
Volume 2, No. 4, July-August 2011 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved          1 

ISSN No. 0976-5697 

Scattered Context Grammars with Priority 

Jakub Křoustek* 
Department of Information Systems, 

Faculty of Information Technology, Brno University of 
Technology, 

Božetěchova 2, Brno 612 66, Czech Republic 
ikroustek@fit.vutbr.cz 

Stanislav Židek, 
Department of Information Systems, 

Faculty of Information Technology, Brno University of 
Technology, 

Božetěchova 2, Brno 612 66, Czech Republic 
izidek@fit.vutbr.cz 

 
Dušan Kolář, 

Department of Information Systems, 
Faculty of Information Technology, Brno University of 

Technology, 
Božetěchova 2, Brno 612 66, Czech Republic 

kolar@fit.vutbr.cz 
 

 
Alexander Meduna 

Department of Information Systems, 
Faculty of Information Technology, Brno University of 

Technology, 
Božetěchova 2, Brno 612 66, Czech Republic 

meduna@fit.vutbr.cz 
 

Abstract: The scattered context grammars are based on application of n context-free productions in parallel to generate their sentences. We can find 
two basic versions of this grammar type – erasing and propagating grammars. Erasing productions are allowed in erasing grammar, while they are 
prohibited in propagating grammars. In this paper, we present regulated versions of these grammars, where productions are regulated by the 
production-priority function. The priority function guarantees that productions will be applied whenever it is possible according to their priority. 
We also provide formal proofs of generative power of these grammars. 
 
Keywords: scattered context grammar, regulation, priority, generative power    

I. INTRODUCTION 

Scattered context grammars belong to the semiparallel 
rewriting systems [1], where each production consists of  
n context-free productions that are applied in parallel to the 
current sentential form. 

According to [2], family of languages characterized by 
erasing scattered context grammars coincide with family of 
recursively enumerable languages, while the power of 
propagating scattered context grammars lies between families 
of context-free and context-sensitive grammars [3]. Definition 
of the exact position in the Chomsky hierarchy is an open 
problem.  

In some situations, it is important to make sure that the 
specific production will be used before any other. For example, 
we need to assure that a blocking production will be used 
whenever it is possible. Because the process of a production 
selection is not regulated in any way, it is necessary to include 
this control into the grammar itself. However, this leads to a 
significant increase of productions number, which implies 
more complex and less effective sentence derivation/parsing. 

Therefore, it will be useful to specify that some 
productions have a higher priority in the production selection 
than others. For this purpose, we introduce new regulated 
version of scattered context grammars – scattered context 
grammars with priority. With this approach, we are able to 
create the complete production selection hierarchy or just 
specify one production which is more important than others 
(e.g. blocking production). That is the main difference over the 
other regulation types (see [4], [5]). In the following sections, 
we will study generative power of erasing and propagating 
scattered context grammars with priority.  

II. PRELIMINARIES 

We assume a reader is familiar with the formal language 
theory (for further reference, see for example [6]). 

For an alphabet V , *V  denotes the free monoid 
generated by V  under the operation of concatenation, with 

the unit element ε . Set }{= * ε−+ VV . For 
*Vw∈ , 

||w  denotes the length of w  and )(alphw  denotes the set 

of symbols appearing in w . For VU ⊆ , Uw ||  denotes 

the number of occurrences of symbols from U in w . 
A phrase-structure grammar is a quadruple 

),,,(= SPTVG , where V  is a total alphabet, VT ⊂  is 

a finite set of terminal symbols (terminals), TVS −∈  is the 
starting symbol and P  is a finite set of productions 

,= yxp → ,)( ** VTVVx −∈ .*Vy ∈ We set 

xp =)(lhs  and yp =)(rhs , which represents the 

left-hand side and the right-hand side of the production p , 

respectively. 
A context-sensitive grammar (CSG) is a phrase-structure 

grammar ),,,(= SPTVG , such that every production 

Pyxp ∈→=  satisfies |||| yx ≤ . 

