of intermediate values in
computations [15].

A. Semantics:
The operational semantics is defined with the help of a

structural congruence as usually in process calculus the
congruence rules are given in Figure 3.2 [17].

Standard rule is [C, R ⊲ M, T]Ip, , O ≡ [C, R ⊲ M, T
]Ip, ,O {0 }, which provides a conceptual membrane to the
sensor. This membrane is an artifice to prevent sensors from
receiving duplicate copies of a message during a broadcast
[3].

All sensor’s reductions are carried out without any
interference. The installation of a module on a sensor is
controlled by the rules R- INSTALL- INTERFACE and R-
INSTALL – MODULE

Jayesh N. Rathod et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,209-214

© 2010, IJARCS All Rights Reserved 211

S1 | S2 ≡ S2 | S1, S | 0 ≡ S, S1 | (S2 | S3) ≡ (S1 | S2) | S3
(S-monoid-Sensor)

Figure 1: Structural congruence for sensors.

The first one is responsible for the installation of a
module on the sensor’s interface, and the second one is
responsible for the installation of a module on an anonymous
module.

B. Language Syntax:
We have presented some examples written in a concrete

syntax derived from the calculus for the Callas language. The
syntax does not use braces to delimit blocks. It is inspired in
the Python programming language and its indentation style,
which makes use of white space to delimit blocks. The
grammar for the concrete syntax may be consulted in [18]. In
the Callas Language, lines which end with (:) delimit the
start of a block of code and the consequent lines with the
same indentation constitute the body of the block.

The first example is the sampling program presented in
the previous section, the second one is a simple Ping, and the
last one computes a maximum value of a data attribute in a
network [15].

#Sink
run:
module Sampling as sampling
def gather(self ,x ,y);
extern log(x ,y);
def receiver(self ,x ,y);
receive sensor. install(sampling);
send setup(period, interval);
timer receiver() every dt forever

Figure 2: Sampling program – Sink

#Sensor
run:
module Sampling as sampling
def setup(self ,x ,y):
fire self. sample() every x ,require y
def sample(self);
x=extern time()
y=extern data()
send gather(x ,y)
def receiver(self ,x ,y):
receive
sensor. install(sampling);
timer receiver() every dt forever

Figure 3: Sampling program – Sensor

IV. VIRTUAL MACHINE

The idea is to prove, in future work, the equivalence
between the semantics of the calculus and that of the virtual
machine, thus establishing the soundness of the virtual
machine. The virtual machine we present serves as the
specification for the run-time environment of the Callas
programming language.

The programming language chosen to implement the
virtual machine was Java. This choice was a result of the
adoption of SunSPOTR platform for the development. The
SunSPOTR devices run a compact version of a Java virtual
machine, called Squawk.

A. Format of Byte –Code:
In the byte-code format, a program (p) has as its

constituents: a magic-number, a version, a list of modules,
and a list of types. Both magic-number and version are basic
types [13].

A module (m) is a list of functions (f), and each
function is composed by a string with its name, the number
of local variables, the code with its instructions, and a set of
constant symbols [13]. All the instructions are given by c,
and each constant symbol is given by u, that can be one of
the follow: BOOL k, INTEGER n, FLOAT e, STRING k l,

B. Specification:
The syntactic categories of the virtual machine are

defined in Figure 4.2. A byte-array of Callas byte-code is
represented by b of a set B. A word w of set (W) used in the
virtual machine can be a boolean, an integer, a float, a string,
or a module m of set M, which is a map String 7→ B
representing a set of functions [11]. The virtual machine has
both incoming, and outgoing queues of sets I and O for
network purposes. Both queues manipulate frames of set F,
which are sequences of words. A priority queue, of set R, is
also present. This queue is a sequence of runnable processes
of set H [12]. A runnable process is composed of a tuple
with: an operand-stack of set S and a byte-array of set B. On
the other hand, the running-process is executed in a call stack
of set C that contains tuples, of set G, with: an operand-stack,
byte-code, an environment frame, and a program counter [7].
Finally, timed-calls are represented as tuples, of set T , with
an operand-stack and tree integers representing the period,
expire time, and the time of the next call. Finally, a machine
state is a tuple of set:
Int ×M× T × C × R × I × O ∪ {halt}

