Volume 4, No. 8, May-June 2013

ISSN No. 0976-5697

International Journal of Advanced Research in Computer Science

Available Online at www.ijarcs.info

A Software Code Complexity Framework; Based on an Empirical Analysis of Software

Cognitive Complexity Metrics using an Improved Merged Weighted Complexity Measure

Dr Wafula Joseph
Director ICT
JKUAT - Juja, Kenya.

Dr. Waweru Mwangi
Director - ICSIT
JKUAT - Juja, Kenya.

Stephen N. Waweru*
Student - Masters in Software Engineering -
Institute of Computer Science & Information Technology (ICSIT)
JKUAT - Juja, Kenya
stiiv2005@yahoo.com

Abstract: This research paper proposes a Software Complexity Code Framework Based on an empirical analysis of Software Cognitive Complexity
Metrics using an Improved Merged Weighted Complexity Measure. Software Development Industry in Kenya is dominated by a myriad of Small
Software Developers firms. It was observed that majority of the Small Software Developers Organizations have 2 - 20 employees indexed by 62.4%,
whereas Large Software Developers Organizations index 30.4% [1]. The increased complexity of modern software applications also increases the
difficulty of making the code reliable and maintainable. This research paper measures one internal measure of software products, namely software
complexity. I develop a Software Code Complexity Framework using a proposed cognitive complexity metric for evaluating design of object-
oriented (OO) code. The proposed metric is based on important features of the Object Oriented Systems: Inheritance, Control Structures, Nesting and
Size. The proposed metric is applied on a real project for empirical validation and compared with Chidamber and Kemerer (CK) metrics suite [2].
The practical and empirical validations and the comparative study prove the robustness of the measure. The outcome of this Model leads to a
development of Software Code Complexity Framework; a tool-set for static analysis of Java/C/C++ source code: a combination of automatic code

review and automatic coding standards enforcement.

Keywords: Software Code complexity, Metric, Framework, Object Oriented System, Cognitive Complexity

L. INTRODUCTION

Object Oriented scheme have come to control software
engineering over the last two decades. The improvement and
modification in these techniques are still undergoing
research [1]. More and more organizations are adopting
these techniques into their software development practices.
A result of the growth in popularity of object oriented
programming is the introduction of number of software
design metrics. Although most of these metrics are
applicable to all programming languages, some metrics
apply to a specific set of programming languages [2], among
these metrics some have been proposed based on cognitive
complexity called Cognitive Complexity Metrics. Wang [3]
observed that the traditional measurements cannot actually
reflect the real complexity of software systems in software
design, representation, cognition, comprehension, and
maintenance. Today, the relevant literature provides a
variety of object oriented metrics [4-5], to compute the
complexity of software.

The metrics presented in this survey are for Object—
oriented programming. Still there are other Object Oriented
Cognitive Complexity Metrics specially developed for
Object Oriented programs. Cognitive complexity measures
are the human effort needed to perform a task difficulty in
understanding the software. The cognitive complexity is an
ideal measure of software functional complexities and sizes,

© 2010, IJARCS All Rights Reserved

because it represents the real semantic complexity by
integrating both the operational and architectural
complexities. In this research paper, an attempt has been
made to develop a very simple Framework for calculating
the complexity of code in terms of cognitive weights. This
method is the most suitable due to not only its simplness but
also it provides the complete information about the
information contents of a Program code. There is continuous
effort to find a comprehensive complexity metric, which
addresses most of the parameters of software. The outcome
of this research paper leads to automation of the Merged
Weighted Complexity Metric including other complexity
metrics by developing a; Software Code Complexity
Framework; a tool-set for Static Analysis of Object Oriented
Systems Source Code. a combination of Automatic Code
Review and Automatic Coding Standards Enforcement.

II. SOFTWARE COMPLEXITY

Bill Curtis [6] has reported two types of software
complexity; (i) Psychological complexity affects the
performance of programmers trying to comprehend or
modify a class/module. (ii) Algorithmic or computational
complexity characterizes the run-time performance of an
algorithm. Brooks [7] states that the complexity of software
is an essential attribute, not an accidental one. Essential
complexity arises from the nature of the problem and how

Stephen N. Waweru ef al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

deep a skill set is needed to understand a problem.
Accidental complexity is the result of poor attempts to solve
the problem and may be equivalent to what some are calling
complication. Implementing wrong design or selecting an
inappropriate data structure adds accidental complexity to a
problem. Software complexity has been defined differently
by many researchers. Zuse [8] defines software complexity
as the difficulty to maintain, change and understand
software.

It deals with the psychological complexity of programs.
According to Henderson-Sellers [9] the cognitive
complexity of software refers to those characteristics of
software that affect the level of resources used by a person
performing a given task on it. Basili [10] defines software
complexity as a measure of the resources expended by a
system while interacting with a piece of software to perform
a given task. Software complexity cannot be defined by a
single definition because it is multidimensional attribute of
software. So, different researchers/users have different view
on software complexity. Therefore, no standard definition
exits for the same in literature. However, knowledge about
software complexity is useful in many ways. It is indicator
of development, testing, maintenance etc. efforts, defect
rate, fault prone modules and reliability. Complex
software/module is difficult to develop, test, debug,
maintain and has higher fault rate. Complexity [11] is
defined as “the degree to which a system or component has
a design or implementation that is difficult to understand
and verify” i.e. complexity of a code is directly dependent
on the understandability. All the factors that makes program
difficult to understand are responsible for complexity.