Let ),,,(= SPTVG  be a CSG, 21= wwy α , 

21= wwz β , *, Vzy ∈ , Pp ∈→ βα= . Then y  

directly derives z  in the CSG G  according to the 



Jakub Křoustek et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 1-6 

© 2010, IJARCS All Rights Reserved          2 

production p , ][ pzy G⇒  (or simply zy G⇒ ). Let 
+⇒G  and *

G⇒  denote the transitive and the 

reflexive-transitive closure of G⇒ , respectively. To express 

that G  makes the derivation from u  to v  by using the 

sequence of productions Pppp n ∈,,, 21 K , we write 

][ 21
*

nG pppvu K⇒  (or ][ 21 nG pppvu K
+⇒  to 

emphasize that the sequence is non-empty). The language 

generated by G  is denoted by )(GL  and defined as 

.},:{=)( * wSTwwGL G⇒∈ A context-sensitive language 

is language generated by a CSG. The family of 

context-sensitive languages is denoted by )CS(L . 

A scattered context grammar (SCG, see [3]) is a quadruple, 

),,,(= SPTVG , where V  is a total alphabet, VT ⊂  is 

a finite set of terminal symbols (terminals; symbols from 
TV −  are called nonterminal symbols or nonterminals), 

TVS −∈  is the starting symbol and P  is a finite set of 

productions of the form ),,(),,( 11 nn xxAA KK → , where 

,TVAi −∈ *Vxi ∈ for all .1: nii ≤≤ For 

,),,(),,(= 11 PxxAAp nn ∈→ KK )(lhs p and )(rhs p  

denote nAAA K21 and ,21 nxxx K respectively. A propagating 

SCG is a SCG ),,,(= SPTVG in which every 

PxxAA nn ∈→ ),,(),,( 11 KK satisfies +∈Vxi for all 

nii ≤≤1: . 

Let ),,,(= SPTVG  be a (propagating) SCG, 

,= 1211 +nnn uAuuAuy K ,= 1211 +nnn uxuuxuz K  *, Vzy ∈ , 

.),,(),,(= 11 PxxAAp nn ∈→ KK Theny directly derives

z in the SCG G  according to the production ,p

][ pzy G⇒ (or simply zy G⇒ ). Let +⇒G  and *
G⇒  

denote the transitive and the reflexive-transitive closure of 

G⇒ , respectively. To express that G  makes the derivation 

from u  to v  by using the sequence of productions 

Pppp n ∈,,, 21 K , we write ][ 21
*

nG pppvu K⇒  (or 

][ 21 nG pppvu K
+⇒  to emphasize that the sequence is 

non-empty). The language generated by G  is denoted by 

)(GL  and defined as .},:{=)( * wSTwwGL G⇒∈
A (propagating) scattered context language is language 
generated by (P)SCG. The family of (propagating) scattered 

context languages is denoted by )(P)SC(L . 

We abbreviate G⇒  to ⇒  when it is clear which 

grammar we are referring to. 

III. SCATTERED CONTEXT GRAMMARS WITH 
PRIORITY 

Definition 1. A (propagating) scattered context grammar with 

priority ((P)SCGP) is a quintuple, ),,,,(= πSPTVG , 

where ),,,( SPTV  is a (propagating) scattered context 

grammar and π  is a function, →P:π ℕ. A (propagating) 
scattered context language with priority is language generated 
by a (propagating) scattered context grammar with priority. 
The family of (propagating) scattered context languages is 

denoted by )(P)SCP(L . 

