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1.INTRODUCTION
Random fixed point theorems for contraction
mappings in polish spaces and random fixed point theorems
are of fundamental importance in probabilistic functional
analysis. The Random fixed point theorems were initially
studied by the Prague school of Probabilistic. In 1955 it was
Spacek [28] who introduced this topic further Hans[11],
[12], extended the work of Spacek. Subsequently Kannan,
R. [16], Bharucha-Ried [8], Itoh [15] proved several
random fixed point theorems and gave their applications to
random differential equations in Banach spaces. Random
coincidence point theorems and random fixed point theorem
are stochastic generalization of classical coincidence point
theorems and classical fixed point theorems. Sehgal and
Singh [26], Papageorgiou [22], Rhoades Sessa Khan [25]
and Lin [19] have proved differential stochastic version of
well known Schauder’s fixed point theorem. Then Beg, I.
and Azam [2], Beg and Shahzad [3], [4], [5], studied the
structure of common random fixed points and random
coincidence points of a pair of compatible random operators.
Further the cone metric space was defined by Huang
and Zhang [14], they generalized the concept of metric
spaces, replacing the set of real numbers by an ordered
Banach space; Huang and Zhang also described the
convergence of sequences and introduced the notion of
completeness in cone metric spaces. They have proved some
fixed point theorems of contractive mappings on complete
cone metric space with the assumption of normality of a
cone. There exist a lot of work involving fixed point used
the Banach contraction principle. This principle has been
extended kind of contraction mappings considered by
various authors[1],[6],[71,[9], [13] and [27]. Recently, in
2008 various authors such as Dhagat, V. B, Sharma, A. K,
Bhardwaj, R. K. [10], have studied Fixed point theorem for
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Random operators in Hilbert Spaces, this result was a
generalization of the results of Huang and Zhang also they
studied fixed point theorems for normal and non-normal
cones. Recently Rezapour et.al.[23] ,[24] Pathak, H. K. and
Shahzad, N.[17] did some notable work in quashi
contraction maps and cone metric spaces with contractive
mapping.  Then in 2010 Sumitra et. al. [29] and Mehta
Smrati [20] in 2011 extended the previous results in
different spaces. Here, we have prove some fixed point
theorems in cone random metric space by using random
operators with different contractions.

2. PRELIMINARIES

Definition 2.1: Let (E, ) be a topological vector space and
P asubset of E, P is called a cone if

1. P isnon-empty and closed, P # {0},
2. For x,yeP and abeR=ax+byeP
wherea, b =0

3. fxePand-xeP=x=0
For a given cone P C E, a partial ordering < with respect to
Pisdefinedbyx <yifandonlyify—xePx <yifx <
y and x # ywhile x <y will stand for y —x € intP
denotes the interior of P.
Definition 2.2: Measurable function: Let (©,)) be a
measurable space with Y. a sigma algebra of subsets of Q
and M a non-empty subset of a metric space X = (X, d). Let
2M be the family of all non-empty subsets of M where
C(M) the family of all nonempty closed subsets of M. A
mapping G : Q - 2™ is called measurable if, for each open
subset U of M, such that
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G Y) ey, where
{fwe Q:Gw)nU + 0}.
Definition 2.3: Measurable selector [18]: A mapping ¢ :
Q- M is called a measurable selector of a measurable
mapping G : Q-2 if & is measurable and ¢(w) €
G(w) for each w € Q.
Definition 2.4: Random operator [21]: Mapping T : Q X
M — X is said to be a random operator if, for each fixed x €
M, T(,x): Q- X ismeasurable.
Definition 2.5: Continuous Random operator [21]: A
random operator T : QX M — X is said to be continuous
random operator if, for each fixed x e M, T(.,x) : Q> X
is continuous.
Definition 2.6: Random fixed point: A measurable
mapping ¢ : Q — M is a random fixed point of a random
operator T: QXM - X if é(w) =T (w,é(w)) for each
w € Q.
Definition 2.7: Let M be a nonempty set and the mapping
d:QAXM-—Xand Pc X be a cone, w € Q be a selector,
satisfies the following conditions:
2.7(a) d(x(w),y(w)) >0Vx(w),ylw) EQxX <
() = y()
2.7(b) d(x(w), y(w)) = d(y(w),x(w)) Vx,y€
X,we Q andx(w),y(w) €A XX
2.7(c) d(x(w),y(w)) = d(x(w),z(w)) +
d(z(w),y(w)) Vx,yEX andw € Q bea

selector.