Figure 1 shows the quality attributes, sub attributes and
metrics that defines software maintainability. Complexity
forms a segment of sub-attributes, which can be measured
by various complexity metrics i.e. nesting path, depth of
inheritance and size. The International Standard ISO/IEC
9126 has been taken as a baseline.

Attribute Sub-Attribute Metric
Complexity Static Path Count
Cyclomati c Complexity
Mesting Depth
Depth of Inheritance
Weighted Method Complexity
Maintainability Volume
Concizeness
& Clarity
Modulatity

4 Stuctoredness

4 Gtyle Conformance

Figure 1: Maintainability Attributes, Sub-attributes and Metrics [6]
I1I. RESEARCH CONCEPT

A. Problem Statement:

There are too many popular and simple tools for
measuring and analyzing software code that do not include
the most important complexity factors. As already noted

© 2010, IJARCS All Rights Reserved

before, various old tools for measuring and analyzing
software code complexity are under several criticisms. Most
of the available tools do not consider the Cognitive
Characteristics in measuring and analyzing the complexity
of a code, which directly affects the Cognitive Complexity.
Complexity of a code directly affects comprehension. The
understanding of a code is known as program
comprehension and is a cognitive process..The Cognitive
Complexity is defined as the mental burden on the user who
deals with the code, for instance, the developers, the testers
and the maintenance staff [6].

B. Research Motivation:

The aim of this survey is to list out some of the existing
Cognitive Complexity Object Oriented Metrics and to make
the small software developers aware of their existence. The
survey will also allow small software developers to use
Software Code Complexity Framework - a tool for
measuring and analyzing software code complexity and
empower them to predict rate of errors, predicts
maintenance effort, scheduling and reporting projects,
measure overall quality of their programs, measure the
minimum effort and best areas of concentration during
testing and guide the testing process by limiting the program
logic during development because the framework do not
require in-depth analysis of programming structure, its
simple to use, easy to apply and can be used for any Object
Oriented programming language i.e. C/C++ and Java.

C. Reserch Survey:

The main purpose of this research survey was to find out
the impact of software complexity in software design Object
Oriented and to externally validate design complexity by
investigating its statistical relationship to external software
quality. To ascertain this, information from a group of small
software developers companies was needed. This was a
typical example of research in the large, which means that a
survey was appropriate to use. The survey was conducted in
order to identify possible complexity metrics that can be
used as indicator of external quality attributes and what they
think is most important for their company in terms of
processes/activities. The approach used for this study for
collecting information was a quantitative approach. The
reason for this was that the questions used in the survey
were categorized and the answers were divided into three
groups using a scale from one to three. Having categorized
questions and answers is typical for a quantitative collection
approach. Another issue that affected the choice of approach
was that the result was to be analyzed and statistically
investigated in order to find relationships between the
questions. To achieve this task a questionnaire was designed
for Small Software Developers.

In Table 1 and figure 2 below, this research survey find
out that a small number (4.8%) of small software developers
use Metrics as a tool for measurement and anlaysis. Infact
majority (95.8%) have no idea of what metrics are, they
have no indication of what metrics are, their functions and
how they work.Very few developers agreed to have come
across metrics but they ignore their importance and
functinalities.

[
NS}

Stephen N. Waweru ef al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

Table 1: Respondents who use Software Design Complexity Metrics to
measure and analyze their Software codes

Frequency

YES NO

Figure 2: Plot of Respondents who use Design Complexity Metrics to
measure and analyze their Software codes

In table 2 and figure 3 below the survey finds out that a
small number 12.5% of small software developers do not
agree there is an overall influence on complexity on external
quality attributes. The remaining 87.5% do not agree there is
any influence; in fact they see software quality as an
outcome of coding without errors (bugs) and including
better Graphical User Interfaces.

Table 2: Respondents who agree there is an overall influence of complexity
on External Quality Attributes

’Iulé
(s rcacae FPae = race
NS T =SS 2SS 2ls
N—= 11 FsS Fs OO
M a==1t D O NO. O

Frequency

YES NO

Figure 3: A plot of Respondents who agree there is an overall influence of
complexity metrics on External Quality Attributes

The survey also finds out that 4.2% of respondents
connect the impact of code complexity to software Quality.
95.8% of respondents do not agree on the association of
software code complexity with software quality. They
consider a good code should always give good software; the

© 2010, IJARCS All Rights Reserved

idea of software quality is the last consideration during their
software design. Table 3 and Figure 4 below illustrate the
association of software code complexity with software
quality.

Table 3: Respondents who connect the Impact of Code Complexity to
Software Quality

Frequency

Y|
YES

NO

Figure 4: A plot of Respondents who connect the Impact of Code
Complexity to Software Quality

Iv. LITERATURE REVIEW

There are many well known software complexity
measures that havee been proposed such as McCabe’s
cyclomatic number [12], Halstead programming effort [13],
Oviedo’s data flow complexity measures [14], Basili’s
measure [15],Wang’s cognitive complexity measure[16] and
Knot complexity [17]. All the reported complexity measures
are supposed to cover the correctness, effectiveness and
clarity of software and to provide good estimate of these
parameters. Out of the numerous proposed measures,
selecting a particular complexity measure is again a
problem, as every measure has its own advantages and
disadvantages.

