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Abstract: Intelligent control takes a radically different approach to the control of industrial processes and plants from conventional control. The 
knowledge and experience of human operators constitutes the basis for this new approach to control engineering for which computational 
intelligence provides the theoretical foundation. Traditionally, intelligent control has embraced classical control theory, neural networks, fuzzy 
logic, classical AI, and a wide variety of search techniques (such as genetic algorithms and others).In this paper we summarize the potential and 
some limitation of intelligent control and we attempt to address the questions on how, where, when and under what conditions can intelligent 
control be applied in practice. 
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I. INTRODUCTION  

Intelligent control seeks solution to the problem of 
controlling plants from the viewpoint of the human operator. 
In other words the technique seeks to establish some kind of 
cognitive model of the human operator and not the plant 
under his control. This is the point at which intelligent 
control depart from conventional control and it is 
undoubtedly true that the technique could not have been 
possible but for the rapid process in computer technology. 
Computational intelligence provides the tools with which to 
make intelligent control a reality. The reproduction of 
human intelligence and the mechanism for inferring 
decisions on the appropriate control actions, strategy or 
policy that must be followed are embedded in these tools. 

II. INTELLIGENT CONTROL 

Intelligent control is the use of general-purpose control 
systems, which learn over time how to achieve goals (or 
optimize) in complex, noisy, nonlinear environments whose 
dynamics must ultimately be learned in real time. This kind 
of control cannot be achieved by simple, incremental 
improvements over existing approaches. 

 
Figure1 illustrates more generally our view of the 

relations between control theory, neurocontrol, fuzzy logic, 
and AI. Just as neurocontrol is an innovative subset of 

control theory, so too is fuzzy logic an innovative subset of 
AI. (Some other parts of AI belong in the upper middle part 
of Figure1 as well, but they have not yet achieved the same 
degree of prominence in engineering applications.) Fuzzy 
logic helps solve the problem of human-machine 
communications (in querying experts) and formal symbolic 
reasoning (to a far less extent in current engineering 
applications).  

In the past, when control engineers mainly emphasized 
the linear case and when AI was primarily Boolean, so-
called intelligent control was mainly a matter of cutting and 
pasting: AI systems and control theory systems 
communicated with each other, in relatively ad hoc and 
distant ways, but the fit was not very good. Now, however, 
fuzzy logic and neuro control both build nonlinear systems, 
based on continuous variables bounded at 0 and 1. From the 
controller equations alone, it becomes more and more 
difficult to tell which system is a neural system and which is 
a fuzzy system; the distinction begins to become 
meaningless in terms of the mathematics. This moves us 
towards a new era, where control theory and AI will become 
far more compatible with each other. This allows 
arrangements like what is shown in Figure 2, where neuro 
control and fuzzy logic can be used as two complementary 
sets of tools for use on one common controller. 
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III. NEUROCONTROL: FIVE BASIC DESIGN 
APPROACHES 

Neurocontrol is defined as the use of well-specified 
neural networks-artificial or natural-to emit actual control 
signals and are still based on five basic design approaches: 

A. Supervised Control: Common Problems  
Supervised control seems very simple to implement, but 

in practice, it presents a number of challenges. The first 
challenge is to build up the database of sensor inputs and 
desired actions. If we already know what actions to take in a 
wide variety of situations, doesn't that mean that we already 
have an adequate controller? If so, what good is the neural 
net equivalent? In actuality, there are many situations where 
it is useful to copy a known controller with a neural 
network. For example, one might copy the skills of a human 
expert, so as to "clone" him or speed him up. Conventional 
expert systems copy what a person says to do, but 
supervised control copies what a person actually does (as 
recorded in the database). Likewise, supervised control can 
be used to copy a computer-based controller that runs very 
well on a Cray at slow speed but requires a smaller, faster 
copy for real-world applications. 

For optimal performance, therefore, supervised control 
should not be treated as a simple exercise in static mapping. 
It should be treated as an exercise in system identification, 
an exercise in adapting a dynamic model of the human 
expert. 

B. Common problems with Direct Inverse Control  
The challenge is to build a neural network that will 

input a desired 10 cation-X(t)-specified by a higher-level 
controller or a human, and output the control signals, u(t), 
which will move the robot arm to the desired location. 