C. Semantics:
In this section we present the operational semantics of

the Callas virtual machine. The semantics is based on the
reduction semantics for the calculus presented in [5], and is
parametric in the program p.

byte array b ∈ B
word w ∈ W = Bool ∪ Int ∪ Float ∪
String ∪M
frame F = h ~W i
operand-stack S = ~W
timer T = S × Int × Int × Int
incoming-queue I = ~F
outgoing-queue O = ~F
runnable process H = S × B
run-queue R = ~H
running process G = S × F × Int × B
call-stack C =~G
module m ∈ M= String 7→ B
machine state Int ×M× T × C × R × I × O ∪
{halt}

Figure 4: The syntactic categories of the virtual machine.

n-initialized h<w>k≡<w1,...,wn, 01, , 0k>, k ≥ 0
k-extra frame
frame <w> ≡ <w>0
stacks of syntactic category α α1 : ・ ・ ・ : αn |Q

queues of syntactic category α α1 :: ・ ・ ・ :: αn | Q

Figure 5: Notation for the components of the virtual machine.

Jayesh N. Rathod et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,209-214

© 2010, IJARCS All Rights Reserved 212

D. Implementation:

In this section we focus on the implementation of the
virtual machine. The main objective was to use the virtual
machine’s operational semantics as a specification.

The data-structures we require map one-to-one with
those of the formal semantics (Table 4.4). The
implementation was done in the Java programming language,
to run on the Squawk virtual machine installed in SunSPOTR
devices [9]. The source code of the virtual machine is
provided with this thesis in Appendix A.

Tabal : 1 Data-Structures map

The virtual machine’s primary structure is the class

Program, which keeps run-time information about the
program’s byte-code p.
Class Program
private int magicNumber ;
private byte version ;
private Vector modules ;
private Vector types;
private byte [] byteCode ;
Program(int magicNumber ,byte version,Vector modules
,Vector typesbyte [] byteCode)

{
. . .

}
}

Class Program has the following elements: a magic
number, a version, a vector that keeps the program’s
modules, and a vector that keeps the type information. The
number of modules and types can be extracted from the
Vector object.

As we saw, a Program has a list of modules and each
element of this list has its own structure. Next, we present the
definition of the Module class.
Class Module {

protected byte open ;
protected Vector functions;
Module()
{ . . .
}

}
The class Module has only two elements: a byte that

indicates whether a module has free variables, and a vector
with the functions that make up the module [16]. To be more

conservative in terms of memory we use a vector instead of a
hash table, we consider that we do not have a large number
of functions in a module. In future work, the use of a hash
table will be preferable.

Class Function has the following attributes: the name,
the number of locals, the bytecode, and the symbols. The
function’s symbols are constants that can be referred to in the
byte-code and can be one of the following types: integer,
float, boolean, string, or a module [9]. We extract the
symbols associated with every function from its bytecode to
make the implementation simpler. The field byteCode of the
class Function should then be understood as composed of the
machine instructions for the body of the function.
C lass Function
{
private String name ;
private byte [] byteCode ;
private Vector symbols ;
private byte numberOfLocals;
Function()
{ . . . }
}

These data-structures completely describe the program’s
byte code.

We now turn to the virtual machine data-structures. One
of these structures is represented by class RunnableProcess,
which represents a run-queue tuple H for a given function
and environment frame.

E. Developing and Running Callas Applications:
For the development of the virtual machine for the

Callas language and of Callas applications we have chosen
the Eclipse platform [13]. The reasons behind this choice
were the fact that it runs on multiple platforms and has an
excellent support for Java based development.

Here, we have presented a small example session that
builds Callas applications and runs it on the SunSPOTR
simulation tool Solarium. We will use the Ping program, and
two sensors: Sensor and Sink. Both are Java projects, and
have an embedded Callas virtual machine.

