
DOI: http://dx.doi.org/10.26483/ijarcs.v9i3.6123

Volume 9, No. 3, May-June 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 292

ISSN No. 0976-5697

THE TASK ALLOCATION MODEL IN COMMUNICATION

CHANNEL DELAY
Kamini Raikwar

Research Scholar Department of Mathematics

M.G.C.G.V. Chitrakoot (M.P.), India

Virendra Upadhyay

Department of Mathematics

M.G.C.G.V. Chitrakoot (M.P.), India

 Manoj Kumar Shukla

Department of Mathematics,

Institute for Excellence in Higher Education,

Bhopal, (M.P.) India

Abstract : In this paper a heuristics approach for task allocation in a distributed computing system has been discussed. This performs static
allocation and provide near optimal results. The suggested algorithm is coded in Mat Lab and implemented on a Dual Core machine and found
the performance of the developed algorithm is satisfactory.

Keywords: Distributed Computing System, mainframes, computational

1. INTRODUCTION

A Distributed Computing System (DCS) consists of any

number of possible configurations, such as mainframes,

personal computers, workstations, minicomputers, and so

on. The goal of distributed computing is to the transparent

data distribution within a local network. A user-oriented

definition of distributed computing is"Multiple Computers,

utilized cooperatively to solve problems" has been reported

by {Sita [04], Chia [03], and Bhut [02]}. Distributed
computing systems are of current interest for the

researchersdue to the advancement of microprocessor

technology and computer networks {Till [05], Aror [01]}. In

a DCS, the execution of a program may be distributed

among several processing elements to reduce the overall

cost of execution by taking advantage of inhomogeneous

computational capabilities and other resources within the

system. The task allocation in a DCS finds extensive

applications in the faculties, where large amount of data is to

be processed in relatively short period of time, or where

real-time computations are required such as, Meteorology,

Cryptography, Image Analysis, Signal Processing, Solar and
Radar Surveillance, Simulation of VLSI circuits and

Industrial process monitoring are areas of such applications.

2. PROBLEM STATEMENT

Consider a DCS consisting a set of n processors

𝑃 = {𝑝1, 𝑝2, … . 𝑝𝑛}, interconnected by

communication links and a set of m tasks 𝑇 =
 {{𝑡1, 𝑡2, … . 𝑡𝑚} where 𝑚 > 𝑛. An allocation of

tasks to

Processors is defined by a function Aalloc from

the set 𝑇 of tasks to the set 𝑃 of processors such

that:

Aalloc: 𝑇 → 𝑃 ,where Aalloc (𝑖) = 𝑗 if task 𝑡𝑖 is

assigned to processor 𝑝𝑗 , 1 ≤ 𝐼 ≤ 𝑚, 1 ≤

 𝑗 ≤ 𝑛.

While designing the model it is assumed that

Execution Cost (EC) of each task on all the

Processors and the Data Transfer Rate (DTR)

between the tasks is known and will be taken in

the form Execution Cost Matrix [ECM (,)] of

order m x n, and Data Transfer Rate Matrix

[DTRM(,)] of order m respectively. The

communication channel delay is also considered

and taken in the form of Channel Delay Matrix

[CDM (,)] of order 𝑚.

3. PROPOSED METHOD

The allocation of tasks is to be carried out so that

each task is assigned to a processor whose

capabilities are most appropriate for the tasks, and

their processing cost is to be minimized. The

present model passes through the following

phases.

Phase –I

Average Load:

The average load Lavg and Total Load (TL) is to

be assigned on processor pj with 05% Tolerance

Factor (TF) has to be calculated as:

𝐿𝑎𝑣𝑔(𝑝𝑗) =
𝑒𝑐𝑖𝑗

𝑚
 1 < 𝑖 < 𝑚, 1 < 𝑗 < 𝑛 … … … 3.1

𝐿𝑇 = ∑ 𝐿𝑎𝑣𝑔(𝑝𝑗) + 𝑇𝐹 … … … 3.2

𝑤ℎ𝑒𝑟𝑒 𝑇𝐹 = (𝐿𝑎𝑣𝑔(𝑝𝑗)) ∗
0.5

100
 𝑎𝑛𝑑 𝑗 =

1,2, … … 𝑛

Kamini Raikwar et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,292-300

© 2015-19, IJARCS All Rights Reserved 293

Selection of “𝒏” Task on the basis of minimum

DTR:

The upper diagonal values of the DTRM (,) are

stored in Maximum Data Transferred Rate Matrix

MAXDTRM (,) of order 𝑚(𝑚 − 1)/2 by 3 the

first column represents first task (say rth task),

second column represent the second task (say sth

task) and third column represent the DTR (drs)

between these rth and sth tasks. The MAXDTRM

(,) is then stored in ascending order

assuming the third column as sorted key and

select first tasks “n” which and store the tasks in

𝑇𝑡𝑎𝑠𝑘𝑠 (𝑗) (where 𝑗 = 1,2, … , 𝑛) and also store

the remaining 𝑚 − 𝑛 tasks in another linear array

𝑇𝑁𝑡𝑎𝑠𝑘𝑠(𝑘) (where 𝑘 = 1,2, … , 𝑚 − 𝑛).

Assignment: To get the initial assignment store

the ECM (,) in NECM (,) NECM (,) ← ECM (,)

then reduce the NECM(i,j) (𝑤ℎ𝑒𝑟𝑒 𝑖 =
 1,2, … 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … 𝑛) in the square matrix

of order n by deleting tasks stored in TNtasks (k)

which is the intersection of Ttasks(i) and apply the

YAS-Algorithm developed by Yadav et al [04].

The initial allocation is stored in an array 𝑇𝑎𝑠𝑠(𝑗)

(where j = 1,2,…,n) and also the processor

position are stored in a another linear array Aalloc

(j). Get the value of TTASK (j) by adding the

values of Aalloc (𝑗) if a task is assigned to a

processor otherwise continue. Select a task from

TNtasks (k) (where k = 1,2,….…m-n) for

assignment say tk and assign task to processor pj

where the value of EC in minimum. Store the

assignment and their position in Tass(j) and

Aalloc (j) respectively and modify the TTASK (j)

by adding the value of Aalloc (j). The TNtasks (k)

is also modify the by deleting the tasks tk. This

process of assignment is continuing till the

remaining “m-n” tasks are get allocated.

Phase -II

After completing the allocations the Processor’s

Wise Execution Cost (PEC) ecij (1 ≤ 𝑖 ≤

𝑚 , 1 ≤ 𝑗 ≤ 𝑛) of each task ti on the processor

pj is calculated using the following equation

𝑃𝐸𝐶(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 = ∑ 𝑒𝑐𝑖 ,1≤𝑖≤𝑚
𝑖∈𝑇𝑆𝑗

𝐴𝑎𝑙𝑙𝑜𝑐(𝑗) … … … 3.3

𝑤ℎ𝑒𝑟𝑒 𝑇𝑆𝑗 = {𝑖:𝐴𝑎𝑙𝑙𝑜𝑐(𝑖) = 𝑗, 𝑗 = 1,2, … … … 𝑛

Inter Processor Communication (IPC):

The Inter Processor Communication cost of the

interacting tasks ti and tk is depends upon the per

unit data transfer rate dik during the program

execution is determined by using the equation

given below Inter Processor Communication with

delay (IPCWD) is calculated by the equation

given below

𝐼𝑃𝐶𝑊𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 = [min(𝑒𝑐𝑖𝑗 ∗ 𝑑𝑖𝑗)] ∗ 𝑐𝑑𝑖𝑗 ,

𝑗 = 1,2, … . . 𝑛 𝑎𝑛𝑑 𝑖 = .1,2 … . 𝑚 … … … 3.4

Where 𝑐𝑑𝑖𝑗 s the delay channel.

Inter Processor Communication without delay

(IPCWOD) is calculated by the equation

Given below

𝐼𝑃𝐶𝑊𝑂𝐷 (𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 = [min(𝑒𝑐𝑖𝑗 ∗ 𝑑𝑖𝑗)] 𝑗 =

 1,2, … . . 𝑛 𝑎𝑛𝑑 𝑖 = .1,2 … . 𝑚 … … . .3.4.1
Calculate the Overall Processors Cost [OPC] with

delay and without delay calculated as

𝑂𝑃𝐶𝑊𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 = 𝑃𝐸𝐶(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 +

𝐼𝑃𝐶𝑊𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 … … … … 3.5

𝑂𝑃𝐶𝑊𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 = 𝑃𝐸𝐶(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗

+ 𝐼𝑃𝐶𝑊𝑂𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 … … … … 3.5.1

 and find the average Overall Processors Cost

[OPC]

The Mean Service Rate [MSR] with delay and

without delay of the processors are calculated by

using the equation described below and store the

results in MSR (𝐴𝑎𝑙𝑙𝑜𝑐)𝑗

(𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2, … , 𝑛).

