
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 316

ISSN No. 0976-5697

A Review of Various Methods for Association Rule Mining
Harpreet Singh*

Department of Computer Science and Engineering
National Institute of Technology

Jalandhar, India
harpreet99.nitj@gmail.com

Renu Dhir
Department of Computer Science and Engineering

National Institute of Technology
Jalandhar, India
dhirr@nitj.ac.in

Munish Saini

Department of Computer Science and Engineering
 National institute of Technology

Jalandhar, India
munish_1_saini@yahoo.co.in

Abstract—Association rule mining is the process of finding interesting relationships between various data elements. As the size of database is
growing so rapidly, efficient methods are required for finding association rules. This paper presents a review of various known and recently
developed methods for finding association rules. Followed by the comparison of different methods and specifying which method is more
efficient from other.

Keywords— Apriori algorithm; Association rule; Frequent itemsets; QFP; MFP; APFT;FP-Split, Pattern Matrix.

I. INTRODUCTION

Data mining is one of the key research areas which have
attracted the attention of various researchers and practioners.
Due to the wide availability of data, the need for turning such
data into useful information and knowledge is generated. The
useful information obtained can be applied to various
applications ranging from market basket analysis, fraud
detection, customer retention, early warning of equipment
failure etc. Hence, Data mining [1] refers to the process of
extracting knowledge or useful data patterns from large
amount of data by applying various intelligent methods.

Association rule mining is one of the key research areas
of the data mining. In this paper Section II will give the
description of Association rule mining. Section III and
Section IV will present the review of various known methods
and recently developed methods for association rule mining
respectively. Section V will give the comparison of various
methods.

II. DESCRIPTION OF THE ASSOCIATION RULE

MINING

Association rule mining [1] is the process of finding
useful relationship between different data items of the large
database and then representing this relationship in the form
of rules called as Association rules. Association rules [1] can
be written as

XY [Support= s%, Confidence=c%]
Support s, is the probability that a transaction contains (X,
Y).

 Support (XY) = P (XUY),
Confidence c, is the conditional probability that a transaction
contain X also contain Y.

Confidence(XY) =P(Y/X) =P (XUY)/support_count(X)

Support and Confidence are the two measures of rule
interestingness. Support and confidence represent the
usefulness and certainty of the discovered rules. Minimum
support and Minimum confidence are needed to eliminate the
unimportant rules. So, the association rule holds if its support
and confidence value is greater than minimum support and
minimum confidence values and such rules are called as the
interesting rules.

III. REVIEW OF VARIOUS KNOWN METHODS

A. Apirori Algorithm:

Apriori Algorithm [1, 2] is one of the classical algorithm
proposed by R. Srikant and R. Agrawal in 1994 for finding
frequent patterns for Boolean association rules. Apriori
employs an iterative approach known as level-wise search,
where k-itemsets are used to explore (k+1)-itemsets. First,
the set of frequent 1-itemset L1 is found. Next, L1 is used
find frequent 2-itemset L2. Then L2 is used to find frequent
3-itemset L3. The method iterates like this till no more
frequent k-itemsets are found.

Apriori Algorithm finds frequent itemsets from candidate
itemsets. It is executed in two steps; firstly it retrieves all the
frequent itemsets from the database by considering those
itemsets whose support is not smaller than the minimum
support (min_sup). Secondly, it generates the association
rules satisfying the minimum confidence (min_conf) from
the frequent itemset generated in first step. The first step
consists of join and pruning action. While joining the
candidate set Ck is produced by joining Lk-1 with itself and
pruning the candidate sets by applying the Apriori property
i.e. All the non-empty subset of frequent itemset must also be
frequent.