Definition 2. Let ),,,,(= πSPTVG  be a (P)SCGP. We 

say that y  directly derives z  in (P)SCG G  according to 

the production p , ][ pzy G⇒  (or simply zy G⇒ ), if 

and only if:   

• nuuAuy K211=
 

*
1 VuA nn ∈+ ,  

• 
*

1211= Vuxuuxuz nnn ∈+K
,  

• 
PxxAAp nn ∈→ ),,(),,(= 11 KK

, and  

• there is no PxxAAp nn ∈→′ ′′′′ ),,(),,(= 11 KK , 

such that:   

1. 
*

1211 '= VuAuuAuy nnn ∈+′′′′′ K
, and  

2. )(>)( pp ππ ′
.  

  

Let +⇒G  and *
G⇒  denote the transitive and the 

reflexive-transitive closure of G⇒ , respectively.  

 
Lemma 1. 

)(=)( SCPRE LL  

 
Proof. The proof is trivial. We use the theorem 

)(=)( SCRE LL [2]. For every SCG ),,,(=SC SPTVG , 

there exists a SCGP ),,,,(= πSPTVG , such that for every 

0=)(: pPp π∈ , and )(=)( SC GLGL . Therefore, 

)()( SCPSC LL ⊆ .  

∎ 
Lemma 2.   

)()( PSCPCS LL ⊆  

 
Proof. The proof is inspired by an another type of regulated 
grammar – the  ordered scattered context grammar [4]. For 

every context-sensitive grammar ),,,(= CSCSCSCS SPTVG , 

there exists a PSCGP ),,,,(= 0 πSPTVG , such that 

)(=)( CS GLGL . 

Assume that CSG  is in Pentonnen normal form for 

context-sensitive grammars (see [7]). Let ,= CSTT

,= CSCS TVN − }:{= NAAN ∈′′ , ,}:{= 00 NAA ∈Φ
,}:{= 11 NNAA ′∪∈Φ ,}:{= 22 NAA ∈Φ

,= 210 Φ∪Φ∪ΦΦ ,}:{= 1 NAAN ∈∪′Φ′ ′

}{= ⊥∪Φ′∪Φ∪TV . 

Without loss of generality, we assume that N , N ′ , 

0Φ , 1Φ , and 2Φ  are pairwise disjoint. 

Define P  and π  as follows:   



Jakub Křoustek et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 1-6 

© 2010, IJARCS All Rights Reserved          3 

• For every production CS= PBCAq ∈→ and 

CSCS TVX −∈ , let 

o 0000 ),(),(=, Ξ∈→〉〈 BCXAXXqp a , and  

o 0000 )()(= Ξ∈→〉〈 CBAqp b .  

Add contents of 0Ξ  to P . 

• For every production ,= CSPACABq ∈→

CSCS TVX −∈ , and TVY −∈ , let 

o ,),,(),,(=, 1101 Ξ∈′′→〉〈 BAXBAXXqp a  

o ,),,(),,(=,' 1011 Ξ∈→′′〉〈 CAXBAXXqp a  

o ,),'(),(=, 1101 Ξ∈′→〉〈 BABAXqp b and 

o .),(),'(=,' 1011 Ξ∈→′〉〈 CABAXqp b  

 
And let 

o ,),,,(),,,(=,, 1 ⊥⊥ Ξ∈⊥⊥⊥⊥→′′〉〈 BYAXYXqp a

and 

o ⊥⊥ Ξ∈⊥⊥⊥→′〉〈 ),,(),,'(=, 1 BYAYqp b .  

Add contents of 1Ξ  and ⊥Ξ to P . 

• For every CSCS TVX −∈ , add )()( 20 XX →  to P .  

• For every production CS= PaAq ∈→ , let 

o 2222 ),(),(=, Ξ∈→〉〈 aXAXXqp a , and  

o 222 )()(= Ξ∈→〉〈 aAqp b . 

Add contents of 2Ξ  to P . 