𝑀𝑆𝑅𝑊𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 =
1

𝑂𝑃𝐶𝑊𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗
 𝑊ℎ𝑒𝑟𝑒 𝑗 =

1,2, … 𝑛 … … … … … … … … . . 3.6

𝑀𝑆𝑅𝑊𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 =
1

𝑂𝑃𝐶𝑊𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗
 𝑊ℎ𝑒𝑟𝑒 𝑗 =

1,2, … 𝑛 … … … … … … … … . . 3.6.1

The throughputs of the processors with delay and

without delay are calculated by using the equation

given below and store the results in a linear arrays

𝑇𝑅𝑃 (𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 , where 𝑗 =
1,2 … … . , 𝑛.

𝑇𝑅𝑃(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 =
𝑇𝑇𝐴𝑆𝐾(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗

𝑂𝑃𝐶𝑊𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗
 𝑤ℎ𝑒𝑟𝑒 𝑗 =

1,2, … … … 𝑛 … … … … … … 3.7

𝑇𝑅𝑃(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 =
𝑇𝑇𝐴𝑆𝐾(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗

𝑂𝑃𝐶𝑊𝐷(𝐴𝑎𝑙𝑙𝑜𝑐)𝑗
 𝑤ℎ𝑒𝑟𝑒 𝑗 =

1,2, … … … 𝑛 … … … … … … 3.7.1

Kamini Raikwar et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,292-300

© 2015-19, IJARCS All Rights Reserved 294

Finally, Critical Transmission Delay [CTD] and

the Optimal Processing Cost (OPC) with delay

and without delay have been determined. The

maximum value of 𝑂𝑃𝐶 (𝐴𝑎𝑙𝑙𝑜𝑐)𝑗will be the Total

System Cost (TSC) which shell be the optimal

cost of the DCS.

3.4 ALGORITHM:

Step1: Input; m, n, ECM (,), DTRM (,) and CDM

(,)

Step2: 𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑚 𝑑𝑜
𝑓𝑜𝑟 𝑗 ← 1 𝑡𝑜 𝑛 𝑑𝑜
 Determine the Total Load (TL) to be assigned on

processor pj with 05% Tolerance

Factor (TF) by using the equation (1) and (2)

respectively.

𝑟𝑒𝑝𝑒𝑎𝑡

 𝑟𝑒𝑝𝑒𝑎t

Step3: 𝑘 ← 𝑚(𝑚 − 1)/2

𝑡 ← 𝑚 − 𝑛

𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑚 𝑑𝑜

𝑓𝑜𝑟 𝑗 ← 1 𝑡𝑜 𝑘 𝑑𝑜

Store the “𝑘” upper diagonal value of DTRM (,) in

MAXDTRM (,)

MAXDTRM (,) ← DTRM (,)

Arrange the MAXDTRM (,) ascending order

𝑟𝑒𝑝𝑒𝑎𝑡

𝑟𝑒𝑝𝑒𝑎𝑡

Step4: 𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑛 𝑑𝑜

𝑓𝑜𝑟 𝑗 ← 1 𝑡𝑜 𝑛 𝑑𝑜

Store the ECM (,) in NECM (,)

NECM (,) ← ECM (,)

𝑟𝑒𝑝𝑒𝑎𝑡

𝑟𝑒𝑝𝑒𝑎𝑡

Step5: 𝑐𝑜𝑢𝑛𝑡 ← 𝑛

𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑚 𝑑𝑜

𝑓𝑜𝑟 𝑗 ← 1 𝑡𝑜 𝑘 𝑑𝑜

Pick-up the minimum value from MAXDTRM (,)

say 𝑡𝑗 , 𝑡𝑘

𝐼𝑓 𝑛 = 𝑐𝑜𝑢𝑛𝑡;