In Figure 4.5 we see the SunSPOT SDK libraries used
by the virtual machine and the applications.

Figure 6: Referenced libraries.

Jayesh N. Rathod et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,209-214

© 2010, IJARCS All Rights Reserved 213

Each project has a build.xml file (same as the Demos
application projects supplied with the SunSPOT SDK), and a
MANIFEST.MF file with the following configuration:
MIDlet−Name: VirtualMachine
MIDlet−Version: 1. 0. 0
MIDlet−Vendor: Sun MicrosystemsInc
MIDlet −1: , , org.callas.vm.VirtualMachine
MicroEdition−Profile: IMP−1.0
MicroEdition−Configuration : CLDC−1.1
This indicates the entry point to the application.

An application is formed by the Java code of the virtual
machine plus a byte-array that holds the Callas program
byte-code. Upon initialization in the sensor, the virtual
machine reads the byte-array and extracts this data into a run-
time representation of the program.

The SPOT Emulator is able to run SunSPOT applications
in desktops. Further, it has almost the same features as a
real SunSPOT namely: a configurable sensor panel
instead of a physical sensor board, configurable leds, and
communication via radio [17].
To create a virtual SPOT we can use the interface, Figure
4.6.

Figure 7: Creating a virtual SunSPOT.

To proceed with the Ping example we hit the Deploy
MIDlet bundle action (Figure 4.8), which allow us to deploy
an application onto the virtual SPOT.We select the build.xml
file corresponding to the project, or an existing project’s jar
file that we want to deploy to the virtual SPOT. Another
action that we use, the Display application output, allows us
to view the output from applications running on the virtual
device. We can also use the Set Name command to label
virtual SPOTs, in this case sensor or sink (Figure 4.9).

 (a) Sensor (b) Sink

Figure 8: Set the name of the virtual SPOTs.

The application consists of two projects with the source
of the Callas virtual machine and the byte-code to be
executed.

Next, we set the name of each virtual SPOT: one as
Sensor, the other as Sink. In Figure 4.9 we can view that the
left virtual SPOT is the Sensor and the right is the Sink.

After this, we deploy both projects in their respective
virtual SPOT (Figures 4.10 and 4.11) by selecting the
appropriate build.xml files in each of the ping project/sensor
and ping project/sink directories.

Figure 9: Deploy Sink project.

Figure 10: Deploy Sensor project.

The first one is responsible for the installation of a
module on the sensor’s interface, and the second one is
responsible for the installation of a module on an anonymous
module.

V. CONCLUSIONS

In this thesis we have presented the base calculus,
presenting its reduction semantics, proved before being type-
safe.

We have worked on specifying an operational semantics
for a virtual machine for Callas based on the same calculus,
maintaining as closest as possible from that of the calculus.
Based on this operational semantics, we have developed an
implementation of a virtual machine for the SunSPOT
platform, which runs on top of a Squawk virtual machine.

Jayesh N. Rathod et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,209-214

© 2010, IJARCS All Rights Reserved 214

We have written some programs in Callas language and
created correspondent projects, and tested them in the
SunSPOT devices, and in the Solarium tool. All of the
programs written are type-safe.

For future work, we are intending to create high-level
programming languages, add more abstractions to the
semantics (e.g. regions), and prove the semantic equivalence
between the calculus and the virtual machine, thus proving
the type-safety of the language.

VI. ACKNOWLEDGMENT

Our first thanks are to the Almighty God, without whose
blessings we wouldn't have been writing this
"acknowledgments".

We then would like to express our heartfelt thanks to our
guide, Prof. Arun Johar for giving us the guidance,
encouragement, counsel throughout our re-search and
painstakingly reading our reports. Without his invaluable
advice and assistance it would not have been possible for us
to complete this thesis.

Finally, we would like to thank all of them whose names
are not mentioned here but have helped us in any way to
accomplish the work.

VII. REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals
of Lipschitz-Hankel type involving products of Bessel
functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp.
529–551, April 1955.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
A survey on sensor networks, IEEE Communication Mag.,
vol. 40, no. 8,2002.