2.7(d) foranyx,y € X, w € Q,
d(x(w), y(w)) is non-increasing and left continuous in a.
Then d is called cone random metric in M and (M, d) is a
cone random metric space.

GlU) =

Definition 2.8: Implicit Relation
Let @ be the class of all real-valued continuous functions :
(R*)® - R* non-decreasing in the first argument and
satisfying the following conditions:

x<opyx+yy) o x<elxx) o x<elyx+

Y, x+y)
there exists a real number 0 < h < 1 such that x < hy, for

all x,y = 0.

Similarly for (R*)%, Let @ be the class of all real-valued
continuous functions ¢ : (R*)®> - R* non-decreasing in the
first argument and satisfying the following conditions for all
x,y = 0.
x<px+tyx+yx+yy)orx<e¢(0yyx+y)
orx <o,y xy,%x)

there exists a real number 0 < h < 1 such that x < hy.

3. MAIN RESULTS

Theorem 3.1: Let (X, d) be a complete cone random metric
space and let M be a non-empty separable closed subset of
cone metric space X and let T be a continuous random on M
such that for all w € 2, T(w,.): 2 X M —» M satisfying
contraction

d(T(x(@)), T(y(@))) <

P(d(x(w), y(), dy(@), T(x(@)) + d(y (@), T(y(@)),
d(x(w), T(x(a))) + d(y(w), T(x(w)),

d(x(w), T (y(a)), T (y(a)),T(x((u)))) (3.1(a))

Forall,y € X, w € 0. Then T has a fixed point in X.
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Proof: For each xy(w) €2 x X andn > 1, letx; = Tx,
And x,.;(w) = T(x,(w)) = T"'xy(w). Then

A (), X1 (@) = d (21 (@), T (2 (@)))

< ¢(d (21 (@), %, (@), d (2 (@), T (21 (@) +

d(x, (w), T(xn(a))),

d(x,_, (w), T(xn_l(w)) + d(x, (w), T(xn_l((u))
d(xn_l(w),T(xn(a))) + d(xn(a)),T(xn_l(w)))

<

B(d (%1 (@), %, (@), d (2 (@), X5 (@), d (3, (@), X1 (@),
d(xn (@), % (@) + d (31 (@), %, (@),

A (-1 (@), X1 (@) + d(x (@), X, (@)))

< qﬁ(d(xn_l(w), xn(a))), 0+

d(x (@), X1 (@), d (21 (@), %5 (@) + 0,
d(xn-1 (@), % (@) + d (2 (@), Xpy1 (@)) + 0)
Therefore by definition (2.8) we have

(2 (@), %11 (@) < b (A1 (@), 2, (@)))
Similarly

d(xp-1 (@), X, (@) < R(d (%2 (@), Xp_q (@)

Hence d(x, (), %11 (@) < h (d(xns (@), 2, (@) ) <

h2 (At (@), 201 (@)

On continuing this process

d(xn (@), X1 (@) < R™(d(x (@), %1 (@)))
Soforn>m

d(xm (@), Xy (@) < (™ + K™+ R™2 4 e+
") (d(xo (@), %, (@)

< T (Ao (@), 1, ()))

Let 0 «< ¢ be given. Choose a natural number N such that
%(d(x0 (w), x;(w))) « c for every m = N.Thus

m

d(xm(w), Xp, (w)) < fT(d(xO (w),x;(w))) K c for every

h
n>mz2=N.
Therefore the sequence {x,, (w)} is a Cauchy sequence in
0 x X such that x,, (w) - z(w).
Choose a natural number N, such that
Hence we have

d(2(w), T2(w)) < d(2(w), X1 (@) +

d(xp11(0), Tz(w))

= d(2(), Xn41 (@) + d(T2 (0), T2(w)) <
d(2(w), Xp41 (@) +

o(d (xn (w), z(w)), d(z(w), Tx, (w)) + d(z(w), Tz(a))),
d(xn(w), Txn(w)) + d(z(w), Txn(w)),

d(xn(w), Tz(w)) + d(z(w), Tx, (w))