Then

store the tasks in a linear array Ttasks() and go to

the step-5

else;

Repeat 𝑓𝑜𝑟 𝑖

if MAXDTRM(i,j)< MAXDTRM(i,k)

𝑏𝑚𝑖𝑛 ← 𝑀𝐴𝑋𝐷𝑇𝑅𝑀(𝑖, 𝑗) 𝑢𝑛𝑡𝑖𝑙 𝑗 = 𝑘

𝑏𝑚𝑖𝑛 < 𝑀𝐴𝑋𝐷𝑇𝑅𝑀(𝑖, 𝑘) 𝑢𝑛𝑡𝑖𝑙 𝑗 = 𝑘

𝑒𝑛𝑑 𝑖𝑓

check the corresponding position of bmin

MAXDTRM(,) (say tl) and give one increment

to count

𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

store the tasks in a linear array Ttasks() also store

the remaining m-n tasks in TNtasks()

𝑟𝑒𝑝𝑒𝑎𝑡

𝑟𝑒𝑝𝑒𝑎𝑡

Step 6: Reduce MAXDTRM (,) and also modify

the NECM (,) by eliminating the tasks stored in

Ttasks()

Step-7: Apply the YAS-Algorithm to get the

initial allocation and store the assignment in an

linear array

Tass(j) (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2, … , 𝑛) also the processor

position are stored in a another linear array

Aalloc(j). Get the

value of TTASK (j) by adding the values of

𝐴𝑎𝑙𝑙𝑜𝑐 (𝑗) if a task

is assigned to a processor otherwise continue.

Step-7.1:

𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑚 𝑑𝑜

𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑇𝑁𝑡𝑎𝑠𝑘𝑠() 𝑖𝑛 𝑇𝑛𝑜𝑛 − 𝑎𝑠𝑠()

𝑇𝑛𝑜𝑛 − 𝑎𝑠𝑠() ← 𝑇𝑁𝑡𝑎𝑠𝑘𝑠()

𝑟𝑒𝑝𝑒𝑎𝑡

Step:7.2:

𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑚 − 𝑛 𝑑𝑜

𝑓𝑜𝑟 𝑗 ← 1 𝑡𝑜 𝑛

Select a task from TNtasks (k) (𝑤ℎ𝑒𝑟𝑒 𝑘 =

 1,2, … , 𝑚 − 𝑛) for assignment say 𝑡𝑖 and

assign task to processor pj where the value of ecij

is minimum.

𝐴𝑎𝑙𝑙𝑜𝑐(𝑘) ← 𝑗;

𝑛𝑜𝑚𝑎𝑑𝑒 ← 𝑛𝑜𝑚𝑎𝑑𝑒 + 1;

𝑇𝑎𝑠𝑠 ← 𝑇𝑎𝑠𝑠 ∪ {𝑡𝑘};

𝑟𝑒𝑝𝑒𝑎𝑡

𝑟𝑒𝑝𝑒𝑎𝑡

This process is continuing till the remaining “𝑚 −

𝑛” tasks are get allocated.

Step-8:

Kamini Raikwar et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,292-300

© 2015-19, IJARCS All Rights Reserved 295

𝑓𝑜𝑟 𝑘 ← 1 𝑡𝑜 𝑚 𝑑𝑜

𝑓𝑜𝑟 𝑗 ← 1 𝑡𝑜 𝑛 𝑑𝑜

Compute the final 𝑃𝐸𝐶 (𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 using the

equation (3.3)

𝑟𝑒𝑝𝑒𝑎𝑡

𝑟𝑒𝑝𝑒𝑎𝑡

Step-9:

𝑓𝑜𝑟 𝑘 ← 1 𝑡𝑜 𝑚 𝑑𝑜

𝑓𝑜𝑟 𝑗 ← 1 𝑡𝑜 𝑛 𝑑𝑜

Compute the Inter Processor Communication Cost

IPC (𝐴𝑎𝑙𝑙𝑜𝑐) 𝑗 of the interacting tasks ti and tk by

using the equation (3.4) and (3.4.1)

𝑟𝑒𝑝𝑒𝑎𝑡

𝑟𝑒𝑝𝑒𝑎𝑡

Step-10:

𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑚 𝑑𝑜

Determine the finally, Overall Processors Cost

OPC (𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 by using the equation (3.5) and