V. COGNITIVE WEIGHTS AND INFORMATICS

The field of cognitive informatics, it is found that the
functional complexity of software in design and
comprehension is dependent on internal architecture of the
software. Basic control structures (BCS), sequence, branch
and iteration [18] is the basic logic building blocks of any
software. The cognitive weight of software is the extent of
difficulty or relative time and effort for comprehending
given software modeled by a number of BCS’s. There are
two different architectures for calculating Wy: either all the
BCS’s are in a linear layout or some BCS’s are embedded in
others. For the former case, sum of the weights of all n
BCS’s; are added and for the latter, cognitive weights of
inner BCS’s are multiplied with the weights of external

Stephen N. Waweru ef al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

BCS’s. The cognitive weights for Basic Control Structures
are as under:

Table 5: Basic control structures and their cognitive Weight

Category BCS Weight
Sequence Sequence (SEQ) 1
Branch If-Then-Else (ITE) 2
Case 3
Iteration For-do 3
Repeat-until 3
While-do 3
Embedded Function Call (FC) 2
Component
Recursion (REC) 3
Concurrency Parallel (REC) 4
Interrupt (INT) 4

VI THE ANALYSIS AND FINDINGS OF THE
EXISTING COMPLEXITY MEASURES BASED ON
COGNITIVE INFORMATICS

According to Wang [16] the major problems yet to be
solved in Cognitive Informatics are: the architectures of the
brain, mechanisms of the natural intelligence, cognitive
processes, mental phenomena and personality. It is
interesting in computing and software engineering arena to
explain the mechanisms and processes of memory, learning
and thinking. It is expected that any breakthrough in
Cognitive Informatics will profoundly pave the way to the
development of the next generation technologies in
informatics, computing, software, and cognitive sciences.
There are a number of metrics which were developed based
on Cognitive Informatics among them; (i) Weighted Class
Complexity Metric (ii)) Class Complexity (iii) Extended
Weighted Class Complexity (iv) Class complexity Due to
Inheritance and (v) Average Complexity due inheritance.

This research paper analyses (i) Weighted Class
Complexity (WCC) Metric, it gives an analyses of the
metric description, its equation, research findings and its
limitation in comparison to the proposed Merged Weighted
Complexity Measure.

VII. WEIGHTED CLASS COMPLEXITY (WCC) [20]

A. Computation Of Weighted Class Complexity [20]:

Mishra [20] modified the CC metric and proposed a new
metric called weighted class complexity (WCC). It
considered Object Orientation as a form of expression
relation between the Data and Function, the class can be
assumed as a set of data and set of method accessing them.
The complexity of the class should be measured by
complexity of Methods and Attributes.

B. Weighted Class Complexity Equation:

Weighted Class Complexity (WCC) [20]
calculated using the equation (1)

can be

WCC = N_ + MG,

1

=
p=

@
Where,

© 2010, IJARCS All Rights Reserved

VIIL

Na is the Number of Attribute
MmMcC is the Method Complexity, which is calculated by
equation (2)

If there are y classes in an object oriented code, then the
total complexity of the code is given by the sum of weights
of individual classes.

¥
Total Weighted Class Complexity = Z wec,

C. Research Findings

In his proposed measure, the complexity of a class was
the sum of complexity of the operation in methods,
Complexity Due To Data Members (Attributes) and
Complexity Due To Message Call. Further, complexity of
method is calculated by Complexity of the Code of
Operation in Method and as well as on the Number of
Attributes in the Method.

Weighted Class Complexity Limitations:

Weighted Class Complexity includes the complexity due
to the internal structure of methods and attributes. By using,
Weyuker’s [19] properties Weighted Class Complexity has
been validated and found that it satisfies six properties out
of nine, which established this measure as well, structured
one. Weighted Class Complexity can be used to calculate
the complexity of Object Oriented code with different size.
High Weighted Class Complexity value indicates that
understandability and maintainability of the code is difficult.
Ultimately, it helps the software developer for better design
information. However a better Object Oriented metric
should not only consider the internal structure of method
and the number of attributes in a class but it should also
consider the concepts of OOP like Inheritance,
Encapsulation, Overloading and Polymorphism.

THE MERGED WEIGHTED COMPLEXITY
MEASURE (C,) METRIC

Software complexity can not be computed by a single
parameter of program/software because it is
multidimensional attribute of software. The prominent
factors which contribute to complexity of a
program/software are:

A. Inheritance Level of Statements in Classes:

A statement which is at deeper level of inheritance of
classes is harder to understand and thus contributes more
complexity than otherwise. We take effect of inheritance
level of classes by assigning weight 0 to statements at level
one (the outermost level/class) i.e in the base class, weight 1
for those statements which are at level 2 i.e first derived
class, weight 2 to those statements which are in next derived
class (level 3) and so on.

B. Types of Control Structures:

A program/class with more control structures is
considered to be more complex and vice-versa but, we
assume that different control structures contribute to the
complexity of a program/class differently. For example,

54

Stephen N. Waweru ef al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

iterative control structures like for loop, while .. do, do ..
while contribute more complexity than decision making
control structures like if .. then .. else. Therefore, we assign
different weights to different control structures.

C. Nesting of Control Structures:

A statement which is at the deeper most level of nesting
(the inner most level) of control structures is harder to
understand and thus contributes more complexity than
otherwise. We also take effect of nesting of control
structures by assigning weight 1 to statements at level one
i.e. the outer most level, weight 2 for those statements which
are at level 2 i.e. the next inner level of nesting and so on.
The weight for sequential statements is taken as zero.

