| SSN No. 0976-5697

Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

Available Online at www.ijarcs.info

Scattered Context Grammarswith Priority

Jakub Koustek*
Department of Information Systems,
Faculty of Information Technology, Brno Universitj
Technology,
BozZegchova 2, Brno 612 66, Czech Republic
ikroustek@fit.vutbr.cz

DuSan Kol&,
Department of Information Systems,
Faculty of Information Technology, Brno Universitj
Technology,
BozZegchova 2, Brno 612 66, Czech Republic
kolar@fit.vutbr.cz

Stanislav Zidek,
Department of Information Systems,
Faculty of Information Technology, Brno Universij
Technology,
Bozetchova 2, Brno 612 66, Czech Republic
izidek@fit.vutbr.cz

Alexander Meduna
Department of Information Systems,
Faculty of Information Technology, Brno Universij
Technology,
BoZetchova 2, Brno 612 66, Czech Republic
meduna@fit.vutbr.cz

Abstract: The scattered context grammars are based on apptiof n context-free productions in parallefjemerate their sentences. We can find
two basic versions of this grammar type — erasimy@opagating grammars. Erasing productions éoeedl in erasing grammar, while they are
prohibited in propagating grammars. In this paper,present regulated versions of these grammarstenproductions are regulated by the
production-priority function. The priority functioguarantees that productions will be applied whenéis possible according to their priority.
We also provide formal proofs of generative powithese grammars.

Keywords: scattered context grammar, regulation, priorigneyative power

[INTRODUCTION 1. PRELIMINARIES

Scattered context grammars belong to the semipéarall We assume a reader is familiar with the formal e

rewriting systems [1], where each production cdssisf
n context-free productions that are applied in parab the
current sentential form.

According to [2], family of languages characteriZiey
erasing scattered context grammars coincide withiljaof

recursively enumerable languages, while the powér o

propagating scattered context grammars lies betfaaiies
of context-free and context-sensitive grammars[@finition
of the exact position in the Chomsky hierarchy 1is qpen
problem.

In some situations, it is important to make surat tine
specific production will be used before any ot example,
we need to assure that a blocking production wéll used
whenever it is possible. Because the process obduption
selection is not regulated in any way, it is neags$o include
this control into the grammar itself. However, théads to a
significant increase of productions number, whiahplies
more complex and less effective sentence derivgtoaing.

Therefore, it will be useful to specify that some
productions have a higher priority in the productselection
than others. For this purpose, we introduce newlatgd
version of scattered context grammarsscattered context
grammars with priority. With this approach, we are able to
create the complete production selection hierarchyjust
specify one production which is more important ttedhers
(e.g. blocking production). That is the main diéfiece over the
other regulation types (see [4], [5]). In the feliag sections,
we will study generative power of erasing and pgatiag
scattered context grammars with priority.

© 2010, IJARCS All Rights Reserved

theory (for further reference, see for example.[6])

For an alphabetV , V" denotes the free monoid
generated by under the operation of concatenation, with
the unit elemente . Set V' =V —{&} . For WOV,
|W| denotes the length oiv and alpi(w) denotes the set

of symbols appearing inw. For U L1V | |w|, denotes

the number of occurrences of symbols from Uih
A phrase-structure grammar is a quadruple

G=(V,T,P,S), whereV is a total alphabetT OV is

a finite set of terminal symbols (terminalsy 1V —T is the
starting symbol andP is a finite set of productions

p=X-y, xOV(V-T)V, yOV. We set
Ihdp)=x and rhp)=y , which represents the

left-hand side and the right-hand side of the petidn p,

respectively.
A context-sensitive grammar (CSG) is a phrase-&irac

grammar G=(V,T,P,S) , such that every production
p=X - YOP satisfies| X K| y|.