= d(Z(w),xn+1(w)) +

B(d (%, (@), 2(w)), d(2(@), %41 (@) + d(2(w), Tz(w)),
d(xn (w), xn+1(w)) +

d(2(w), %41 (), d (3 (@), T2(w)) + d(2(w), %41 (@)
Taking n — o we have

d(z(w),Tz(w)) < 0+ 9(0, d(z(a)), Tz(a))) +0,0+

0, d(z(w), Tz(w)) +0)

d(z(w),Tz(w)) < 0(0,0 + d(z(a)), Tz(a))), 0+

0, d(z(w), Tz(w)) +0))

d(z(w),Tz(w)) <0

Thus — (d(z(w), Tz(a)))) € P. But d(z(w), Tz(a))) € P.
Therefore d(z(w), Tz(w)) = 0 and s0 Tz(w) = z(w).
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Example: Let M =R and P ={x € M:x > 0}, also 2 =
[0,1] and Y be the sigma algebra of Lebesgue’s measurable
subset of [0,1]. Let X =[0,0) and define mapping as
d:0xX XW@xX)-M by d(x(w),y(w))=
[x(w) — y(w)l|. Then (X, d) is a cone random metric space.
Define random operator T from 2 x X to X as T(x(w)) =
x(w)/2. Also sequence of mapping x,:2 — X is defined
by x,(®) = {(1 — (w/2)*)***/2} for every w € N and n €
N. Defined measurable mapping x: 2 - X as x(w) = {1 —
(w/2)*} is fixed point of the space.

Theorem 3. 2: Let (X, d) be a complete cone random metric
space and let M be a nonempty separable closed subset of
cone metric space X and let S and T be continuous random
operators defined on M such that for w € 2, T(w,.): 2 X
M — M satisfying contraction

d(S™(x(w), TTy(w))) <
0(d(x(w), y(@)), [d (x(@), 57 (x(w)) +

d(y(@), T7y(@)))],

d(x(w), Try(w)) +

d(S7x(@)), Y(@)) v eve vre v eee e (3:2(@)
Forallx,y € X, w € 2andr > 0. Then S and T has
common fixed point in X.

Proof: For each x,(w) € 2 X X, let us choose x; (w) =
S"xq(w) and x,(w) = T"x;(w). In general n > 1,
Xpi1 (@) = S"(x, (W) and x,,, (W) = T (%41 (@)). Then
A (11 (@), X2 () = d(ST (2, (@), T" Gt (@)))
< B(d (o (@), (ns1 (@), [d((n (@), S™ (6 (@) +

A (%11 (@), TT (X1 ()],

[ (@), T" (11 (@) + (ST (% (@), X1 (@))])

< 0(d((xn (@), (a1 (@), [d((n (@), (41 (@) +
d((xn+1(w), (Xn+2 (a)))],

[d(Cen (@), (tp42()) + d( (41 (@), (pa (@)

< O(d (¥ (@), (41 (@), [A((n (@), (11 (@) +
d((xn+1 (w), (Xn+2 (w))]:

[d((n (@), (r @I))])

Therefore by definition (2.8) we have

d((p11 (@), (tns2 (@) < h(A(( (@), (41 ()
Similarly

d((xn—l(w)' (xn (w)) < h(d((xn—z (w): (xn—l(w))
Hence d((x, (@), (¥n+1(@)) < h(d((tn-1 (@), (0 (@))) <
hzd((xn—z (w), (xn—l(w))

On continuing this process

d((tn (@), (41 (@) < A (0 (@), (11 (@)))
Soforn>m

d((@em (@), (cp(@)) < (W™ + R™ T+ B2 L+
h"‘in) (d((xo (W), (1 (@)))

< 1 (@0 (@), 1 (@)))

Let 0 « ¢ be given. Choose a natural number N such that
% (d(xy(w), %, (W))) K c for everym = N. Thus

A( Gt (@), (2t (@) < 7= (d o (@), 2%, ())) < ¢ For
everyn >m = N.

Therefore the sequence {x,,(w)} is a Cauchy sequence in

N x X. Since (X, d) is complete, there exists z(w) € 2 X X
such that x,, (w) — z(w). Choose a natural number N; such
that