 

Define function {0,1}: →Pπ  as follows:  



 Ξ∈ ⊥

otherwise

pif
p

0

1
=)(π  

Proof  Idea 
We will demonstrate that G  simulates every derivation 

wS GCS
⇒  of CSG  in two phases – first it simulates the 

application of productions of the form BCA →  and 
ACAB →  (i.e. without terminals) and then it rewrites all 

nonterminals to terminals (i. e. simulating productions of the 
form aA → ); more precisely, every successful derivation of 
G  proceeds as follows:  

 0S    
*
G⇒    10vX    ][ρ   

 
 G⇒    12vX    ][ 20 XX →   

 
 

*
G⇒    22vX    ][σ   

 
 G⇒    w    ][ 2 aX →  ,  

  

where ,)(, 20 TVXX −∈ ,)( *
1 TVv −∈ ,, *

2 Twv ∈
,)( *

10 Ξ∪Ξ∈ρ ,*
2Ξ∈σ and .Ta ∈ In the first phase, 

productions of the form BCA →  are simulated when the 
zero index occurs at the first nonterminal of a sentential form 
by simply rewriting corresponding nonterminal A  to BC  

or 0A  to CB0 , respectively. Simulation of 

context-sensitive productions ( ACAB → ) proceeds in two 
steps; first, nonterminals being rewritten are marked with 
apostrophes (A′  and B′ ), then they are rewritten to 
nonterminals on the right-hand side of the simulated 
production (A  and C ); the priority is very important in this 

step, because productions with priority 1  (from ⊥Ξ ) 

guarantee that rewriting of A′ , B′  to A , C  cannot 
happen when there is some other nonterminal symbol between 
them – in such a case, the derivation is blocked by ⊥  
nonterminals, which cannot be rewritten any further. 

Note the index at the first nonterminal of the sentential 
form. We use it to keep the state of the derivation, 0  denoting 
the normal mode of simulating productions that do not rewrite 
symbols to terminals, 1 denoting the auxiliary step needed for 
the simulation of context-sensitive production and 2  
denoting the final phase of rewriting all nonterminal symbols 
to terminals. 
 
Formal  proof 
We will establish the Lemma 2 by Claim 1 through Claim 3. 
 
Claim 1.  G  generates every )(GLw∈  in the following 

way:  

 0S    
*
G⇒    1w    ][ρ   

 
 G⇒    2w    ][ 20 XX →   

 
 

*
G⇒    3w    ][σ   

 
 G⇒    w    ][ 2 aX →  ,  

 

where *
321 ,, Vwww ∈ , *

10 }{ Ξ∪Ξ∈ρ , *
2Ξ∈σ .  

 
Proof.  First, let us make these observations:   

• For every *)( TVu −∈ , such that wuS GG
+⇒⇒*

0 ,  

.)( *Φ−Φ∈ Vu  
This directly follows from the facts that for every 

Pp∈ ,  

0,1,20,1,2
|)(rhs||)(lhs=|1 ΦΦ ≥ pp  

(where 2100,1,2 = Φ∪Φ∪ΦΦ ) and that the single 

nonterminal from 0,1,2Φ  is kept as the first symbol of 

the sentential form through the whole derivation.  

• There is no production ,Pp∈ such that 1=|)(lhs|
2Φp  

and ,1=|)(rhs|
0Φp so once the production in the form 

20 XX →  is used, only productions from 2Ξ  remain 

applicable.  

• It holds that *
23 Nw Φ∈ . The only way to successfully 

terminate the derivation is by using production of the form 

aX →2 , where 22 Ξ∈X  and Ta ∈ .  

We see Claim 1 holds. 

∎ 
 



Jakub Křoustek et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 1-6 

© 2010, IJARCS All Rights Reserved          4 

Claim 2.  Consider derivation introduced in Claim 1 and a 

derivation rS G
*

CS
⇒ , *

CSCS )( TVr −∈ . For every 

*)( Φ′−−∈ TVs ,  

,*

CS1
**

0 rSiffwsS GGG ⇒⇒⇒  

such that mAAAs K201)(= , mAAAr K21= , 001)( Φ∈A , 

CSCS1 ,, TVAA m −∈K .  