Let G=(V,T,P,S) be a CSG, y=waw, ,
z=wpAw,, y,zOV', p=a - BOP . Then y
directly derives z in the CSG G according to the

Jakub Kroustek et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 1-6

production P, Y= z[Pp] (or simply Y=, Z). Let

=¢ and :G denote the transitive and the
reflexive-transitive closure of=, respectively. To express
that G makes the derivation frontd to V by using the

sequence of productionsp;, P,,..., P, P , we write

U=y Vipp,...p,] (or u=gvipp,...p,] to
emphasize that the sequence is non-empty). Theudayeg
generated byG is denoted by L(G) and defined as
L(G) ={w:wOT,S= W}.A context-sensitive language
is language generated by a CSG. The family of
context-sensitive languages is denoted 6(CS .

A scattered context grammar (SCG, see [3]) is aquyde,
G=(V,T,P,S), whereV is a total alphabetT OV is
a finite set of terminal symbols (terminals; synshdiom
V =T are called nonterminal symbols or nonterminals),
SOV -T is the starting symbol and is a finite set of

productions of the form(A,..., A,) - (X,...,X,), where
AOV-T, X OV® for all i:l<i<n. For

p=(A,....A) - (X,...,x,) OP, Ins(p) and rhgp)
denoteA A, ... A andXx X, ... X,, respectively. A propagating
sScG is a scGG=(V,T,P,S) in which every
(A,..., A) - (%,...,x,) OP satisfiesx, OV for all
i:l<i<n.

Let G=(V,T,P,S) be a (propagating) SCG,
y=UAU,...u AU, Z=UXU,...uxu., Yy,zOV",
P=(A,....A) - (X,...,X,) OP.Theny directly derives
Z in the SCG G
Y= Z[p] (or simplyy=>. Z). Let = and =
denote the transitive and the reflexive-transitolesure of
=g, respectively. To express th&d makes the derivation
from U to V by using the sequence of productions
Py Pyre-s P, OP, we write U= V[p,p,... P,] (or
u:; V[p,p,...p,] to emphasize that the sequence is

according to the productionp,

non-empty). The language generated By is denoted by
L(G) and defined asL(G)={w:wOT,S= w}.

A (propagating) scattered context language is laggu
generated by (P)SCG. The family of (propagatingitteced

context languages is denoted B/ (P)SG .

We abbreviate=; to = when it is clear which
grammar we are referring to.

(. SCATTERED CONTEXT GRAMMARSWITH
PRIORITY

Definition 1. A (propagating) scattered context grammar with
priority ((P)SCGP) is a quintupleG=(V,T,P,S,7) ,
where (V,T,P,S) is a (propagating) scattered context

© 2010, IJARCS All Rights Reserved

grammar and7? is a function,71: P — AN. A (propagating)
scattered context language with priority is languggnerated
by a (propagating) scattered context grammar witbripy.

The family of (propagating) scattered context laggs is

denoted by L((P)SCP.

Definition 2. Let G=(V,T,P,S,71) be a (P)SCGP. We
say thaty directly derivesz in (P)SCG G according to
the productionp, Y= z[p] (or simply Y= 2), if
and only if:

. YTUAU,..u, Au., DV*,

. Z= ulxluz "'unxnun+l DV*
. p:(A&,’aAh) —>(X1,...,Xn)|:|P,and
« there is no p'=(A,....,A)) - (X,....,x,)OP,

such that:
L y= u:L’A.L’UZ' ...UnrAfunﬂIDV
, 7(p)>n(p)

*

, and

Let =¢ and :>G denote the transitive and the

reflexive-transitive closure of=, respectively.

Lemma 1.

L(RE) = £(SCP)

Proof. The proof is trivial. We use the theorem
L(RE) = L(SC)[2]. For every SCGGg. = (V,T,P,S),
there exists a SCGIS = (V, T, P, S, 77), such that for every
pOP:7(p)=0, and L(Gs.)=L(G) . Therefore,
L(SC)JL(SCP) .

Lemma 2.

£(CS) 0 L(PSCP)

Proof. The proof is inspired by an another type of retpda
grammar — the ordered scattered context grammar [4]. For

every context-sensitive grammé&s.g = (Veg Tesr Pesy S)
there exists a PSCGFG =(V,T,P,S,,71) , such that
L(Ges) = L(G).