The pseudo code for generation of frequent itemsets is
given below.
Ck: Candidate itemset of size k
Lk: Frequent itemset of size k

Harpreet Singh et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,316-322

© 2010, IJARCS All Rights Reserved 317

{
L1= frequent 1-itemset
For (k=1; k! =NULL; k++)
 {
 Ck+1=Join Lk with Lk to generate Ck+1;
 Lk+1= Candidate in Ck+1 with support greater than

 or equal to min support;
 }
 End;

Return Lk;
}

B. fp- Growth Algorithm:

FP-Growth algorithm [1,4,5] proposed by Jiawei Han
finds the association rules more efficiently than Apriori
algorithm without the generation of candidate itemsets.
Apriori algorithm requires n+1 scans, where n is the length
of the longest pattern. FP-Growth algorithm requires only
two scans of the database to find frequent patterns. FP-
Growth algorithm adopts divide and conquer strategy. First,
it construct a FP-tree [5] using the data in transactional
database and then mines all the frequent patterns from FP-
tree. After mining of frequent patterns the association rules
can be generated easily.

The pseudo code for FP-Growth algorithm is as follows
[1, 3]
a. If Tree contains a single path P THEN
b. for all combination (denoted as β) to the nodes in path P

Do
c. Generate pattern β U α with support = minimum

support of nodes in β;
d. else for each ai in the heads of tree Do
e. Generate pattern β = ai U α with support= ai . support
f. Construct conditional pattern base and generate FP-tree

Treeβ
g. If Treeβ= Φ THEN
h. Call FP-Growth (Treeβ β)
i. End

C. Partitioning Method:

Partitioning Method [1] provide the improvement over
classical Apriori algorithm. It works in two steps. In first
step, it divides the transactions of the database D into n non-
overlapping partitions and then finds the support count of
each partition. And in second step, global frequent itemset
among the candidates is found. The Partitioning method
requires only two database scan as compare to n+1 scans
required by the Apriori algorithm. The process of
Partitioning method is shown below in Figure1.

Figure 1. Mining of

frequent itemsets by Partitioning the data

D. Transaction Reduction Method:

Transaction Reduction Method [1] employs a property
that a transaction that doesn’t contains any frequent k-
itemsets cannot contain any frequent (k+1)-itemset.
Therefore, such transaction can be removed from the
database for further consideration.

The pseudo code for Transaction Reduction Method is
as follows
a. Scan the database D to find Lk frequent itemset
b. For Lk+1 Do
c. If transaction does not contain any frequent

k-itemset Then
d. Delete the transaction tk from database D for further

consideration
e. Else
f. Consider the transaction
g. End;

The experimental results obtained from various
researchers have shown that the transaction reduction
method requires less database scans and comparisons as
compare to Apriori algorithm.

E. Hashing Method:

Hashing is the method to improve the efficiency of
Apriori algorithm. In Hashing Technique [1] the frequent
itemsets are found by mapping the frequent items into hash
buckets of hashing table. Hashing technique can reduce the
size of candidate k-itemset Ck. For example, when scanning
each transaction in the database to generate the frequent 1-
itemset C1, we can generate all the 2-itemset for each
transaction, map them into different buckets of a hash table
structure and increase the corresponding bucket count. An
itemset whose bucket count in hash table is below the
minimum support count value cannot be frequent and can be
removed from the candidate set.

Transactions
in D

Divide D
into n
partitions

Find
frequent
itemset
local to
each
partition
(1 scan)

Combine
all local
frequent
itemsets to
form
candidate
itemsets

Find global
frequent
itemset
among
candidates
(1 scan)

Frequent
itemsets
in D

Step 1 Step 2

Harpreet Singh et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,316-322

© 2010, IJARCS All Rights Reserved 318

IV. REVIEW OF RECENTLY DEVELOPED

METHODS AND ALGORITHMS

A. A modified Apriori Algorithm with its
Applications in Instituting Cross-Selling Strategies of the
Retail Industry:

Changsheng Zhang and Jing Ruan [6] presented an
improved Apriori algorithm with its application in cross
selling strategies of retail industry. They proposed an
optimized method for Apriori algorithm. The proposed
method introduced more efficient way to achieve the
pruning operation. The algorithm needs to scan Lk-1 one time
to complete the deletion and remaining of each element X in
Ck. In Apriori algorithm Lk is generated from candidate
itemset Ck by scanning the database and by calculating each
candidate support count. Most of the improved algorithm
will first generate (k-1)-item subset of each element X in Ck
and compare with Lk-1. If a (k-1)-itemset is not the element
of Lk-1then it is not frequent itemset. According to the
Apriori property, X is not frequent either. So X could be
deleted from Ck. This algorithm requires searching Lk-1 for
each element X in Ck. So the main focus of this new method
is to reduce the number of candidate itemsets generated and
to reduce the I/O spending.