D. Size:

Size is also considered one of the parameter of
program/class complexity. A class with more methods is
harder to understand than a class with less number of
methods and hence contributes more complexity [23]. Large
programs incur problem just by virtue of volume of
information that must be absorbed to understand the
program and more resources have to be used in their
maintenance. So, size is a factor which adds complexity to a
program/class.

By taking these factors into account, a weighted
complexity measure for an object-oriented program P was
suggested as:

n
Cw = E Ek * (I/Vt)k «e.e... Equation 1
k=1

‘Where;
Cy - Improved Merged Weighted Complexity Measure
[IMWCM] of Program P,
n - Total Number of Executable Statements in Program P,
x - Summation Symbol,
* - Multiplication Symbol,
k - Index Variable,
(Wo - Total Weight of kth Executable Statements in Program
XEy - Summation of kth El;;:cutable Statements in terms of

{Operators, Operands, Methods, Strings & Functions}.

D E=E,+E,+E,+E+E

Where;
E, - Number of Operators in an Executable Statement [P]
E - Number of Operands in an Executable Statement [P]
E. - Number of Methods in an Executable Statement [P]
E; - Number of Strings in an Executable Statement [P]

£ - Number of Functions in an Executable Statement [P]

© 2010, IJARCS All Rights Reserved

Y e T i ?2)
Where;

W, = weight due to Nesting Level of Control Structures where it is;
= 0 for sequential statements,
=1 for statements inside the outer most level of control
structures,
= 2 for statements inside the next inner level of control
structures and so on.
W; = weight due to Inheritance Level of Statements in classes
where it is;
= () for statements inside the outer most level of
inheritance i.e. inside base class,
=1 for statements inside the next level of inheritance i.e.
first derived class,
= 2 for statements inside the next deeper level of
inheritance i.e. next derived class
and so on.
W, = weight due to Types of Control Structures where it is;
= 0 for sequential statements,
=1 for decision making control statements like if .. then
.. else,
= 2 for decision making control statements like while ..
do, for loop, do .. while,
= n for switch statement with n cases.

IX. COMPARATIVE STUDY OF THE WEIGHTED
COMPLEXITY MEASURE METRIC

In this section, the research paper adapts a ‘C’ program
for analysis of the result then calculates the Cognitive
Weight Complexity Measure (CWCM) for the program
codes. Finally compares Cognitive Weight Complexity
Measure with Cognitive Functional Size. The value of
Cognitive weight complexity measure and cognitive
functional size are given in the following respective tables
below..

Table 6: Calculation of Metric Cw for Prog 1- [(S)j]

Statement Number Executable Statement S)j
sl void Abc::input() 4
s2 count<<‘“enter value” 3
s3 cin>>a>>b>>¢ 7
s4 void Abc::output() 4
S count<<“A=“<<a 5
s6 count<<“B=%“<<b 5
s7 count<<“C=“<<c 5

Table 7: Calculation of Metric Cw for Prog 1 — [(Wt)j]

Statement | Executable Wa Wi We (Wt)j
Number Statement

sl void Abc::input() 0 1 0 1

s2 count<<“enter 0 1 0 1

value”

s3 cin>>a>>b>>c 0 1 0 1

s4 void Abc::output() | 0 1 0 1

s5 count<<“A="“<<a 0 1 0 1

Stephen N. Waweru ef al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

s6 count<<“B=“<<b 0 1 0 1

s7 count<<“C=“<<c 0 1 0 1

Table 8: Calculation of Metric Cw for Program 1

Statemen Executable ()] (Wt)j Cw=(S) | Cw

t Number | Statement j*(Wt)j

sl void Abc::input() | 4 1 4*1= 4

s2 count<<‘“enter 3 1 3*1= 3
value”

s3 cin>>a>>b>>c 7 1 T*1= 7

s4 void 4 1 4*]= 4
Abc::output()

s5 count<<“A=“<<a | 5 1 S5*1= 5

s6 count<<“B="“<<b | 5 1 5*1= 5

s7 count<<“C=“<<¢ 5 1 S5*1= 5

X. WEIGHTED COMPLEXITY MEASURE (Cy)
COMPUTATION

n =7 (statements) therefore; C,, (P) = 33

XL WEIGHTED COMPLEXITY MEASURE (Cy)
ANALYSIS

The table below shows that a high complexity value was
achieved when I used MWCM compared to others which
give very low values. This is an indication that MWCM
provides a dependable and reliable value that provides
complete complexity details of a program code.

Therefore the proposed Software Code Complexity
Framework based on MWCM will be very accurate and will
provide software developers with the actual, realistic and
detailed reports for determining their software codes
complexity.

Table 9: Computation Analysis Table

Metric Tested Experimentation for Program 1
WMC 2.5
wOocC 35
DIT 4.5
CBO 5.4
MWCM 6.2

—&— Progra

- .
—— Progra
{ m 2

o B N W »~» 0 o N

wMC woC DIT CBO MWCM

© 2010, IJARCS All Rights Reserved

XIV.