 

Proof. There are two types of productions in CSG  that may be 

applied without introducing terminal symbol into the sentential 
form:   
1. Context-free productions (of the form BCA → ) are 

simulated by the productions from 0Ξ  in a very 

straightforward way.  
2. Context-sensitive productions (of the form ACAB → ) 

are simulated in two phases by the productions from 1Ξ  

with higher priority productions in ⊥Ξ  preventing the 

rewriting of non-adjacent nonterminals. More precisely, 
application of the production ACAB →  is simulated 
by derivation     

 mAABAA KK201)(   

G⇒    mABAAA KK ′′211)(   

G⇒    mAACAA KK201)(  ,  

where CSCS2 ,,,, TVCBAAA m −∈K , Φ′∈′′ BA , ,

001)( Φ∈A  and 111)( Φ∈A . The second step is 

possible only when there is no other nonterminal between 
rewritten nonterminals. 
 
Note: We considered only the case when the first 
nonterminal in sentential form is not rewritten. 
Simulation of rewriting the first nonterminal by 
context-sensitive production is analogical.  

∎ 
 
Claim 3.  Consider derivation introduced in Claim 1. It holds 
that  

*
CSCS22 )( TVw −Φ∈  

and  

,)( *
CS23 Tw Φ∈  

such that mAAAw K2212 )(= , maaAw K2213 )(= , and 

CSPaA ii ∈→  for every mii ≤≤2: .  

 

Proof. Observe that for every Pp∈ , if 0|)(lhs|
2

≠Ξp , 

then 0=|)(rhs|
10 Ξ∪Ξp . Therefore, only productions from 

2Ξ  can be applied in this phase. Furthermore, the production 

〉〈qp b2 , CSPq ∈ , cannot be applied before the last step, 

because there would be no way to rewrite remaining 
nonterminals.  

∎ 

From Claim 1 through 3, we see Lemma 2 holds.  

∎ 
Lemma 3. 

)()( CSPSCP LL ⊆  

 

Proof. Let ),,,,(= PSCPPSCPPSCPPSCPPSCP πSPTVG  be a 

PSCGP. Then, there exists a context-sensitive grammar G  

such that .)(=)( PSCPGLGL  Set (for description of 

auxiliary sets, see the following proof idea) 

,}{}),,,,(),,,,(=:{= PSCP11 Tnini
ip

iAR RPxxxAAApR ∪∈→Φ KKKK

,},{}),,,,(),,,,(=:{= PSCP11 FTnini
ip

iAL LLPxxxAAApL ∪∈→Φ KKKK

,},:|{}:{= PSCPPSCP LRXVaXaVaa Φ∪Φ∈∈〉〈∪∈〉〈Φ
 

〈〉〈Φ ,{= Ma<
<

◄ ∪⊆∈〉 },: PSCPPSCP PMVaMa 〈〉〈 ,|{ XMa<

◄ },,:| PSCPPSCP LRXPMVaXMa Φ∪Φ∈⊆∈〉
, 

,},:|{}:{= PSCPPSCP LRXVaXaVaa Φ∪Φ∈∈〉〈∪∈〉〈Φ >>
>

,}:{= PSCPVaa ∈〉〈Φ ><
<>

.}:{= PSCPTaa ∈〉〈•Φ•  

Define the grammar ),,,(= SPTVG , where PSCP= TT , 

TV ∪Φ∪Φ∪Φ∪Φ
<>><

= , .TVS −∈
<>

 

Define the P  as follows (description is emphasized for better 
understanding): 
 
1.   Sentential form of length one. 

For each PSCPPSCP TVA −∈  and ,)()(= xAp →

naaax K21= such that there is no 

PSCP)()(= PyAq ∈→ with ,)(>)( pq ππ add 

production zA →〉〈 ><  to P , where  









〉〉〈〈〉〉〈〈

〉〈

− 1.>|=|

1|=|

0|=|

=

121 nxifaaaa

xifx

xif

z

nn >K<

><

ε

 
 

2.   Sentential form of length two. 

For each PSCP, Vba ∈ :   

(a)  Rewriting the first nonterminal. 