Assume thatG.g is in Pentonnen normal form for
context-sensitive grammars 7). Lel =T,
N =V, —T., N={A:AON},®, ={A,: AON},
®, ={A:AONDON', @, ={A : AON},
=0, 00,00, @' =N"O{A : AON},
V=TOo0Oo' {}.

Without loss of generality, we assume thit, N',
®,, @, and P, are pairwise disjoint.

(see

Define P and 71 as follows:

Jakub Kroustek et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 1-6

e For every production q=A- BCUR; and
X DVCS—TCS, let
o Poald X) = (X4, A) - (X,, BC) DEO, and
o Po(®=(A) - (BC)U=,
Add contents of=, to P.
 For

every production

q=AB - ACOP,
X DVCS_TCS, andY OV =T, let

o Pr(aX)= (X, AB) » (X, A,B) 0=,
o Pn(d,X)=(X,A,B) - (X,, AC) 0=,

o P9, X)=(A,B) - (A},B)0O=,,and

o Pypa,X)=(A},B) - (A,C)0=,.

And let

0 Pu(a,X,Y)=(X,AY,B) - (0,0,0,0)0=,,

and

o Py(aY)=(AL,Y,B) - (0,00)0=,.
Add contents of=; and = to P.

« Forevery X DVCS_TCS, add (Xo) = (X2) o p.
For every productionq = A — all P, let

0 P22 (G X) = (X5, A) - (XZ’a)DEZ, and
o Pup(d)=(A) - (@0=,.

Add contents of=, to P.

Define function 71: P - {0,1} as follows:

_ 1 if pU=,
ﬂ(p)_{o otherwise
Proof Idea

We will demonstrate thaG simulates every derivation
S:>GCS w of Gg in two phases — first it simulates the

application of productions of the formA — BC and
AB - AC (i.e. without terminals) and then it rewrites all
nonterminals to terminals (i. e. simulating prodwes of the
form A - a); more precisely, every successful derivation of
G proceeds as follows:

S :>; XoVy (]
=G X2V1 [Xo - Xz]
= X, [d]
=G W [xz - a] '

where X, X, OV -T), vONV-T), v,wOT,
pO(Z,0Z=,), c0=,,and alT. In the first phase,

productions of the formA — BC are simulated when the
zero index occurs at the first nonterminal of atsetial form

by simply rewriting corresponding nontermin#\ to BC

© 2010, IJARCS All Rights Reserved

oo A to BC , Simulation of

context-sensitive productionsAB — AC) proceeds in two
steps; first, nonterminals being rewritten are redrkwith

apostrophes (A and B'), then they are rewritten to
nonterminals on the right-hand side of the simulate

production (A and C); the priority is very important in this
step, because productions with priorif}y (from ED)

respectively.

guarantee that rewriing ofA', B' to A, C cannot
happen when there is some other nonterminal sybdtoleen
them — in such a case, the derivation is blocked [y
nonterminals, which cannot be rewritten any further

Note the index at the first nonterminal of the setigl

form. We use it to keep the state of the derivatiBn denoting
the normal mode of simulating productions that dorewrite
symbols to terminals] denoting the auxiliary step needed for

the simulation of context-sensitive production ardl
denoting the final phase of rewriting all nonteredisymbols
to terminals.

Formal proof
We will establish the Lemma 2 by Claim 1 throughai@I 3.

Claim 1. G generates everyW[1L(G) in the following
way:

S = w [A
=6 W, [Xo - Xz]
:>G W, [o]
=6 W [xz - a] ,

where W, W,,w, OV, pO{Z, 0=}, c0O=,.

Proof. First, let us make these observations:
« Foreveryu(V —T)", such thatS, = U=>% W,
uddV - <D)*.
This directly follows from the facts that for every
pUP,
= >
1={Ihs(p) Lo, , ZTNLP)Lo,
(where @, , =P P, [1P,) and that the single

nonterminal from®,,, , is kept as the first symbol of

the sentential form through the whole derivation.
+ There is no productionp L1 P, such that| Ihs(p) lo, =1

and |rhs(p) |%= 1, so once the production in the form

X, — X, is used, only productions fron:T:2 remain
applicable.