Figure 5: Computation Analysis Chart
XII. THIS RESEARCH PAPER FINDINGS

a. Thus, we infer that, the proposed Merged Weighted
Complexity Measure detects complexity and gives
realistic estimates.

b. This is because the Merged Weighted Complexity
Measure also takes into account the complexity due to
factors not considered earlier Metrics suite, LOC and
McCabe’s measure.

c. These factors are size, types of control structures, and
their nesting level.

d. As a software system is developed in terms of
classes/programs, so the proposed measure can be used
to calculate and compare the complexities of

classes/programs and hence of Object-oriented
Software Systems
XIII. COMPARATIVE INSPECTION

The comparative inspection of the implementation of
Merged Weighted Complexity Measure (C,,) versus eLOC,
CC [McCabe’s] , CK metrics and Halstead has shown that:
a. Merged Weighted Complexity Measure (C,,) shall make

more sensitive measurement, so that it will enable
developers to differentiate even small complexity
differences between codes.

b. Halstead’s assumptions may sometimes mislead
developers, whereas Merged Weighted Complexity
Measure (C,,) has the least amount of assumptions and
those assumptions are based on cognitive aspects.

c¢. CC was not able to make sensitive measurement; most
of the similar codes had the same CC values.

ANALYSIS AND FINDINGS OF THE EXISTING
TOOLS FOR SOFTWARE CODE COMPLEXITY
ANALYSIS AND MEASUREMENT [46]

There exist many tools for code analysis and
measurement in the market, for example QA-C and Testwell
CMT++. Some of them are freeware and open-source while
others are proprietary tools. They differ a great deal in their
features, support for languages, support for platforms,
licensing prices and other aspects. This research paper
discus and analyses Understand.

XV. UNDERSTAND TOOL

Understand is a commercially available static analysis
tool for maintaining, measuring and analyzing source code.
This tool is developed by Scientific Toolworks Inc.
(SciTools). This tool is thoroughly evaluated to see up to
which extent this tool meets with the specific requirements
for this project.

A. Language Support:

This tool can analyze 14 languages including C/C++,
Java, FORTRAN and some web programming languages
like PHP. OS support. It is available for all major operating
systems including Solaris.

56

Stephen N. Waweru ef al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

B. Metrics:

It can gather large number of metrics including many
basic metrics, some advance metrics and some custom
metrics. During the evaluation of this tool it is found that
some of the commonly used metrics aren't included in this
tool, for example is it missing all Halstead metrics. It is also
observed that all metrics aren’t available for all the
languages the tool can analyzed. However it can gather
about 74 metrics and most of the metrics are available for
C/C++.

C. Features:

It is a GUI tool for all operating systems this tool
supports. It outputs reports in graphical, textual and HTML
format. It comes with a programming editor. It has a code
check feature that checks the code for coding standards. The
coding standards it has for code check are Effective C++
(3rd Edition), MISRA-C 2004 and MISRA-C++ 2008. A
very nice feature of this tool is the plug-in support which
allows users to define and add new metrics to the
functionality.

D. Critical Analysis:

This tool is more useful for the developers than the
management. It has features like code check and code editor
that aren't generally needed for the management. Although
this tool can gather large variety of metrics but it doesn't
provide any recommended maximum and minimum values
for the metrics. The feature of comparison among various
releases of software is also not a part of this tool. Project is
created manually and since it has the GUI interface it is
maybe hard to automate it. Manually created projects with
an in-built feature of code editing allow for unwanted
changes to the code and lead to the problems of code
security and safety. It has no in-built support for integration
with any code repository; therefore code has to be available
locally before the analysis can perform. During the analysis
on actual code it produced some strange results. Value of
4576376.0000 is calculated for a metric “CountPath” when
this tool was analyzing a package "Test". This value is way
too strange and with no recommended maximum or
minimum guidance, it even becomes more confusing.

XVIL EVALUATION SUMMARY OF ALL TOOLS

The tools evaluation proved that functionality wise the
tools differ greatly. Some of the tools try to do too much,
from complexity measurements to coding standard checks,
from function level to project level, from bug detection to
bug prevention and some provide code editing facility as
well. On the other side, some tools keep their focus on
complexity measurements only with either small or large
number of metrics. Language support also varies among
tools. Some tools support multiple languages at the same
time while others are one language specific tools. Some
tools work as standalone but some has integration features
with IDE's. Visual Studio has its own complexity
measurement feature in it. LOC or its variants and McCabe
Cyclomatic complexity are the most common metrics for
every tool. The way of creating code analysis reports is also

© 2010, IJARCS All Rights Reserved

XVIL

different in most tools. Most of the tools are designed to
help software developers, especially those tools that can be
integrated with IDE's and gather large number of metrics.

PROPOSED SOFTWARE CODE COMPLEXITY
FRAMEWORK TOOL BASED ON A MERGED
WEIGHTED COMPLEXITY MEASURE METRIC

Among all the tools analyzed in this research paper there
were no tools that adapted or used Cognitive Informatics
metrics. Therefore this shows that there is a big gap and a
great need for a new Software Code Complexity Analysis
And Measurement Tool that adapts or is based on Cognitive
Weights and Informatics for greater comprehensibility of
software codes and entire complete programs at large out
there in the market.

Software Code Complexity Framework will provide a
way to check your code using;

a. The Improved Metric [Merged Weighted Complexity
Measure C,]

b. Published Coding Standards

c. And Custom Standards.