For each PSCP21 )()( Paaaa m ∈→ K , such that 

there is no ),(),( yxba → , or )()( yb ′→  in 

PSCPP  with higher priority, add production 

〉〉〈〈〉∅〈→〉〉〈∅〈 >K<>< baaba m1  to P . 

(b)  Rewriting the second nonterminal. 

For each PSCP21 )()( Pbbbb m ∈→ K , such that there 

is no ),(),( yxba → , or )()( xa ′→  in PSCPP  

with higher priority, add production 

〉〈〉〉〈∅〈→〉〉〈∅〈 >K<>< mbbaba 1  to P . 

(c)  Rewriting both nonterminals. 

For each PSCP221121 ),(),( Pbbbaaaba mm ∈→ KK , 

such that there is no ),(),( yxba → , )()( xa ′→  



Jakub Křoustek et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 1-6 

© 2010, IJARCS All Rights Reserved          5 

or )()( yb ′→  in PSCPP  with higher priority, add 

following production to P : 

〉〈〉〉〈〈〉〈→〉∅〉〈∅〈 >KK<><
2111 mm bbaaba

 
 3.   Sentential form of length higher than two. 

For each PSCPPM ⊆ , 

PSCP11 ),,(),,(= PxxAAp nn ∈→ KK , nii <1: ≤ , 

njj ≤<1: , PSCP,,, Vcbaa ∈′ , and 1Ab ≠ , iAc ≠ , 

jAc ≠ , add following productions to P :   

(a)  Checking phase:   
i.  Start the application of production p . 

〈→〉〈 aM< ◄ 〉1

1
|

p

ARaM if there is no  

MPq −∈ PSCP , such that )(>)( pq ππ . 

ii.  First step, the searched nonterminal at the first 
position. 

〈◄ 〈→〉〉〈aRMb
p

A
1

1
| ◄ 〉〉〈 1

1
|

p

ARaMb . 

iii.  First step, other nonterminal at the first position. 

〈◄ 〈→〉〉〈aRMA
p

A
1

11 | ◄ 〉〉〈 2

21 |
p

ARaMA . 

iv.  Move right, nonterminal not found. 

〉〉〈〈→〉〉〈〈 ip

iA
ip

iA RacaRc || . 

v.  Move right, nonterminal found. 

〉〉〈〈→〉〉〈〈 +
+

1

1
|| ip

iAi
ip

iAi RaAaRA . 

vi.  Move right, last nonterminal found. 

〉〉〈〈→〉〉〈〈 Tn
np

nAn RaAaRA || . 

vii.  Move right to the last position, nonterminal not 
found. 

〉〉〈〈→〉〉〈〈 >> ip

iA
ip

iA RacaRc || , 

viii.  Move right to the last position, nonterminal 
found. 

〉〉〈〈→〉〉〈〈 +
+
>> 1

1
|| ip

iAi
ip

iAi RaAaRA . 

ix.  Move right to the last position, last nonterminal 
found. 

〉〉〈〈→〉〉〈〈 >> Tn
np

nAn RaAaRA || .  

(b)  End of check: 
i.  Start returning, production cannot be applied. 

〉′〉〈〈→〉′〉〈〈 >> aLaRaa p
F

ip

iA || . 

ii.  Start returning, production can be applied. 

〉′〉〈〈→〉′〉〈〈 >> aLaRaa np

nAT || . 

iii.  Start returning, production can be applied, with 
applying to the last nonterminal. 

.||
21

1

1
〉〈〉〉〈〉〈〈→〉〉〈〈 −

−
>K>

nmnnn
np

nATn xxxLaRAa
 

iv.  Start returning, nonterminal found at the last 
position, with applying. 

 
v.  Start returning, nonterminal found at the last 
position, without applying. 