Most people using direct inverse control begin by 
building a database of actual X(t) and u(t) simply by flailing 
the arm about; they train a neural net to learn the inverse 
mapping from X(t) to u(t). In other words, they use 
supervised learning, with the actual X(t) used as the inputs 
and the actual u(t) used as the targets. 

C. Adaptive Control and Neural Networks  
The ideal optimal controller should do as well as 

possible in coping with all three kinds of events; however, it 
is often good enough in practice just to handle type 1 or type 
2 events, and there are severe limits to what is possible for 
any kind of control design in handling type 3 problems in 
the real world.  

Real-time learning can help with all three types of 
events, but it is really crucial only for type 3. For type 1, it 
may be of minimal value. Type 3 events may also require 
special handling, using fast associative memories (e.g., your 
past experience flashes by in an instant as your plane dives) 
and idiosyncratic systems that take over in extreme 
circumstances. One way to improve the handling of type 3 
events is to try to anticipate what kinds of things might go 
wrong, so as to make them more like type 2 events. The best 
way to handle type 1 events is to use a control system  
which is explicitly designed to account for the presence of 
noise, such as an adaptive critic system. 
 

D. Back propagating Utility and Recurrent Networks 
The back propagation of utility is an exact and 

straightforward method, essentially equivalent to the 
calculus of variations in classical control theory. The back 
propagation of utility can be used on two different kinds of 
tasks: (1) to adapt the parameters or weights, W, of a 
controller or Action network A (x, W); (2) to adapt a 
schedule of control actions over future time. The former 
approach-first proposed in 1974 [3]-was used by Jordan in 
his robot arm controller and by Widrow in his truck-backer-
upper [4]. The latter approach was used by Kawato in his 
cascade method to control a robot arm [6] and by myself, in 
an official 1987 DOE model of the natural gas industry [5] 
involve optimization subject to constraints. This section will 
emphasize the former approach. 

E. Adaptive Critics  
The adaptive critic family of designs is more complex 

than the other four. The simplest adaptive critic designs 
learn slowly on large problems but have generated many 
real-world success stories on difficult small problems. 
Complex adaptive critics may seem intimidating, at first, but 
they are the only design approach that shows serious 
promise of duplicating critical aspects of human 
intelligence: the ability to cope with large numbers of 
variables in parallel, in real-time, in a noisy nonlinear 
environment.  

Adaptive critic designs may be defined as designs that 
attempt to approximate dynamic programming in the 
general case. Dynamic programming, in turn, is the only 
exact and efficient method for finding an optimal strategy of 
action over time in a noisy, nonlinear environment. The cost 
of running true dynamic programming is proportional (or 
worse) to the number of possible states in the plant or 
environment; that number, in turn, grows exponentially with 
the number of variables in the environment. Therefore, 
approximate methods are needed even with many small-
scale problems. 

Naturally there are many ways to combine the five 
basic designs in complex real-world applications. For 
example, there are many complex problems where it is 
difficult to find a good controller by adaptation alone, 
starting from random weights. In such problems, it is crucial 
to use a strategy called "shaping." In shaping, one first 
adapts a simpler controller to a simplified version of the 
problem, perhaps by using a simpler neurocontrol approach 
or even by talking to an expert; then, one uses the weights of 
the resulting controller as the initial values of the weights of 
a controller to solve the more complex problem. This 
approach can, of course, be repeated many times if 
necessary. 

IV. CONCLUSION 

The term "intelligent control" has been used in a variety 
of ways, some very thoughtful, and some based on crude 
attempts to market aging software. To us, "intelligent 
control" should involve both intelligence and control theory. 
It should be based on a serious attempt to understand and 
replicate the phenomena that we have always called 
"intelligence" i.e., the generalized, flexible, and adaptive 
kind of capability that we see in the human brain. 
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Furthermore, it should be firmly rooted in control theory to 
the fullest extent possible; admittedly, our development of 
new designs must often be highly intuitive in the early 
stages, but, once these designs are specified, we should at 
least do our best to understand them and evaluate them in 
terms of the deepest possible mathematical theory. 
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