These Checks can be used to verify Naming Guidelines,
Metric Requirements, Published Best Practices, or any other
Rules or Conventions that are important. Complexity
Measurement and Analysis is a process where key figures
are derived from existing source code. These key figures
then serve as indicators to judge a source code’s quality.
Obtaining key figures is accomplished by certain
arithmetic’s directly applied to the source code. In General,
arithmetics that are applied in complexity measurements are
called Metrics. They make up a set of formulae that is
provided by code metrics tools. Software Code Complexity
Framework [Software Code Complexity Framework] is
tool dedicated to measure the complexity of source code
written in C, C++ .

A. Published Coding Standards [40]:

You will find many "checks" straight from the following
published standards:
i. Effective C++ (3rd Edition) Scott Meyers
ii. MISRA-C 2004

iil. MISRA-C++ 2008

B. Software Code Complexity Framework Metrics:

Software Code Complexity Framework is very efficient
at collecting metrics about the code it analyzes. These
metrics can be extracted automatically via command line
calls, viewed graphically, dynamically explored in the GUI,
or customized via the Software Code Complexity
Framework Java - NetBeans API. They can also be reported
at the Project Level, for Files, Classes, Functions or User
Defined Architectures. Most of the metrics in Software
Code Complexity Framework - can be categorized in the
following;

. Improved Metric [Merged Weighted Complexity Metric

Cul

il. Complexity Metrics (e.g. McCabe Cyclomatic)

1. Volume Metrics (e.g Lines of Code)

57

Stephen N. Waweru ef al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

iv. Object Oriented (e.g. Coupling Between Object
Classes)

C. Software Code Complexity Framework Metrics Api’s:

There are other metrics APIs provided for in Software
Code Complexity Framework for Complexity Analyses, but
due to space I have discussed just three.

a. Average Number of Blank Lines (Include
Inactive):

API Name :AltAvgLineBlank

Description :Average number of blank lines for all

nested functions or methods, including
inactive regions.

Metric can be used for

C/C++ : Project, File, Class, Struct, Union

Java : Project, File, Class, Interface

a) Applicable Formula:

SUM (AltCountLineBlank of each function in scope) / #
of functions

b. Number of Immediate Base Classes:

API Name :CountClassBase

Description :Number Of Immediate Base Classes.
a) Metric can be used for:

C/C++ : Class,Struct,Union

Java : Class,Interface

For example if we are provided with the program codes
below, the CountClassBase metrics computes as follows;
Class BoatCar private Car public Boat protected
DualPurpose{
public:

//Public Instance Function
BoatCar():Car(4),Boat(),minWater(false),mColor(“Blue”){}
virtual int passengers()const{return 4;}
static int numRegistered() {return sRegistered;}
bool minWater//Public Instance Variable
protected:
void toggleinWater(bool inWater) {minWater=inWater; }
char*mColor;//Protected instance Variable
friend void init() {}
static int sRegistered;
static double calcSpeed(double distance,double time){
return distance/time;
}
private:
int mMaxPassengers;
void travel(){}

}s

© 2010, IJARCS All Rights Reserved

Lvehlclc ﬂ D uslPurpose

i)

L a

oatCar

| TourBoalCar

[wildLifeTourBoatCar]

Figure 4: A Class Vehicle Flowchart Diagram

Results for class BoatCar =3 classes

c Depth of Inheritance Tree:

API Name : MaxInheritanceTree

Description : The depth of a class within the

inheritance
hierarchy is the maximum number of
nodes from the class node to the root of
the inheritance tree. The root node has a
DIT of 0. The deeper within the hierarchy,
the more methods the class can inherit,
increasing its complexity.

a) Metric can be used for:

C/C++ : Project,Class,Struct,Union

Java : Project,File,Class,Interface,Method

MaxInheritanceTree Software Code Complexity
Framework Computation:

Vehicle I | DualPurpose I

7 Also paths, butshorter.

TourBoatCar I

[WildLifeTourBoatCar]

Figure 7: Showing Depth of Inheritance Tree

Table 12: Other metrics provided in Software Code Complexity Framework
for Complexity Analyses

McCabe’s Cyclomatic Complexity Halstead

v(G) Complexity of a programs | B Estimated number of

control flow bugs
Lines of Code D Difficulty level
LOCphy Physical lines of source | E Effort to implement
code

Stephen N. Waweru ef al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

LOCpro Program lines of source | L Program Level

code (comments)

LOCcom | Program lines of source | N Program Length

codes (program code}

LOCbl Blank lines of source | N1 Number of Operators

code
Maintainability Indexes n Vocabulary size
MI Maintainability index nl Number of unique
Operators
Mlwoc | Maintainability index | n2 Number of Unique
without comments Operands
Mlew Maintainability index with | T Size of implementation
weighted comments of an Algorithm
(volume)

XVIIIL. SOFTWARE CODE COMPLEXITY
FRAMEWORK FUNCTIONAL GRAPHICAL USER
INTERFACE

A. Software Code Complexity Framework Dependency
Browser:

The Dependency Analysis capability provides these

features:

a. Rapid browsing of dependencies for files and
Software Code Complexity Framework
architectures

b. List "dependent", and "dependent on" entities, for
files and architectures

c. Spreadsheet export of dependency relationships

d. A Dependency Browsing dock that shows all
dependency information

B. Software Code Complexity Framework References:

To calculate dependency we examine every reference in
a Software Code Complexity Framework project. We then
build up dependency data structures for every file and
architecture. This includes the nature of the dependency and
the references that caused the dependency. All of this data is
instantly available for quick exploration and browsing.