〉〉〈〈→〉〉〈〈 >> n
np

nA
np

nAn ALaRAa || . 

(c)  Going left, possibly applying:   
i.  Move left, without applying. 

〉′〉〈〈→〉′〉〈〈 aLaLaa jp

jA
jp

jA || . 

ii.  Move left, with applying. 

.||
21

1

1
〉〈〉〉〈〉〈〈→〉〉〈〈 −

− jmjjj
jp

jA
jp

jAj xxxLaLAa K  

iii.   Move left to the first position, without applying. 

〈◄ 〈→〉′〉〈 jp

jALaMa | ◄ 〉′〉〈aLMa jp

jA| . 

iv.  Move left to the first position, with applying. 

〈 ◄ 〈→〉〉〈 jp

jAj LAMa | ◄ 〉〉〈〉〈−

− 21

1

1
| jj

jp

jA xxLMa

〉〈
jmj

xK . 

v.  Move left, whole production applied. 

〉〈〉〉〈〉〈〈→〉〉〈〈
1

12111
11

11 ||
m

p

T

p

A xxxLaLAa K . 

vi.  Move left to the first position, whole production 
applied. 

〈 ◄ 〈→〉〉〈 1

11 |
p

ALAMa ◄ 〉〉〈〉〈
2111

1| xxLMa
p

T

〉〈
1

1m
xK . 

vii.  Move left, production applied. 

〉′〉〈〈→〉′〉〈〈 aLaLaa p
T

p
T || . 

viii.  Move left to the first position, production applied. 

〈◄ 〈→〉′〉〈 p
TLaMa | ◄ 〉′〉〈aLMa p

T| . 

ix.  Move left, production cannot be applied. 

〉′〉〈〈→〉′〉〈〈 aLaLaa p
F

p
F || . 

x.  Move left to the first position, production cannot 
beapplied. 

〈◄ 〈→〉′〉〈 p
FLaMa | ◄ 〉′〉〈aLMa p

F| . 

xi.  Production applied. 

〈◄ 〉∅〈→〉 aLMa p
T <| . 

xii.  Production applied, the first nonterminal at the 
first position. 

〈◄ 〉〈〉〉〈∅〈→〉
1

12111
1

11 |
m

p

A xxxLMA K< . 

xiii.  Production cannot be applied. 

〈◄ 〉∪〈→〉 apMLMa p
F }){(| < .  

 
4.   Final steps, rewriting to terminals. 

For each Ttt ∈′, , add productions   

(a) tt →〉∅〈 >< ,  

(b) 〉〈•→〉∅〈 tt< ,  

(c) 〉′〈•→〉′〉〈〈• tttt ,  

(d) tttt ′→〉′〉〈〈• >  to P .  

. 〉〈 >
n m n x 

||
21 

1 
1 

〉〉〈〉〈〈→〉〉〈〈 −
− K > n n 

n p 
n A 

n p 
n A n x x L a R A a 



Jakub Křoustek et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 1-6 

© 2010, IJARCS All Rights Reserved          6 

As we can see, a construction of necessary 
context-sensitive grammar is quite complex, so we will 
concentrate on the basic idea behind it and we will omit the 
formal proof, which would be very tedious. 
 
Proof  Idea 

The constructed grammar simulates the application of 

productions of .PSCPG It uses specific nonterminals for storing 

the needed additional information of finite nature. For the sake 
of clarity, all nonterminals of V  are enclosed in angle 

brackets. The auxiliary sets Φ , 
<

Φ , 
>

Φ , 
<>

Φ , •Φ
contain special nonterminals that comprise the nonterminal of 

grammar PSCPG  with additional information (attribute, 

beginning, end mark, etc.). Symbol <  marks the first 
nonterminal before starting the applicability check, ◄ also 
marks the first nonterminal when the check is in progress; 
when both symbols are present, the sentential form contains 
just one symbol. Also note that the first nonterminal (in a case 
of more than two symbols in sentential form) contains the set 

of productions of original grammar PSCPG  whose application 

we cannot simulate. 
It always tries to check (and then possibly apply) 

productions of PSCPP , one by one from the highest priority to 

the lowest, i.e., only after checking that all productions with 
higher priority cannot be used, it is possible to start checking 
productions with lower priority (see production descriptions). 