(3.5.1)

𝑟𝑒𝑝𝑒𝑎𝑡

Step-11:

𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑛 𝑑𝑜

Compute the mean service rate MSR (𝐴𝑎𝑙𝑙𝑜𝑐)𝑗

by using the equation (3.6) and (3.6.1)

𝑟𝑒𝑝𝑒𝑎𝑡

Step-12:

𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑛 𝑑𝑜

Compute the processor’s throughput by using the

equation (3.7) and (3.7.1)

𝑅𝑒𝑝𝑒𝑎𝑡

Step-13: Calculate the total Critical Transmission

Delay [CTD] and the maximum value of

𝑂𝑃𝐶 (𝐴𝑎𝑙𝑙𝑜𝑐)𝑗 i.e .the Total System Cost

Step-14:

𝑆𝑡𝑜𝑝.

3.5 IMPLEMENTATION OF THE

ALGORITHM:

Example:

To justify the application and usefulness of the

present algorithm an example of a DCS is

Considered which is consisting 𝑜𝑓 𝑛 = 3 the set

of processors 𝑃 = {𝑝1, 𝑝2, 𝑝3} connected by

anarbitrary network and m = 6 the set of tasks T=

{𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6} which may be portion of

an executable code or a data file.

Step1:

Input of the Algorithm: Data required by the

algorithm is given below:

Number of processors available in the system (n)

= 3

Number of tasks to be executed (m) = 8

Kamini Raikwar et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,292-300

© 2015-19, IJARCS All Rights Reserved 296

Step2:After Implementation of the Algorithm’s steps the Average load to be assigned on the processors has

been given in table 3.1

Table 3.1

Processors Average execution cost

P1 5

P2 3

P3 4

Total Load 12

05% Tolerance Factor [TF] 0.6 (= 0.5 say)

Total Average load on the processor= Total load + TF] 12+0.5= 12.5

Step3:

The m (m-1)/2 i.e. 28 value of upper diagonal values of the DTRM (,) are stored in MAXDTRM

(,):

Kamini Raikwar et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,292-300

© 2015-19, IJARCS All Rights Reserved 297

The MAXDTRM (,) is stored in ascending order

assuming the third column as sorted key and

select those tasks “𝑛 = 3” which has minimum

DTR and store the tasks in Ttasks(j) (𝑤ℎ𝑒𝑟𝑒 𝑗 =

1,2, … , 𝑛) and also store the remaining m-n tasks

in another linear array TNtasks(k) (𝑤ℎ𝑒𝑟𝑒 𝑘 =

Kamini Raikwar et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,292-300

© 2015-19, IJARCS All Rights Reserved 298

1,2, … , 𝑚 − 𝑛).

 t1 t8 0.000

 t2 t3 0.000

 t2 t4 0.000

 t2 t5 0.000

 t2 t6 0.000

 t2 t7 0.000

 t3 t7 0.000

 t3 t8 0.000

 t5 t6 0.000

 t5 t7 0.000

 t5 t8 0.000

 t1 t6 0.125

MAXDTRM (,) = t6 t8 0.125

 t1 t5 0.167

 t6 t7 0.176

 t2 t8 0.200

 t4 t5 0.200

 t4 t8 0.200

 t7 t8 0.200

 t1 t3 0.250

 t3 t4 0.250

 t1 t2 0.333

 t3 t5 0.333

 t4 t6 0.333

 t1 t4 0.500

 t3 t6 0.500

 t4 t7 0.500

 t1 t7 1.000

 Step4: Store the ECM (,) in NECM,) as:

 p1 p2 p3 p1 p2 p3

 t1 6 3 5 t1 6 3 5

 t2 4 2 3 t2 4 2 3

 t3 3 1 2 t3 3 1 2

 NECM(,) = t4 5 2 ∞ ← ECM(,) = t4 5 2 ∞

 t5 3 4 2 t5 3 4 2

 t6 6 ∞ 6 t6 6 ∞ 6

 t7 5 6 7 t7 5 6 7

 t8 ∞ 2 5 t8 ∞ 2 5

Kamini Raikwar et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,292-300

© 2015-19, IJARCS All Rights Reserved 299

Step5:
Ttasks() = { t1 t8 t5}

TNtasks() ={ t2 t3 t4 t6 t7 }

Step6:

Reduced NECM(,) and MXDTRM(,)

 p1 p2 p3

 t1 6 3 5

NECM(,) = t5 3 4 2

 t8 ∞ 2 5 t2 t3 0.000

 t2 t4 0.000

 t2 t5 0.000

 t2 t6 0.000

 t2 t7 0.000

 t3 t7 0.000

 t3 t8 0.000

 t5 t6 0.000

 t5 t7 0.000

 t1 t6 0.125

 MAXDTRM (,) = t6 t8 0.125

 t1 t5 0.167

 t6 t7 0.176

 t2 t8 0.200

 t4 t5 0.200

 t4 t8 0.200

 t7 t8 0.200

 t1 t3 0.250

 t3 t4 0.250

 t1 t2 0.333

 t3 t5 0.333

 t4 t6 0.333

 t1 t4 0.500

 t3 t6 0.500

 t4 t7 0.500

 t1 t7 1.000

Step7:

Initial assignments are obtained by applying the

YAS-Algorithm developed by Yadav et

al [Yada04] are given in Table 3.2:

 Table 3.2 Initial

Assignment

Tasks Processor EC

t5 p1 3

t8 p3 5

t1 p2 3

Step7.1:

𝑇𝑛𝑜𝑛 − 𝑎𝑠𝑠 () ← 𝑇𝑁𝑡𝑎𝑠𝑘𝑠()
𝑇𝑛𝑜𝑛 − 𝑎𝑠𝑠 () = { 𝑡2 𝑡3 𝑡4 𝑡6 𝑡7 }
𝐴𝑎𝑙𝑙𝑜𝑐 (𝑗) = {1, 3, 2} 𝑎𝑛𝑑 𝑇𝑇𝐴𝑆𝐾 (𝑗) =
 { 1,1,1}

After Implementing the Step-7.2 the following

final assignment are obtained.

Table 3.3: Final Assignment

Tasks Processor EC

t3 + t5 + t7 p1 11

t1 + t2 + t4 p2 07

t6+ t8 p3 11

The final 𝐴𝑎𝑙𝑙𝑜𝑐(𝑗) = {1,3,2,1,1,2,2,3,3} and

𝑇𝑇𝐴𝑆𝐾 (𝑗) = { 3,3,2}, Table 3.3 shows the

final assignment after Implementation of

assignment procedure described in section 3.3 in

the

proposed method. On applying the further steps 8

to 13 following result are obtained and shown

in the table 3.4

Kamini Raikwar et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,292-300

© 2015-19, IJARCS All Rights Reserved 300

 Table – 3.4:
Processors EC IPC

without

Delay

IPC

with

Delay

OPC

without

Delay

OPC

with

Delay

MSR

without

Delay

MSR

with

Delay

TRP

without

Delay

TRP

with

Delay

Total critical

Transmission

Delay

1 2 3 4 5=2+3 6= 2+4 7 8 9 10 11=6-5

P1 11.000 5.079 7.658 16.079 18.658 0.062 0.054 0.124 0.107 2.579

P2 7.000 4.882 7.364 10.882 13.364 0.092 0.075 0.276 0.224 2.482

P3 11.000 3.705 6.510 13.705 16.510 0.073 0.061 0.219 0.182 2.805

REFERENCES

[1] Arora, R.K., and Rana, S.P., “On module assignment in

two processors distributed Systems”,Information

Processing Letters, Vol. 9, No. 3, pp. 113-117, 1979.

[2] Bhutani, K.K., “Distributed Computing”, The Indian

Journal ofTelecommu nication, pp. 41- 44, 1994.

[3] Chiao – Pin Bao, Ming-Chi Tsai, Meei-Ing Tsai., 2007,
“A new Approach to Study the Multi Objective

Assignment Problem”, WHAMPOA- An

Interdisciplinary journal, 53 (2007), PP. 123- 132.

[4] Sitaram, B. R., “Distributed computing – a user’s view

point”, CSI Communications, Vol. 18, No. 10, pp.26-

28, 1995.

[5] Tillman, F. A., Hwang, C. L. and Kuo, W. (1977),
Determining Component Reliability and Redundancy

for Optimum System Reliability, IEEE Transactions on

Reliability, vol. R-26, 162-165.