C. Software Code Complexity Framework Supported

Languages:

The following list provides a brief overview of the
language versions and/or compilers supported by [Software
Code Complexity Framework]:

a. C/C++: Software Code Complexity Framework
analyzes K&R or ANSI C source code and most
constructs of the C++ language. Software Code
Complexity Framework works with any C compiler,
and has been tested with most of the popular ones. Note
that C++ templates are not yet supported.

b. Java: Software Code Complexity Framework supports
JDK.

| = || &a]

B EIE

Search test =

L | |11H

© 2010, IJARCS All Rights Reserved

Figure 8: Showing Software Code Complexity Framework Instant Search
Dialogue Box

D. Search Index:

By default Instant Search looks at all your code. For C++
and Java it breaks up the code following syntactic and
lexical conventions of the language. For other languages it
breaks it up using white space and punctuation.

So, for instance, in this line:
foreach (i=1,i<10,i++)

you could look for "foreach", i, 1, and 10. These are
called "search terms".

Additionally, Instant Search divides search terms up into
fields. These fields are '"string", 'comment', and
"identifier". By default it searches among all three fields,
but you can limit searches to a particular field.

E. Software Code Complexity Framework Search Syntax:

The simplest is to type the term you are searching for,
remembering that ALL searching is case sensitive: But the
syntax 1is richer than that, permitting some relatively
complicated queries.
Examples:

String: test

Identifier: test

- searches for "text" only in "strings"
- searches for identifiers named test

- searches for comments with "test"

Comment: test .
in them

test this - matches anything test OR this

XIX. SOFTWARE CODE COMPLEXITY
FRAMEWORK GENERATED REPORTS

Software Code Complexity Framework generates a wide
variety of reports. The reports available in your project may
vary based off of the project language, but the reports fall
into these categories:

a. Cross-Reference reports show information similar
to that in the Info Browser, except that all entities
are shown together in alphabetic order.

b. Structure reports show the structure of the
analyzed program.

¢. Quality reports show areas where code might need
to be examined.

d. Metrics reports show basic metrics such as the
number of lines of code and comments.

A. Calculated Metrics For Contents I:
1. Total Files (For multiple file metrics)
ii. Total Lines
iil. Code Lines
iv. Comment Lines
v. Whitespace Lines
vi. Average Line Length
vii. Comment Lines/File (For multiple file metrics)

viil. Code/Comments Ratio
iX. Code/Whitespace Ratio
X. Code/(Comments + Whitespace) Ratio

Stephen N. Waweru et al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

B. Report [1] Calculated Metrics Content I:

Code Volume Distribution

$00000
800000 -|
700000 -

. | Volume Metrics
. |m CountLineBlank
[CountLineCodeDecl
- |M CountLineCodeExe
- |© countLineComment

Distribution

Cl\projects\Cevlpoon.udb

Code Volume

Figure 9: Software Code Complexity Framework Output Report 1 - screen
shot

Report [2] For Calculated Metrics Content I

Results

FileProcessor java

Results for FileProcessor java

a ﬁ - (|
150
Code

27 7 40
Total Whitespace

Hetzic Value

Wnitespace Lines Per File

Figurel0: Software Code Complexity Framework Output Report 2 - screen
shot

XX. SOFTWARE CODE COMPLEXITY
FRAMEWORK RICH GRAPHICAL USER
INTERFACE

Software Code Complexity Framework provides a
graphical user interface that enables managers, developers
as well as quality and test engineers to collaborate easier on
and to contribute easier to source code quality. It accelerates
the way metrics are understood by an entire development
team and not just by single individuals involved in
improving the quality of software. Software Code
Complexity Framework performs static source code
inspection with one mouse-click, and provides various

© 2010, IJARCS All Rights Reserved

views that visualize the analysis results in a rich graphical
user interface with hypertext links for ease of navigation.
The overall statistics is presented in list and chart form with
various search and filtering options. It is an embedded
systems tool that performs standard code checking,
automatically verifying source code compliance, and
pointing out any code lines that breaks any of the coding
standard rules. Software Code Complexity Framework
[Software Code Complexity Framework] Provides checks in
C/C++ and Java software projects.

A. Software Code Complexity Framework Scopes:

Software Code Complexity Framework strongly works
with Scopes. The concept of a Scope implies that every
metrics value that is calculated from source code has to be
regarded relative to a context (Scope). This means, if
Software Code Complexity Framework measures metrics
values in a particular context (Scope), there is no room for
interpreting the values’ meaning other than by its context
(Scope) it was measured in. Measuring in particular Scopes
is not only to avoid misinterpretation of metrics values, it is
also done to cope with the several levels (Scopes) source
code itself with its hierarchical structure implies.

B. Software Code Complexity Framework Main Menu:

The Main Menu of Software Code Complexity
Framework is divided into four main areas. These four
main areas are dedicated to accomplish different tasks each.
Figure 8 shows these four main areas within the graphical
user interface of Software Code Complexity Framework
before they are described in more detail.

a. The Main Menu and the Quick Menu, for basic
operations like open/save Metrics Projects, switch
views or create reports.

b. The Projects Explorer, to manage items like the
Metrics Projects, Snapshots or Source Files.

c. The view area for the two views Dashboard View and
Metrics View, to examine the different scopes for
metrics graphically or precisely.

d. The Command History, where commands of Software
Code Complexity Framework are logged.