For reduction of candidate itemsets the new algorithm
uses the property:
a. Tk is a k-dimensional itemset. If (k-1) subset of k-itemset

is not frequent then k-itemset is also not frequent.
For the reduction of I/O spending the proposed

algorithm uses the property:
b. If T is a transaction record in database D. if the number

of valid data in T is less than k. then, we will not find
any element X of frequent itemset Lk in T.
Hence, by using both of the above two properties the

modified algorithm can mine the association rules more
efficiently and effectively from large database and improves
the performance of Apriori algorithm.

B. Reduced Apriori Algorithm with Tag (RAAT):

Wanjun yu, Xiao chun wang and et.al [7] proprosed a
Novel algorithm called as Reduced Apriori Algorithm with
Tag (RAAT). The prorposed algorithm reduces the number
of candidate itemset produced in pruning operation of C2

and thus improves the efficiency and saves time. The
algorithm RAAT optimize subset operation by using
transaction tag to speed up support calculation. The
experimential results of [7] shows that the RAAT algorithm
gives better result in terms of candidate generation and
counting the support using database as compare classical
Apirori algorithm.

C. An improved apriori algorithm for early warning of
equipment failure:

 Liu Jing and et.al [8] presented a new method for
improving the performance of Apriori algorithm. In this
algorithm the items which cananot become the frequent
items are deleted in advance. After the first traversal, the
support count is counted by set Fk , the committing filter
obtained by use of Lk-1. The items whose suuport value is
less than the minimum support value are deleted from the
database. Then the transaction reduction method, the
transaction which has number of items less than k-1 are

deleted so as to reduce Fk is applied. The experiment
performed by [8] shows that the improved algorithm gives
better results and overcome the two limitations of Apriori
algorithm i.e the number of candidate itemset generated and
number of times database is scaned.

D. Barrel Structure Method:

Dongme Sun and et.al [9] present a new algorithm to
improve the effectiveness of Apriori algorithm. In this
algorithm the researcher used the combination of reverse
and forward scan of database to find the maximal frequent
itemset [1]. In this algorithm they used the concept of
dynamic itemset counting and use the barrel structure [9] to
store all the frequent itemsets. In this first, Lk maximal
frequent itemset is found along with its support. After this
next frequent itemsets are mined i.e. Lk-1 and their respective
support value is counted by using database D. Similarly all
the frequent itemset are mined in this way. Then all these
frequent itemsets are placed in bit-matrix [10] to count their
respective support values. The results of [9] shows that the
improved barrel structure method requires very less time for
scanning the database as compare to Apriori algorithm and
saves the space as it does not produce large number of
candidate itemsets.

E. An Implementation of Improved Apriori algorithm
[13]:

In this algorithm the concept of support transaction [11]
and descending power subset [11] are used. The support of
candidate (k+1)-itemset is found by using support
transaction of frequent k-itemset. Then, items whose
support value is not less than minimum support threshold
are considered as frequent itemsets. It avoid scanning
resource database repeatedly, i.e. it reduces the number of
times the database is scanned as the transactions of all
descending power subset supported some itemset support
same itemset. The experimental result performed by
Gangyang and et.al shows that it requires less space of
memory and reduces the frequency of I/O as compare to
previous Apriori algorithm.