Hence, we have
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d(z(w),Tz(w)) < d(z(w),xn+1(w)) +
d(xp11(w), Tz(w))
= d(2(w), 11 (@) + d (ST (x (@), T2(w))
< d(z(w), Xp11 (@) +
0 (d(x (@), 2(0)), | d(tn (@), 570 (@), 2(0) )|
[d(x, (@), T z(w)) + d (ST (%, (@), z(w))])
< d(z(w)'xn+1(w)) +
0(d (x, (@), 2(w)), [d(2(w), X1 (@) +
d(z(w),TTz(a)))],
[d(xn (), TT2(®)) + d(xp41 (@), z())])
Taking n — oo we have
d(z(w), T"z(w)) < 0+ B(0, [0 +
d(z(w), Trz(w))], [d(z(w), Trz(w)) + 0])
d(z(w),TTz(w)) <
8(0,d(z(w), T z(w)), d(z(w), T"z(w)))
d(z(w),TTz(w)) <0
Thus—(d(z(a)),Trz(w)) € P. But d(z(w),Trz(a))) € P.
Therefore d(z(w),TTz(w)) =0andso T z(w) = z(w).
Similarly
d(S"2(w)), 2()) < d(S"2()), Xz (@)) +
d(Xp42(w), z(w))
= d(572(@)), T X1 (@) + d (X2 (@), 2(w))

< 9(d(2(w), Xn41 (@), [d (2(w), 5(2(0)))

+ d (X1 (@), T X1 (@)

[d(2(@), T X4 (@) + d(S72(w)), X1 (@))] +
d(Xp42(w), z(w))
< 0 (d(2(), xps1 (), [d(2(w), S72()) ) +

d(xn+1(w)' xn+1(w))]’

[d(2(), %42 (@)) + d(S(2(w), Xn4 ()] +
d(Xp42(w), z(w))
Taking n — oo we have

d(SrZ(w)),z(w)) <
(Z)(d(z(w), Z(w)), [d(z(w),z(w)), [d(z(w),Srz(w))) +
d(z(w), ()],
[d(2(w), 2(w)) + d(572()), 2(@)] + d(z(@), 2())
d(Srz(w)),z(w))
<9(0,[d(z(w), 57z())) + 0], [0
+ d(Srz(w)),z(w))] +0
d(Srz(w)),z(w))
<9(0,d(z(w),572(w)) ), d(S"2()), 2(@)))
d(Srz(w)),z(w)) <0
Thus - (d(Srz(w)),z(w))) € P. But d(Srz(w)),z(a))) €
P.
Therefore d(S7z(w)), z(w)) = 0 and 50 S™(z(w) ) = z(w).
Hence S"z(w) = z(w) = Tr(z(a))).

Theorem 3. 3: Let (X, d) be a complete cone random metric
space and let M be a non-empty separable closed subset of
cone metric space X and let T and f be two continuous
random operators defined on M. Assume that T is a injective
mapping and mapping T and f be such that for w € £,
T(w,.):2 x M — M satisfying contraction
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d(Tx(w), Tf(y(w))) <

(Z)(d(Tx(a)), Ty(a))), d (Tx(a)), Tf(x(a)))) +
d(Tx(), T (y(@))),

d(Ty(), Tf(y(@))) +

d (Tx(@), T (x(@)))) v . (3.3.(a))

For all x,y € X, w € £, then f has a unique fixed point in X.
Moreover if (T, f) is a Banach pair, then T and f have
unique fixed point in X.

Proof: Let x,(w) € 2 X X be arbitrary. Define a sequence

{x}
d(Tx, (@), Txps1 (@)) = d(Tf (xn_1 (@), Tf (2, (@)))
< B(d(Txy- 1 (@), T2, (@), d(T2p (@), Tf (%1 (@)))

t+d (T (@), Tf (40 (@))) , d(T o1 (@), Tf (3 ()))
td (Totno1 (@), Tf (o1 (@) ), d (Tt (@), Tf (2 () )

+d (Tx-1 (), Tf (X1 @) ))

=0(d (Txn_1 (w),Tx, (w)), d(Txn_1 (w),Tx, (w)) +
d(Tx, (@), Txps1 (),

d(Txn—1 (@), Txpyq (a))) + d(Txn—1 (), Tx, (w)),
d(Txn (w), Tx, (w)) + d(Txn_l(w), Tx, (w)))
=0(d (Txn_1 (w),Tx, (w)), d(Txn_1 (w),Tx, (w)) +
d(Tx, (@), Txps1 (@),

d(Txn_1 (w),Tx, (w)) + d(Txn_1 (w),Tx, (w)),
d(Txp (@), Txpi1 (@) + d(Txp_1 (@), Txy ()))
Hence we get,

d(Txn (w), Txn+1(w)) < hd(Txn_l(w), Tx, (a)))
Similarly we can show that,

d(Txn (@), Txp4q (0.))) =< hd(Txn—Z (), Txp_q ((’J))
In general we can write,

d(Txn (w), Txn+1(w)) < h"d(Tx0 (w),Tx, (a)))
Soforn>m

d(Tx, (@), Txpm (@) < (R™ + AMH + B2 4L +
1) d(Txo (), Tx, (w))

< % (d(Txo(w), Tx; (w))) < a for every m > N.