It holds that W, DCDZN* . The only way to successfully
terminate the derivation is by using productiothaf form
X, - a,where X, U=, and aOT.

We see Claim 1 holds.

Jakub Kroustek et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 1-6

Claim 2. Consider derivation introduced in Claim 1 and a
derivation S:%CSY , TO0Ves—Tes) . For every

sOV -T-9'),
§ =6 5= W iff S=¢__T,

such thas = (A)o Ay Ayt = AR Ay (A)o U P,
A..os Ay OVes —Tes.

Proof. There are two types of productions (&, that may be

applied without introducing terminal symbol intetbentential
form:

1. Context-free productions (of the form A - BC) are
simulated by the productions fronz, in a very
straightforward way.

2. Context-sensitive productions (of the form AB — AC)

are simulated in two phases by the productions fr:E{n

with higher priority productions inEEI preventing the
rewriting of non-adjacent nonterminals. More prebis

application of the productiolPAB - AC is simulated
by derivation

(A)A,...AB... A
=c (A)LA...AB...A
=¢ (A)A...AC...A,

where A,,...A ,AB,COV-T., A,BOPY,

(A),O®, and (A), D, . The second step is

possible only when there is no other nonterminalben
rewritten nonterminals.

Note: We considered only the case when the first
nonterminal in sentential form is not rewritten.
Simulation of rewriting the first nonterminal by
context-sensitive production is analogical.

Claim 3. Consider derivation introduced in Claim 1. It hold
that

W, g CD2 (Vcs _Tcs)*
and
W, O ch (Tcs)* '

such thatw, = (A),A,... A, Wy, =(A),a,...a,, and
A - a P, foreveryi:2<i<m.

Proof. Observe that for everypIP, if |lhs(P)l=,#0,
then | rhs(p)|EOD51= 0. Therefore, only productions from

Ez can be applied in this phase. Furthermore, thdymtion

P,,(d), qUP.s, cannot be applied before the last step,

because there would be no way to rewrite remaining
nonterminals.

© 2010, IJARCS All Rights Reserved

From Claim 1 through 3, we see Lemma 2 holds.

Lemma 3.

£(PSCP) 00 £(CS)

Proof. Let Gpgcp= (Voscp Tpsom Frsce Spscm /1) be a
PSCGP. Then, there exists a context-sensitive gean&n

such that L(G) = L(Gpgcp). Set (for description of
auxiliary sets, see the following proof idea)

B =(R) P=(A- A) K X %) TR IHRY,

Q=L P=(A A A) G oK) TR L
®={(a):a0V,ee 0{(a] X):a0Vpeen X 00, O, 1,
®, ={(<Ma,(4« M3:a Voo ,M 0P O{(Ma) X),(
«Ma| X): a0V, oM P, X OO, (10}

B, ={(85): aNVpsgd TH(5] X): 8 Vpocp X (0, D,
©, ={(car)alVese, @.={(a):allTps
Define the grammaiG = (V,T,P,S), where T = Togcp,
v=oOdo 0O 0O 0OT,S 0OV-T.

Define the P as follows (description is emphasized for better
understanding):

1. Sentential form of length one.
For each AQOVpgep—Tosep and P=(A) - (X),
X=aa,...q, that there is no
a=(A) - (Y)OPscp with 72(q) > 72(p), add
production (< A>) - Z to P, where

£ if |x|=0
if |x]=1
if |[X]=n>1.

such

Z=9(XD>)
(taXay)...(a Xa, >)

2. Sentential form of length two.
For eacha, b 0V,gp:
(a) Rewriting the first nonterminal.
For each (8) - (8a,...a,) JPgep, such that
there is no (&,b) - (X, y), or (b) = (Y) in
Poscp With add production

(«0axbsy - («0a)...(a_Xb) to P.

(b) Rewriting the second nonterminal.
For each(b) - (bb,...b,) 0Psgcp such that there
is no (&,b) - (X, y), or (@) - (X) in Pogep
with higher priority, add production
(«0 axbr) » (<0 axhb)...(b, >) to P.

(c) Rewriting both nonterminals.

