
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 382

ISSN No. 0976-5697

Making Your Code Agile with Refactoring: An Agile Software Development
Technology

Saumya Goyal*

Computer Science and Engineering Department
UIET,

Kurukshetra University,
Kurukshetra , Haryana, India
er.saumya.goyal@gmail.com

Sona malhotra

Computer Science and Engineering Department
UIET,

sona_malhotra@yahoo.com

Kurukshetra University,
Kurukshetra , Haryana, India

Abstract: This paper provides an extensive overview of existing research in the field of software refactoring. This research is compared and
discussed based on a number of different criteria: the refactoring activities that are supported, the specific techniques and formalisms that are
used for supporting these activities, the types of software artifacts that are being refactored, the important issues that need to be taken into
account when building refactoring tool support, and the effect of refactoring on the software process.

Keywords: Agile Software Development, eXtreme Programming, Refactoring Process, Refactoring Activities, Applications Example.

I. INTRODUCTION

An intrinsic property of software in a real-world
environment is its need to evolve. As the software is
enhanced, modified, and adapted to new requirements, the
code becomes more complex and drifts away from its
original design, thereby lowering the quality of the software.
Better software development methods and tools do not solve
this problem because their increased capacity is used to
implement more new requirements within the same time
frame, making the software more complex again. To cope
with this spiral of complexity, there is an urgent need for
techniques that reduce software complexity by incrementally
improving the internal software quality. Refactoring is
basically “the process of changing a software system in such
a way that it does not alter the external behavior of the code,
yet improves its internal structure” [1]. The key idea here is
to redistribute classes, variables, and methods across the class
hierarchy in order to facilitate future adaptations and
extensions. In the context of software evolution, refactoring
is used to improve the quality of the software (e.g.,
extensibility, modularity, reusability, complexity,
maintainability, efficiency).

II. PROCESS SUPPORT

Refactoring is an important activity in the software
development process. It is the process of changing a software
system aiming at organizing the design of the source code,
making the system easier to change and less error-prone,
while preserving observable behavior. This concept has
become popular in agile software methodologies, such as
Extreme Programming (XP), which maintains source code as
the only relevant software artifact. Although refactoring was
originally conceived to deal with source code changes, the
concept can be extended to include similar transformations
on structural models of the system. In this section, we discuss
how refactoring fits into the process of agile software
development.

A. Agile Software Development
Typically, major reengineering efforts are carried out

only when the software has already degraded so much that it
has turned into legacy code. In contrast, the agile software
development community, with eXtreme Programming (XP)
as its main proponent, suggests supporting a culture of
continuous reengineering. They propose a process where one
develops and reengineers software in small iterations: You
develop a little (to implement the desired behavior),
reengineer a little (to improve the structure), develop a little
more, and so on. Unfortunately, these short iterative
development cycles do not seem to fit very well in a more
classical software development process.

Refactoring is one of the cornerstones in the XP process.
Many object-oriented IDEs provide considerable support for
XP, using a combination of refactoring support and unit
testing, two core activities in XP. Van Deursen et al. show
that refactoring of test code is different from refactoring
production code in two ways [2]:
A. There is a distinct set of bad smells involved and
B. Improving test code involves additional test-specific
refactoring.

III. REFACTORING

Program restructuring is a technique for rewriting
software that may be useful either for legacy software as well
as for the production of new systems. The internal structure is
changed, although the behavior (what the program is
supposed to do) is maintained. Re-structuring reorganizes the
logical structure of source code in order to improve specific
attributes, or to make it less error-prone when future changes
are introduced.

In the context of object-oriented development, behavior-
preserving program changes are known as refactorings. The
refactoring concept was introduced by Opdyke, yet becoming
popular by Fowler's work and Extreme Programming
(XP)[2], an agile software development methodology.
According to Fowler, refactoring is the process of changing a
software system in such a way that it does not alter the
observable behavior of the source code, yet improving its
internal structure. In this context, a refactoring is usually

Saumya Goyal et al, International Journal of Advanced Research in Computer Science, 2 (4), july-August,2011,382-385

© 2010, IJARCS All Rights Reserved 383

composed of a set of small and atomic refactorings (the
mechanics), after which the target source code is better than
the original with respect to particular quality attributes, such
as readability and modularity.

Refactoring can be viewed as a technique for software
evolution throughout software development and maintenance
[5]. Software evolution can be classified into the following
types:
a. Corrective evolution: correction of errors;
b. Adaptive evolution: modifications to accommodate

requirement changes;
c. Perfective evolution: modifications to enhance existing

features.