The Pseudo code for improved algorithm [11] is as
follows:
L1 = (big itemset 1);
For (k=2; Lk-1 != a; k++) Do begin
 Ck = apriori.gen (Lk-1);
 For all itemset C € Ck Do begin;
 C.Support transaction set = {all items};
 For drop exponent subset of all C S Do;

 C.Support transaction set = C.Support transaction
set ∩ S.support transaction set;

 C.count = cnt (C.support transaction set);
 End;
 Lk= {C € Ck | C.count >= minsup };
End;
Return Uk Lk;

F. Qfp Algorithm:

Li Juan and Ming De-ting [12] proposed a new method
called QFP algorithm. It is an improvement over FP-Growth
algorithm. QFP algorithm requires only one database scan to
convert the transaction database into QFP tree after data
preprocessing. Then directly generates the association rules

Harpreet Singh et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,316-322

© 2010, IJARCS All Rights Reserved 319

from the QFP-tree [12] without looking the transaction
database.
This algorithm works in two steps:
a. Construction of QFP-Tree
b. Mine the QFP-Tree to obtain the frequent patterns.

The experimental result of QFP algorithm [12] has
shown that time efficiency of the QFP algorithm is higher
that that of FP-Growth algorithm. The QFP algorithm can
be applied to any situation which is suitable for FP-Growth
or Apriori algorithm as the input to QFP is same as that of
FP-Growth or Apriori algorithm.

G. APFT algorithm [13]:

Qihua Lan, Defu Zhang, Bo Wu given a new method
called APFT which combines the Apriori algorithm and FP-
Growth algorithm. APFT algorithm still apply divide and
conquer strategy of FP-Growth algorithm for mining
process. In APFT, the compressed FP-tree is patitioned off a
set of conditional subtree, each of the conditional subtree
associated with frequent item.
APFT algorithm works on two steps:
a. To construct FP-tree as FP-Growth algorithm do.
b. To use Apriori algorithm to mine the FP-tree.

In second step an additional table called Node table is
required which has two fields.

Item-name: specify the name of the node that apperas in
the FPTi.

Item-support : specify the number of node appear with Ii.
The Results of [13] shows that the APFT algorithm work

much faster than Apriori algorithm and work still faster than
FP-Growth algorithm when minimum support value is
small.

H. FP-Split method [14]:

FP-Split method is proposed by Chin-Feng LEE and
Tsung-Hsien Shen in 2005. FP-Split algorithm is proposed
for improving the performance of FP-Growth algorithm.
Many researchers has tried to improve the performance of
FP-Growth algorithm but they ignored the fact that time
taken to construct the FP-tree is very large. So, Chin-Feng
and et.al consider this point and gives a new method called
as FP-Split method.
FP-Split method works in three steps:
a. Construction of equivalence class [14] by scanning

database.
b. Count the support of each item and filter out non-

frequent itemsets.
c. Constructing the FP-Split tree [14] using equivalence

class of frequent itemsets.
The particular node structure of FP-Split tree is shown

below in Figure2. In FP-Split algorithm the database is
scanned only once at the time of creating equivalence class.
The time taken to construct FP-Split tree is much less than
the time taken for construction of FP-tree. After the
Construction of FP-Split tree the FP-Growth algorithm is
applied to find the frequent patterns.

Content Count

Link_sibling List

Link_child

Figure: 2 Node structure of FP-Split tree

I. Mfp Algorithm [15]:

MFP algorithm is an improvement over FP-Growth
algorithm. FP-Growth algorithm requires two database
scans one for construction of table L and second for
construction of FP-tree. But in case of MFP algorithm only
one database scan is required.
MFP Algorithm consist of two main steps:
a. Construction of MFP-tree [15]
b. Mining of frequent patterns from MFP-tree.

In MFP-tree each node expect the root node and leaf
node has two enerties.
a. Support count value of node
b. Pointer to the next node in MFP-tree.

The results of [15] has shown that MFP algorithm
requires less time and can find the frequent patterns by
scanning the database only once. This algorithm can be
appiled to any situation where FP-Growth or Apriori
algorithm is suitable.