Checking if given scattered context production can be 
applied is done via auxiliary nonterminal "attribute" R , 
which goes through the sentential form and checks the 
applicability of the individual context-free parts of scattered 
context productions. See that we must be absolutely sure 
whether the production could be simulated, otherwise it would 
be possible to skip higher priority productions and therefore 
use lower priority production, which is not possible with 
PSCGP. 

After the check, there are two situations. Either the 
production is applicable, in which case it must be applied, or it 
is not applicable and we are free to check other productions. 
Anyway, the attribute L  is used to go through the sentential 
form back to the beginning, possibly apply the production 
(variants with current nonterminal to be rewritten in index) or 
bring the negative check result (denoted by F  index) to the 
“attribute set” in the first nonterminal. 

Note the basic difference in two phases of going through 
the sentential form. While we are checking if the production is 
applicable (going right), it is mandatory to change attribute 

ip

iAL  to 
1

1

+

+

pi

iAL  when we encounter the nonterminal 〉〈 iA . 

When we are applying the production after the successful 
check (going left), rewriting the nonterminal is optional, i.e. it 

is possible to skip the nonterminal we need to rewrite without 
the rewriting. This behavior is necessary in order to being able 
to rewrite other than last occurrence of particular nonterminal.  

∎ 
Theorem 1. 

)(=)( CSPSCP LL  

 
 Proof.  Directly follows from Lemma 2 and Lemma 3.  

∎ 

IV. CONCLUSION 

In this paper, we have introduced new variant of the SCG 
which is regulated by the priority function. The priority 
function affects the production selection, where a production 
can be used only if it is applicable in the current sentence and if 
there is no other applicable production with the higher priority. 
It is possible to regulate both erasing and propagating SCG. 

Formal proofs of generative power of those regulated 
grammars has been presented too. It is obvious that family of 
languages generated by the SCGP is equivalent to family 
of recursively enumerable languages, and that family of 
languages generated by the PSCGP is equivalent to family 
of context-sensitive languages. 

ACKNOWLEDGMENT 

This work was supported by the research fundings MPO 
ČR, No. FR-TI1/038, TAČR, No. TA01010667, BUT FIT 
grant FIT-S-11-2, by the Research Plan No. MSM 0021630528, 
and by the SMECY European project. 

REFERENCES  

[1] G. Rozenberg, A. Salomaa, “Handbook of Formal 
Languages Volume 1–3,” Springer, Berlin, 1997. 

[2] A. Meduna, J. Techet, “Scattered Context Grammars and 
Their Applications,” WIT Press, 2009, pp. 137–155. 

[3] S. Greibach, J. Hopcroft, “Scattered context grammars,” 
Journal of Computer and System Sciences, vol. 3, 1969, 
pp. 233–247. 

[4] J. Dassow, G. Paun, “Regulated Rewriting in Formal 
Language Theory,” EATCS Monographs in Theoretical 
Computer Science, vol. 18, Springer-Verlag, Berlin, 1989. 

[5] H. Fernau, “Scattered context grammars with regulation,” 
Annals of Bucharest University, Mathematics-Informatics 
Series, vol. 45(1), 1996, pp. 41–49. 

[6] A. Meduna, “Automata and Languages: Theory and 
Applications,” Springer-Verlag, 2000. 

[7] M. Pentonnen, “One-Sided and Two-Sided Context in 
Formal Grammars,” Information and Control, vol. 25, 
1974, pp. 371–392. 

 
 