[3] I. F. Akyildiz and I. H. Kasimoglu, _Wireless sensor and actor
networks: Research challenges,_ Ad Hoc Networks Journal,
vol. 2, no. 4,2004.

[4] On World - Emerging Wireless Research, www.onworld.com.

[5] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L.
Mottola, G. P. Picco, T. Sivaharan, N. Weerasinghe, and S.
Zachariadis, _The RUNES middleware for networked
embedded systems and its applicationin a disaster
management scenario,_ in Proc. of the 5th Int. Conf. on
Pervasive Communications (PERCOM), 2007.

[6] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P. Picco,
and S. Zachariadis, _A reconfigurable component-based
middleware for networked embedded systems,_ Int. Journal of
Wireless InformationNetworks, vol. 14, no. 2, 2007.

[7] L. Mottola, G. P. Picco, and A. Amjad, Fine-grained software
reconfiguration in wireless sensor networks,_ in Proc. of 5th
European Conf. on Wireless Sensor Networks (EWSN), 2008.

[8] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco,
_TeenyLime: Transiently shared tuple space middleware for
wireless sensor networks,_in Proc. of the 1st Int. Wkshp. on
Middleware for Sensor Networks (MidSens), 2006.

[9] Programming wireless sensor networks with the TeenyLime
middleware,_ in Proc. of the 8th ACM/USENIX Int.
MiddlewareConf., 2007.

[10] L. Mottola and G. P. Picco, _Programming wireless sensor
networks with Logical Neighborhoods,_ in Proc. of the 1st
Int. Conf. on Integrated Internet Ad hoc and Sensor Networks
(InterSense), 2006.

[11] Logical Neighborhoods: A programming abstraction for
wireless sensor networks,_ in Proc. of the 2nd Int. Conf. on
Distributed Computing on Sensor Systems (DCOSS), 2006.

[12] P. Ciciriello, L. Mottola, and G.P. Picco, _Building virtual
sensors and actuator over Logical Neighborhoods,_ in Proc. of
the 1st ACM Int. Wkshp. on Middleware for Sensor Networks
(MidSens06 – colocated with ACM/ USENIX Middleware),
2006.

[13] A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna, and G. P.
Picco,_Expressing sensor network interaction patterns using
data-driven macroprogramming,_ in Proc. of the 3rd Int.
Wkshp. on Sensor Networks and Systems for Pervasive
Computing (PerSens – colocated with IEEE PERCOM), 2007.

[14] L. Mottola, A. Pathak, A. Bakshi, G. P. Picco, and V. K.
Prasanna,_Enabling scope-based interactions in sensor
network macroprogramming, _ in Proc. of the the 4th Int.
Conf. on Mobile Ad-Hoc and Sensor Systems (MASS), 2007.

[15] M. Welsh and G. Mainland, _Programming sensor networks
using abstract regions,_ in Proc. of 1st Symp. on Networked
Systems Design and Implementation (NSDI), 2004.

[16] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan,
_Reliable and e_cient programming abstractions for wireless
sensor networks,_in Proc. of the ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI),
2007.

[17] R. Newton, G. Morrisett, and M. Welsh, _The Regiment
Macroprogramming system,_ in Proc. of the 6th Int. Conf. on
Information Processing in Sensor Networks (IPSN), 2007.

[18] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong,
_TinyDB: an acquisitional query processing system for sensor
networks,_ ACM Trans. Database Syst., vol. 30, no. 1, 2005.

http://www.onworld.com/�

	INTRODUCTION
	The Design of a Sensor Network is Mostly Driven by the Target Application [5];

	PROGRAMMING SENSOR NETWORKS
	Low-Level Programming:
	High Level Programming:

	THE PROGRAMMING MODEL
	Semantics:
	Language Syntax:

	VIRTUAL MACHINE
	Format of Byte –Code:
	Specification:
	Semantics:
	Implementation:
	Developing and Running Callas Applications:

	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