J. P_ Matrix Alorithm [16]:

Sixue Bai, Xinxi Dai proposed an efficient and fast
algorithm based on Pattern Matrix [16].
The proposed algorithm works in two steps
a. Scan the database once to obtain the binary pattern

matrix and transform its ranks. The pattern matrix P is
written as shown below in Figure 3.

b. Perform the operation of AND with each row of
pattern matrix to generate frequent itemsets.

The P_Matrix algorithm covers both the problems of
Apriori algorithm. It scans the database only once to
generate pattern matrix and then directly finds the frequent
itemsets from the pattern matrix without generation of
candidate itemsets. The result of [16] has shown that
P_Matrix algorithm greatly reduces the temporal complexity
and spatial complexity of the algorithm and improves the
efficiency of Apriori algorithm.

 I1 I2 Ij …. Ik…. Im

 T1 y11 y12 y1j

 y1k y1m

 T2 y21 y22 y2j
 y2k y2m

 P= T3 y31 y32 y3j

 y3k y3m

 … …. ….. ….. …. ….. …

 Ti yi1 yi2 yij
 yik yim

 …
 Tn yn1 yn2 ynj

 ynk ynm

Figure: 3 Pattern matrix

K. A Fast Algorithm For Mining Association Rules
Based on Concept Lattice:

Yuan-Yuan Wang and et.al proposed a fast algorithm
based on Concept lattice [17] for finding association rules
from large and dynamic database. In this algorithm first, the
building of concept lattice [18, 19] is done. Followed, by the
mining of association rules using concept lattice is done. In

Harpreet Singh et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,316-322

© 2010, IJARCS All Rights Reserved 320

this algorithm various Theorems shown in [17] are used to
mine the frequent itemsets from concept lattice. The
proposed algorithm finds all the frequent itemsets with only
one scan of the database. Then after, finding all the frequent
itemsets the process of generating association rules is same
as for Apriori algorithm [1]. The experimental result of [17]
proves that efficiency of proposed algorithm is better than
Apriori algorithm in case of large and dynamic database.

L. Mining of association rules using frequent Itmset
Lattice (20)::

Bay Vo, Bac Le presented a method to find the
association rules by using itemset lattice [20]. The new
method works in two steps. In first, it construct the itemset
lattice which will represent the parent child relationship
between frequent itemsets and in second step, the algorithm
mines the association rules directly from the itemset lattice.
The time taken to find association rules by using itemset
lattice is very small as compare to previous algorithms. The
process of building itemset lattice consumes more time but
it is cover up by the time to find association rules. The
itemset lattice also has the property of reuse i.e. if we want
to mine association rules with many different minimum
confidences in database which has the same minimum
support; only one itemset is build for mining different
association rules.

M. An efficient association rule mining algorithm
Based on Coding and Constraints (21):

Association rule mining algorithm based on coding and
constraint uses the properties of Apriori algorithm and
makes some improvement based on it. The algorithm uses
the sub-block coding method [21] for properties and applies
constraints for antecedent and consequent [21] of the rules.
In this method the attribute value is divided into decision
attributes and non decision attributes [21]. Decision attribute
appears in the antecedent of the association rule and Non-
Decision attributes can only appear in the consequent of the
rule. The result of this paper has shown that the new method
reduces the number of candidate itemset generated and also
reduces the number of times the database is scanned.

N. Hmfs Method:

Don-Lin Yang and et.al gives an improved and efficient
Hash-based method called HMFS for finding the maximal
frequent itemset [22]. The HMFS method combines the
advantages of both Direct Hashing and Pruning (DHP) [23]
and the Pincer-Search algorithm [24]. HMFS uses the hash
technique of DHP algorithm to filter infrequent itemsets in
bottom-up direction and uses top-down technique that is
similar to the Pincer-Search algorithm but differ in the way
to initialize the set of maximal frequent candidate itemsets.

The HMFS algorithm is more efficient than direct hash
based method as the number of times the database scanned
is greatly reduced and the process of finding maximal
frequent itemset is also fast. Thus, the HMFS algorithm
performs better than DHP and Pincer-Search algorithm.