A. Extreme Programming and Refactoring

One of the main reasons for the wide acceptance of
refactoring as a design improvement technique is its adoption
by Extreme Programming (XP) [3]. In XP, refactorings are
applied in specific parts of the code that contain
inconsistencies (“code smells"), and unit tests check the
software output after structural changes. In particular, besides
managing software evolution, refactoring is intrinsic to each
XP development activity [4]. XP practices guide simple
implementation according to immediate user requirements,
promoting successive refactorings for improving design
before adding new features.

B. Refactoring Principles

Principles for the process of refactoring are as follows
[3]:-

a. Reduce code
b. Avoid clever code – keep it simple
c. Make it small and cohesive – single responsibility
d. Eliminate duplication
e. Eliminate dependencies – rather than striving to reduce

dependencies, strive to remove them
f. Write self documenting code – make comments

unnecessary
g. Code should be understandable in seconds – it is not just

about reducing the amount of code, but also about
clearly expressing meaning.

h. Avoid primitive obsession – focus on creating higher
level abstractions

i. Check in frequently, take small steps – every commit
should be only one change.

i. Shorter feedback cycle
ii. Other developers are kept in the loop

iii. Avoid large painful merges
j. Keep code at one level of abstraction – each method

should do one thing, and delegate to other methods that
each do one thing.

C. Refactoring Activities
The refactoring process consists of a number of distinct

activities [2]:
a. Identify where the software should be refactored.
b. Determine which refactoring(s) should be applied to the

identified places.
c. Guarantee that the applied refactoring preserves

behavior.
d. Apply the refactoring.

e. Assess the effect of the refactoring on quality
characteristics of the software (e.g., complexity,
understandability, maintainability) or the process (e.g.,
productivity, cost, effort).

f. Maintain the consistency between the refactored
program code and other software artifacts (such as
documentation, design documents, requirements
specifications, tests, etc.).

a) Identifying where to Apply which Refactorings
A first decision that needs to be made here is to

determine the appropriate level of abstraction to apply the
refactoring.

b) Guaranteeing that the Refactoring Preserves
Software Behavior

By definition, a refactoring should not alter the behavior
of the software. The original definition of behavior
preservation as suggested by Opdyke states that, for the same
set of input values, the resulting set of output values should
be the same before and after the refactoring. Opdyke suggests
ensuring this particular notion of behavior preservation by
specifying refactoring preconditions.

In many application domains, requiring the preservation
of input-output behavior is insufficient since many other
aspects of the behavior may be relevant as well [7]. This
implies that we need a wider range of definitions of behavior
that may or may not be preserved by a refactoring, depending
on domain-specific or even user specific concerns:

i. For real-time software, an essential aspect of the
behavior is the execution time of certain (sequences of)
operations. In other words, refactorings should preserve
all kinds of temporal constraints.

ii. For embedded software, memory constraints and power
consumption are also important aspects of the behavior
that may need to be preserved by a refactoring.

iii. For safety-critical software, there are concrete notions of
safety (e.g., liveness) that need to be preserved bya
refactoring.

c) Assessing the Effect of Refactoring on Quality
For any piece of software, we can specify its external

quality attributes (such as robustness, extensibility,
reusability, performance). Refactorings can be classified
according to which of these quality attributes they affect.
This allows us to improve the quality of software by applying
the relevant refactorings at the right places [8]. To achieve
this, each refactoring has to be analyzed according to its
particular purpose and effect. Some refactorings remove code
redundancy, some raise the level of abstraction, some
enhance the reusability, and so on. This effect can be
estimated to a certain extent by expressing the refactorings in
terms of the internal quality attributes they affect (such as
size, complexity, coupling, and cohesion).

An important software quality characteristic that can be
affected by refactoring is performance. It is a common
misconception that improving the program structure has a
negative effect on the program performance. In the context of
logic and functional programs, restructuring transformations
typically have the goal of improving program performance
while preserving the program semantics. In the context of
object-oriented programs, Demeyer investigated the effect of
refactorings that replace conditional logic by polymorphism.

Saumya Goyal et al, International Journal of Advanced Research in Computer Science, 2 (4), july-August,2011,382-385

© 2010, IJARCS All Rights Reserved 384

He concludes that the program performance gets better
after the refactoring because of the efficient way in which
current compiler technology optimizes polymorphic methods
[5].