For eac{a,b) - (alaz...aml,blbz...bmz) UPoscp
such that there is nda,b) — (X, y), (a) - (X)

higher priority,

Jakub Kroustek et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 1-6

or (0) - (Y) in Pu.gep with higher priority, add

following production to P :

(a0 ab0 ») - (aa)...(a, Xby)...(b, =)

Sentential form of length higher than two.
For eachM 0 Pogcp,

P=(A,.-,A) - (X, X,) OPogep, 1 :1<i<n,
j:1<j<n, aa,b,cOVpgep, andbz A, cZ A,
c# A]- , add following productions tdP :
(a) Checking phase:
i. Sartthe application of production P .

(<M a) - (<« M a| R,:f) if there is no

qOP,sep— M, such that72(q) > 71(p) .

ii. First step, the searched nonterminal at the first
position.

(< Mb] R,E‘11><a> ~ («Mb)a]| R,E’11>.
iii. First step, other nonterminal at the first position.
(«MA|RIXa) - («MAXa|R:).
iv. Moveright, nonterminal not found.
(c| Ry Xa@) - (cXalRy).
v. Moveright, nonterminal found.
(A IR Xa) - (AXalR).
vi. Moveright, last nonterminal found.
(A IRMX@) - (AXalR).

vii. Move right to the last position, nonterminal not
found.

(c|R)Xap) - (cXalRY),

viii. Move right to the last position, nonterminal

found.

(AR Xap) » (AXa|R™).

ix. Move right to the last position, last nonterminal
found.

(A IRMY@r) - (AXalR).

(b) End of check:
i. Start returning, production cannot be applied.

(@)@ |Ry p) - (alLgXa'>).
ii. Start returning, production can be applied.
(@xa|R) - (al L xa'»).

iii. Sart returning, production can be applied, with
applying to the last nonterminal.

(@A R) = @ILIX) (% P).

iv. Sart returning, nonterminal found at the last
position, with applying.

(@A, IRy) = (@l L)%, X%,).

© 2010, IJARCS All Rights Reserved

<annn >>'
v. Sart returning, nonterminal found at the last

position, without applying.

@(A, IR) - (@|Li" XA).

(c) Going left, possibly applying:
i. Move left, without applying.

r Pj P]
(@@ |Ly) - (@lLy Xa).
ii. Move left, with applying.
P; Piq
<a>< Aj | LAjj> - <a| LA;_1><X11><X12>---<ijj >
iii. Move left to the first position, without applying.
(< Ma}(a’|Lf\jj> (< Ma| Lijj Xal).
iv. Move left to thefirst position, with applying.
P; Piq
(< MayA L) - ¢« MalL)x)x,)
"'<Xim.).
j
v. Move left, whole production applied.
(@(ATLL) ~ @IL0 %) (%).
vi. Move left to the first position, whole production

applied.
(< MaxAILZ) - (<« MaLi)x XX)

.“<X]Trh> :
vii. Move left, production applied.
(axa'|Ly) - (a|LYXa).
viii. Moveleft to thefirst position, production applied.
(«Maya'|L}) - («Ma|LY)a).
ix. Move left, production cannot be applied.
(axa'|Lp) - (alLEX@).
X. Move left to the first position, production cannot
beapplied.

(«Maya'|Ly) -~ («Ma|L)a).
xi. Production applied.

(«Ma|LP) = (a0 ay.
xii. Production applied, the first nonterminal at the
first position.

(AMALE) = (%00,).

xiii. Production cannot be applied.
(«Ma|Lg) - («(M O{p}) &.

Final steps, rewriting to terminals.
For eacht,t' (0T, add productions

(@ (<Utp) > t,

(b) (< 0t) - (1),

(©) (otXt") - t{=t),

(d) (stXt'>) > tt' to P.

Jakub Kroustek et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 1-6

As we can see, a construction of necessary
context-sensitive grammar is quite complex, so wd w
concentrate on the basic idea behind it and we omilit the
formal proof, which would be very tedious.