O. Vector Based Method:

Zhi Lin, Guoming Sang, Mingyu Lu proposed a vector
operation based method [25] for finding association rules.
The proposed algorithm finds the association rule more

efficiently and requires only one database scan to find all
the frequent itemsets.

 The process of generating frequent itemsets of this
method consists of two steps:
a. Generation of Boolean matrix, where Boolean matrix

is given as

Mij= 1 Ij belongs to Ti

 0 Ij not belongs to Ti

b. Then V-Apriori Algorithm [25] is applied to find the

frequent itemset from Boolean matrix.
The Pseudo code for generation of frequent itemset is as

follows:
a) Create an m*n Boolean matrix M according to def. 1

of [25]
b) Generate frequent 1-itemset in terms of def. 2 of [27].

Sort the itemset in descending value of their support
count.

c) Generate frequent 2-itemset in terms of def. 3 [25] and
save the result.

d) Use (k-1)-itemset to produce k-itemset.
e) Repeat the above steps until no more frequent k-

itemset exist.
f) End;

The V-Apriori algorithm improves the performance of
Apriori algorithm i.e. it overcomes both two problems of
Apriori algorithm. The number of times the database
scanned is greatly reduced and candidate itemset generated
are also reduced. More ever, computation of matrix is
simple as compare to perform join and prune operation as in
case of classical Apriori algorithm.

V. COMPARISION OF VARIOUS METHODS

The comparison of various methods is shown below in
Figure 4.

Method Concept Number
of times
database
scanned

Number
of
candidate
generated

Advantages

Apriori

Apply join
and pruning
operation
along with
Apriori
property

Large Large 1. Simple
2.one of the
classical
Algorithm to
find
association
rules

FP-
Growth

Construct FP-
tree and then
mine the
frequent
patterns from
it.

Reduced
to two

No 1. More
efficient than
Apriori.
2. No need to
perform join
and prune
operation.

Harpreet Singh et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,316-322

© 2010, IJARCS All Rights Reserved 321

Hashing

Use Hash
based
technique

Reduced Less 1.
Improvement
over
traditional
Apriori.
2. More time
efficient
3. Easy to
mine
frequent
patterns with
the help of
hash tables.

RAAT

Reduced
Apriori
Algorithm
with Tag.
Concept of
tagging is
used to speed
up the
process.

Reduced
as
compare
to
Traditiona
l Apriori

Less as
compare
to
Traditiona
l Apriori

1. Reduces
one
redundant
pruning
operation of
C2.
2. Saves time
and increases
efficiency.

QFP

Construct
QFP-tree and
then mines the
frequent
patterns from
it.

Reduced
to one

No 1. No need to
sort the data
items before
making QFP-
tree.

APFT

Combines
Apriori
algorithm and
FP-tree
structure of
FP-Growth
algorithm.
Construct FP-
tree and then
use Apriori
algorithm to
mine FP-tree.

Reduced Less 1. Does not
generate the
conditional
pattern base
and sub-
conditional
pattern.
2. Work
faster than
Apriori and
FP-Growth
Algorithm.

FP-Split

Generate
equivalence
class and then
sort
equivalence
class in
descending
order to
construct FP-
Split tree.

Reduced
to one

No 1.
Improvement
over FP-
growth
algorithm.
2.
Construction
of FP-Split
tree
consumes
less time.
3. Efficient
and scalable.
4. No
filtering and
sorting of
items is
required.
5. Header
table and
links are not
scanned
again and
again while
designing
new node in
the FP-Split
tree.

MFP

Construct
MFP-tree and
then mines the
frequent
patterns from
it directly.

Reduced
to one

No 1. More
efficient than
FP-Growth.
2. Can be
applied to
any situation
where FP-

Growth or
Apriori are
suitable.

P_Matrix

Construct a
binary pattern
matrix and
then perform
AND
operation on
Boolean
matrix rows to
generate
frequent
patterns.

Reduced
to one.

No 1. Reduces
the temporal
complexity
and spatial
complexity.
2. More
efficient than
Apriori
algorithm.