Thus d(Txn (w), Tx, (a))) < % (d(Tx0 (w),Tx, (a)))) «
an>m2=N.
Therefore the sequence {x,,(w)} is a Cauchy sequence in
1 xX.
Since (X, d) is complete, there exists u(w) € 2 x X such
that
Tx,(w) = Tu(w).
Since T is subsequently convergent, {x, (w)} is such that
lim x, (w) = z(w).
n—oo
As T is continuous lim Tx,(w) = Tz(w).
n—-oo
By uniqueness of limit z(w) = Tu(w)
Since f is continuous lim fx, (w) = fz(w).
n—oo
Again as T is continuous lim Tfx,,(w) = Tfz(w)
n—oo
Therefore lim Tx,,; (w) = Tfz(w)
n—-oo
Choose a natural number N, such that for everyn = N
A(T2(w), Txpy1 (@) =< 2
And d(Tx, (@), Txp4q(w)) K %
Hence for n > N; we have
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d(Tf(2(@)), T2()) < d (TF(2(@)), T (@) +
Ad(Txp41 (), Tz(w))

= d(Tf(2(@)), Tf (3 (@))) + d(Txp41 (@), Tz(w))
< 0(d(T2(w), Tx, (), d (T2(w), Tf(2(w))) +
d(Txn (), Tf (x, (w)))

d(Tz(w), Tf (xn(w))) +

d (T2(w), Tf (2(®)) ), d(Tx, (), Tf(2(w)))

+d (T2(w), Tf(2(@))) + d(Txns1 (@), Tz(w))

= 0(d(T2(w), Tx, (), d (T2(w), Tf(2(w))) +
d(To (@), Tf (n 41 (@),

d(Tz(w),Txn+1(w)) +

d (Tz(a)), Tf(z(w))) ,d(Tx, (w), Tf(z(a)))) +

d (Tz(a)), Tf(z(w))) + d(Txp 1 (), Tz(w))

d (Tz(a)), Tf(z(a)))) <

d(T2(0), Txns1 (@), d(Ton (@), Tf (py1 (@)
«Z+>=aforeveryn >N,

Thus d (Tz(w), Tf(z(w))) & %for allm > 1.

So £ - d(Tz(w), Tf(z(w))) € P forallm > 1.
Since < - 0 asm — oo, and P is closed

—d (Tz(w), Tf(z(w))) € P.Butd (Tz(a)), Tf(z(w))) €
P.

Therefore d (Tz(w),Tf(z(w))) =0

Andso Tz(w) = Tf(z(w)).

As T is injective z(w) = f(z(w)). Thus z(w) is the fixed
point of f.

Uniqueness: If u(w) is another fixed point of f, then

u(w) = f(u(w)).

d(Tu(w),Tz(w)) = d(Tf(u(w)),Tf(z(w)))

< (Z)(d(Tu(w), Tz(w)), d(Tu(w), Tf(u(w)) +

d (Tz(w)Tf(z(w))),

d(Tu(w), Tf(z(w)) + d (Tu(w), Tf(u(w))),

d(Tz(w), Tf(u(w)) + d(Tu(w),Tf(u(w))) =

o(d (Tu(w), Tz(w)), d(Tu(w), Tu(w)) +
d(Tz(w),Tz(w)),

d(Tu(w),Tz(w)) + d(Tu(w),Tu(w)),

d(Tz(w),Tu(w)) + d(Tu(w),Tu(w))

= hd(Tu(w), Tz(w)) as h < 1, a contraction.

Hence d(Tu(w), Tz(w)) = 0 which implies Tu(w) =
Tz(w).

As T is injective, u(w) = z(w) is the unique fixed point of
f.

As (T, f) is a Banach pair, T and f commutes at fixed point
of f which implies that Tfz(w) = fTz(w) i.e. Tz(w) =
fTz(w) which implies that Tz(w) is another fixed point of
f

By uniqueness of fixed point of f, z(w) = Tz(w).

Hence z(w) = fz(w) = Tz(w) is the unique fixed point of
fandT inX.
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