Proof Idea
The constructed grammar simulates the applicatibn o

productions of Gogp It uses specific nonterminals for storing

the needed additional information of finite natufer the sake
of clarity, all nonterminals ofV are enclosed in angle

brackets. The auxiliary set® , ®_, ®_, ®_, @,
contain special nonterminals that comprise the eromnal of
grammar Gpgcp With additional information (attribute,

beginning, end mark, etc.). Symbod marks the first
nonterminal before starting the applicability cheek also
marks the first nonterminal when the check is ingpess;
when both symbols are present, the sentential fmymains
just one symbol. Also note that the first nonterahifin a case
of more than two symbols in sentential form) coméathe set

of productions of original grammaG,s-, Whose application

we cannot simulate.
It always tries to check (and then possibly apply)

productions of P.gp, 0ne by one from the highest priority to

the lowest, i.e., only after checking that all potions with

higher priority cannot be used, it is possible tartschecking

productions with lower priority (see production destions).
Checking if given scattered context production d¢en

applied is done via auxiliary nonterminal "attrietit R ,
which goes through the sentential form and chedies t
applicability of the individual context-free pamnd$ scattered
context productions. See that we must be absolugahg
whether the production could be simulated, othextisvould
be possible to skip higher priority productions ahdrefore
use lower priority production, which is not possiblvith
PSCGP.

After the check, there are two situations. Eithbe t
production is applicable, in which case it musgapelied, or it
is not applicable and we are free to check othedyxtions.
Anyway, the attributeL is used to go through the sentential
form back to the beginning, possibly apply the mcohn
(variants with current nonterminal to be rewritiarindex) or
bring the negative check result (denoted lby index) to the
“attribute set” in the first nonterminal.

Note the basic difference in two phases of goimgubh
the sentential form. While we are checking if theduction is
applicable (going right), it is mandatory to charag&ibute
Lg: to L,‘j;i when we encounter the nonterminéh) .
When we are applying the production after the sssftg
check (going left), rewriting the nonterminalagtional, i.e. it

© 2010, IJARCS All Rights Reserved

is possible to skip the nonterminal we need to itewvithout
the rewriting. This behavior is necessary in otddreing able
to rewrite other than last occurrence of particalanterminal.

|
Theorem 1.

L(PSCP) = £(CS)

Proof. Directly follows from Lemma 2 and Lemma 3.

|
V. CONCLUSION

In this paper, we have introduced new variant efSICG
which is regulated by the priority function. Theiqpity
function affects the production selection, whergraduction
can be used only if it is applicable in the curmamitence and if
there is no other applicable production with thghler priority.
It is possible to regulate both erasing and profag&CG.

Formal proofs of generative power of those regdlate
grammars has been presented too. It is obvioudahaly of
languages generated by the SCGP is equivalent rtolyfa
of recursively enumerable languages, and that fanoi
languages generated by the PSCGP is equivalerdantdyf
of context-sensitive languages.

ACKNOWLEDGMENT

This work was supported by the research funding©MP
CR, No. FR-TI1/038, TAR, No. TA01010667, BUT FIT
grant FIT-S-11-2, by the Research Plan No. MSM @32528,
and by the SMECY European project.

REFERENCES

[1] G. Rozenberg, A. Salomaa, “Handbook of Formal
Languages Volume 1-3,” Springer, Berlin, 1997.

[2] A. Meduna, J. Techet, “Scattered Context Gramsnaand
Their Applications,” WIT Press, 2009, pp. 137-155.

[3] S. Greibach, J. Hopcroft, “Scattered contexdmymars,”
Journal of Computer and System Sciences, vol. 89,19
pp. 233-247.

[4] J. Dassow, G. Paun, “Regulated Rewriting in riralr
Language Theory,” EATCS Monographs in Theoretical
Computer Science, vol. 18, Springer-Verlag, Bedi®g9.

[5] H. Fernau, “Scattered context grammars withutaton,”
Annals of Bucharest University, Mathematics-Infotica
Series, vol. 45(1), 1996, pp. 41-49.

[6] A. Meduna, “Automata and Languages: Theory and
Applications,” Springer-Verlag, 2000.

[7] M. Pentonnen, “One-Sided and Two-Sided Contiext
Formal Grammars,” Information and Control, vol. 25,
1974, pp. 371-392.