Concept
Lattice

Build the
concept
lattice, mines
the frequent
patterns
directly from
it.

Reduced
as
compare
to FP-
Growth
and
Apriori

Less as
compare
to FP-
Growth
and
Apriori

1. Total time
to build the
concept
lattice and
finding
frequent
itemsets is
shorter than
that of
Apriori.
2. Mostly
used for
finding
frequent
itemsets in
case of large
and dynamic
database.

Frequent
Itemset
Lattice

Construct the
frequent
itemset lattice
and then mine
the association
rules from it.

 1. Frequent
itemset
lattice has
the property
of reuse.
2. Saves lot
of time for
mining of
association
rules.

Coding
and
Constraint

Sub-block
coding method
is used for
properties and
the constraints
are made for
the antecedent
and
consequent of
rules.

Scanning
size of
database
is
reduced.

Less 1. Improves
the operating
efficiency.
2. More
efficient than
traditional
approach.
3. Algorithm
is simple and
easy to
maintain.

HMFS Combines the
advantages of
both DHP and
Pincer-Search
algorithms.

Reduced
database
scan

Can filter
out
infrequent
candidate
itemsets.

1. Use the
filtered
candidate
itemsets to
find the
maximal
frequent
itemsets.
2. Reduces
the search
space.
3. Better
performance
than DHP
and Pincer-
Search
algorithms.

Harpreet Singh et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,316-322

© 2010, IJARCS All Rights Reserved 322

Vector
Operation
based
Method

Construct the
Boolean
matrix and
then finds the
frequent
itemsets via
vector
computation
on matrix.

Requires
only one
database
scan to
generate
Boolean
matrix.

Less as
frequent
itemsets
are find
out
through
the AND
operation
on the
vectors in
the
Boolean
matrix.

1. Boolean
matrix is
stored in bit
mode, So the
memory
space is
greatly
reduced.
2. As
compare to
the
traditional
Apriori
algorithm the
V-Apriori
algorithm is
improved in
both time
and space
complexity.

Figure: 4 Comparision of various methods

VI. CONCLUSION

With the large database the process of finding association
rules become difficult. Efficient methods are required to find
association rules more quickly and efficiently. Different
researchers are working on association rule mining to
develop new methods. So, in this paper review on various
known methods and some of recently developed methods has
been presented. It is found that still a lot of work is required
to be done to find out association rule in case of very large
database and in situation where database is changing
dynamically.

VII. REFERENCES

[1] Jawei Han and Michelline Kamber, “Data mining Concepts
and Techniques”, Morgan kaufman academic press,
(2001).

[2] R.Agrawal and R.Srikant, “Fast Algorithm for Mining
Association Rules”, Proc. of the Int. Conf on Very Large
Database, 1994, pp. 487- 499.

[3] Wei Zhang, Hongzhi Liao and Na Zhao, “Research on The
FP-Growth Algorithm About Association Rule Mining”,
Proc. of Int. seminar on Business and Information
Management, 2008, pp. 315-318.

[4] J.Han, J. Pei and Y. Yin,”Mining Frequent Patterns
Without Candidate Generation”. Proc. Of the ACM
SIGMOD Int. Conf. on Management of Data, 2000, pp.1-
12.

[5] J.Han, J.Pei, Y. Yin and R.Mao, “Mining Frequent Patterns
without Candidate Generation: A Frequent Pattern Tree
Approach”, In Data mining and Knowledge Discovery,
2004, vol 8, pp.53-87.

[6] Changsheng Zhang and Jing Raun, “A Modified Apriori
Algorithm with its application in Instituting Cross-Selling
strategies of the Retail Industry”, Poc. Of IEEE Int. conf.
on Electronic Commerec and Business Intelligence, 2009,
pp.515-518.

[7] Wanjun Yu, Xiachun Wang and Fangyi Wang, Erkang
Wang, Bowen Chen, “The Research of Improved Apriori
Algorithm for Mining Association Rules”, Proc. of IEEE

11th Int. Conf. on communication Technology, 2008, pp.
513-516.