To measure or estimate the impact of a refactoring on
quality characteristics, many different techniques can be
used. Examples include, but are not limited to, software
metrics, empirical measurements, controlled experiments,
and statistical techniques.

d) Maintaining Consistency of Refactored Software
Typically, software development involves a wide range

of software artifacts such as requirements specifications,
software architectures, design models, source code,
documentation, test suites, and so on. If we refactor any of
these software artifacts, we need mechanisms to maintain
their consistency. Since the activity of inconsistency
management Bottoni et al. [6] propose maintaining
consistency between the program and design models by
describing refactoring as coordinated graph transformation
schemes. These schemes have to be instantiated according to
the specific code modification and applied to the design
models affected by the change. Within the same level of
abstraction, there is also a need to maintain consistency. For
example, if we want to refactor source code, we have to
ensure that the corresponding unit tests are kept consistent
[7].

IV. APPLYING REFACTORING

A. When not to Refactor
a. Never refactor while making any other code change.

Take a note of the refactoring and complete it after the
bug fix or functionality change has been committed
[4]. Never commit a refactoring at the same time as any
other code change. If you do break a build, having small,
single change commits, will make spotting the problem
that much easier [9].

i. When you spot a code smell – take a note of it
ii. Finish your change

iii. Commit
iv. Refactor

b. Never refactor alone. You should always have a second
set of eyes on the problem. Pair programming is essential
while refactoring. The second person will be their to help
ensure we are making the code easier to understand,
using good names, and helping to ensure we are not
breaking any existing logic [10].

B. When to Refactor
a. You can refactor before or after a bug fix or a

functionality change
b. If you think the change will improve the design of the

code
c. If you think the change will improve the readability of

the code for other developers

V. REFACTORING EXAMPLE

This example describes how refactorings can be
implemented to improve the design of a program and hence
making it faster. The purpose of this example is to clearly
demonstrate how refactorings work. Let us take an example

of a simple C++ program code which displays the schedule
of a week.

Figure 1. Program code before refactoring.

After applying Create_empty_class refactoring which
uses the values of enum type to create and name subclasses,
the code becomes as follows:

Figure 2. Program code after refactoring.

VI. CONCLUSIONS

This paper describes how a simple process of agile
software development can lead to make an existing code
faster by applying a set of program restructuring operations
(refactoring) specific to supporting reuse and faster execution
of object-oriented application. Although it requires behavior
preservation at every step which should be done carefully .

VII. REFERENCES

[1] Martin Erwig and Deling Ren. “Monadification of
functional programs.”, Science of Computer
Programming, 52(1-3):101–129, 2004.

[2] Martin Fowler. “Refactoring: Improving the Design of
Existing Code.” Object Technology Series. Addison-
Wesley, 2000.

[3] Simon Thompson and Claus Reinke.
“A Case Study in Refactoring Functional Programs.”,
In Brazilian Symposium on Programming Languages,
2003.

Saumya Goyal et al, International Journal of Advanced Research in Computer Science, 2 (4), july-August,2011,382-385

© 2010, IJARCS All Rights Reserved 385

[4] Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren.
: “A Formal Specification for the Haskell 98 Module
System.” In ACM Sigplan Haskell Workshop,2002.

[5] Kent Beck, “Extreme Programming Explained: Embrace
Change”, Addison-Wesley, 2000.

[6] D. Sands, Bottoni, “Total correctness by local
improvement in the transformation of functional
programs,” Trans. Programming Languages and
Systems, vol. 18, no. 2, pp. 175–234, March 1996,
ACM.

[7] L. Larsen, M.J. Harrold, “Slicing object-oriented
software”, in: Proc. 18th International Conference on
Software Engineering, pp. 495–505, 1996.

[8] J. Mendling, H.A. Reijers, J. Recker, “Activity labeling
in process modeling: empirical insights and
recommendations”, Information Systems 35 (4) 467–
482, 2010.

[9] H. Leopold, S. Smirnov, J. Mendling, “Refactoring of
activity labels in business process models”, in: 15th
International Conference on Applications of Natural
Language to Information Systems (NLDB 2010), 2010.

[10] M. Minor, A. Tartakovski, D. Schmalen, R. Bergmann,
“Agile workflow technology and case-based change
reuse for long-term processes”, International Journal of
Intelligent Information Technologies 4 (1), 80–98, 2008.

	Saumya Goyal*
	Sona malhotra
	Keywords: Agile Software Development, eXtreme Programming, Refactoring Process, Refactoring Activities, Applications Example.
	INTRODUCTION
	PROCESS SUPPORT
	REFACTORING
	Perfective evolution: modifications to enhance existing features.
	Extreme Programming and Refactoring
	Principles for the process of refactoring are as follows [3]:-