[8] Liu Jing, Qiu chu and et.al, “An Improved Algorithm for
Early Warning of Equipment Failure”, IEEE Int.
Conf.,2009, pp. 450-452.

[9] Dongme Sun and et.al, “An Algorithm to Improve the
Effectiveness of Apriori Algorithm”, Proc. of 6th IEEE
Int. Conf. on Cognitive Informatics”, 2007, pp. 385-390.

[10] Song Hai- Shang,”A Fast Algorithm for Mining Maximum
Frequent Itemsets”, Int. conf. on computer Application and
Research, 2004, pp. 45-46.

[11] Gang Yang, Hong Zhoa and et.al, “An implementation of
Improved Apriori Algorithm”, proc. of the IEEE 8th Int.
Conf. on Machine Learning and Cybernetics, 2009, pp.
1565-1569.

[12] Li juan, Ming De-ting,”Research of association Rule
Mining Algorithm Based on FP-Tree”, IEEE, 2010, pp.
559-563.

[13] Qihua Lan, Defu Zhang, Bo Wu,”a New Algorithm for
Frequent itemsets Mining”, IEEE Global congress on
intelligent system, 2009, pp. 360-364.

[14] Chin-Feng Lee and Tsung-Hsien Shen,”An FP-Split
Method for Fast Association Rule Mining”, IEEE, 2005,
pp. 459-463.

[15] Jun Gao, “A New Association Rule Mining algorithm and
Its Application”, IEEE 3rd Int. Conf. on Advanced
Computer Theory and Engineering (ICACTE), 2010, vol 5,
pp. 122-125.

[16] Sixue Bai, Xinxi Dai, “An Efficiency Apriori Algorithm:
P_Matrix Algorithm”, IEEE First Int. Symposium on Data,
Privacy and E-Commerce, 2007, pp. 101-103.

[17] Yuan- Yuan Wang, Xue-Gang Hu, ”A Fast Algorithm for
Mining of Association Rules Based on concept Lattice”,
Proc. of 3rd Int. Conf. on Machine Learning and
Cybernetics,2004, pp. 1687-1691.

[18] Godin, R.Missaui, R.,and Alaoui, H., ”Learning
Algorithms Using a Galosis Lattices Structure”, Proc. 3rd
Int. Conf. on Tools for artificial Intelligence, 1991, San
Jose, Calif, IEEE Computer Society Press, pp. 22-29.

[19] Robert Godin, Rokia Missaui, Hassan Alaoui, ”Incremental
Concept formation Algorithm Based on GAlosis Concept
Lattice”, In computational Intelligence, 1995, pp. 246-267.

[20] Bay Vo, Bac Le, “Mining Traditional Association Rules
Using Frequent Itemsets Lattice”, IEEE, 2009, pp. 1401-
1406.

[21] Zhi Liu, Mingyu Lu and et.al, “An Efficient Association
Rules Mining Algorithm Based on Coding and
Constraints”, 2009

[22] Don- Lin Yang, Ching-Ting Pan and et.al, “An Efficient
Hash Based Method for Discovering the Maximal Frequent
set”, IEEE, 2001, pp. 511-516.

[23] J.S Park, M. S. Chen and P. S Yu, “An Efficient Hash
Based Algorithhm for Mining Association Rules”, Proc. of
the ACM SIGMOD, 1995, pp. 175-186.

[24] D. Lin and Z. M. Kedem, “Pincer –Search: A New
Algorithm for Discovering the Maximal Frequent Set”,

Harpreet Singh et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,316-322

© 2010, IJARCS All Rights Reserved 323

Proc. of 6th Int. Conf. on extending database Technology,
1998.

[25] Zhi Liu, Guoming Sang, Mingyu Lu, “A Vector Operation
Based Fast Association Rules Mining Algorithm”, Proc. of
Int. Joint Conf. on Bioinformatics, System Biology and
Intelligent Computing, 2009, pp. 561-564.