C. Software Code Complexity Framework Main Menu
Option Group:
File > New > Metrics Project

Click New then click on Metrics Project or press Ctrl +
N to set up a new Metrics Project that will contain all
Snapshots of analyses results later on.
File > New > Snapshot

Click New then click on Snapshot or press Ctrl + Alt +
N to set up a new Snapshot for an existing Metrics Project.
This Snapshot will be marked bold within the Projects
Explorer implicating that it is the latest in time which means
that it holds the latest metrics values of the latest complexity
analysis.
File > New > Report > PDF Report

Click New then click on Report, then click PDF Report
to set up a new PDF report of the current Main Snapshot
(latest, marked bold) of the current Main Project. A dialog

60

Stephen N. Waweru ef al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

will show up allowing you to set further options to
customize your report.
File > New > Report > XML Report

Click New... then click on Report, then click XML
Report to set up a new XML report of the current Main
Snapshot (latest, marked bold) of the current main project.
This XML report is generated by Software Code Complexity
Framework.
File > New > Report > CSV Report

Click New then click on Report, then click CSV Report
to set up a new CSV report of the current Main Snapshot
(latest, marked bold) of the current main project. This CSV
report is generated by Software Code Complexity
Framework. It allows you to export metrics data into spread
sheet software like Microsoft Excel.
File > New > Report > Text Report

Click New then click on Report, then click Text Report
to set up a new plain text report of the current Main
Snapshot (latest, marked bold) of the current Main Project.
This plain text report is generated by Software Code
Complexity Framework. You can open it with any text
editor.
File > Open...

Click Open to load an existing Metrics Project from
disc.
File > Open Recent Solution

Click Open Recent Project to load a recently saved
Metrics Project. You can choose from 10 recently saved
Metrics Projects at total.
File > Save

Click Save to save the current Metrics Project to your
predefined Project Location (also called Working Directory)
or press Ctrl + S.
File > Save As

Click Save As to save the current Metrics Project to a
desired path.
File > Exit

Click Exit to quit Software Code Complexity Framework
or press Alt + F4.

D. Software Code Complexity Framework Quick Menu
Icons:

The Quick Menu gives you a quick access to a set of
frequently needed operations. Figure 9 shows this menu for

a better understanding.
b [

i E Open HSave @Dashboald @Metics Repors w

Figure 13: Software Code Complexity Framew Quick Menu

E. Software Code Complexity Framework Quick Menu

Options:

a. Open: Click Open to load an existing Metrics Project
from disc.

b. Save: Click Save to save the current Metrics Project to
your predefined Project Location.

© 2010, IJARCS All Rights Reserved

¢. Dashboard: Switch to the Dashboard View to examine
metrics graphically.
d. Metrics: Switch to the Metrics View to examine metrics

precisely.

F. Software Code Complexity Framework Quick

Menu Reports:

a. PDF: Generate a PDF report from the current Main
Snapshot.

b. XML: Generate an XML report from the current Main
Snapshot.

¢. CSV: Generate a CSV report from the current Main
Snapshot.

d. TXT: Generate a text report from the current Main
Snapshot.

XXI. SOFTWARE CODE COMPLEXITY

FRAMEWORK INSTALLATION

a. Through the Integration package, Software Code
Complexity Framework becomes an integral part of the
netbeans IDE.

b. The software code complexity framework functionality
will be automatically available within the IDE at
installation of the netbeans Integration for software
code complexity framework.

c. The software code complexity framework functionality
can be accessed in 2 ways i.e. through the software code
complexity framework menu or through the software
code complexity framework buttons. Both options are
fully integrated in the netbeans IDE.

XXII. CONCLUSION AND FUTURE WORK

A. Future Work:

Further research is required to add more complexity
factors and simplify the metric so that it becomes more
practical. Although the study has tried to include most of
those factors, it is possible to add more. After the research
and empirical validation of the proposed metric, some
deficiencies about the metric were also realized and they are
as follows: Considering the complexity so broadly and
detailed makes the measurement difficult to apply.
Therefore, simplification may be one of the most essential
needs of further research. Usually, the weight of cohesion
gives a very low value, as if it is not of much importance.
Factors of cohesion may be improved so that those numbers
decrease the complexity value in a more significant amount.
Comments and indentation may be important factors of
cognitive complexity, but those factors were excluded from
the scope of this thesis research. These deficiencies can be
the source of further research. Although the improved metric
has some weaknesses as noted above, because of its major
advantages, it can be considered a valuable contribution to
the literature in this field, since combining several cognitive
aspects with functional aspect is a new attempt in this area.

61

Stephen N. Waweru ef al, International Journal of Advanced Research in Computer Science, 4 (8), May—June, 2013,51-62

XXIII. CONCLUSION

The outcome of the Framework developed from the
improved merged weighted complexity metric shows that;
The tool is capable of performing code analysis
automatically on regular basis. It proves that the automatic
measurement of source code complexity is possible to
implement. The tool is helpful for developers to view the
quality of their code in terms of code metrics. Potentially
fault-prone code can easily be identified which can suggest
developers about the code that requires refactoring. The
change of code may also help the testers to focus their
testing efforts on those parts of code that are changed. The
automatic logging feature will allow for real-time
monitoring of the tool. The configuration interface shall
allow for simple addition/alteration of configuration
specification. As complexity and code size grow for each
year, so does the problem of releasing high-quality software.
An Improved Weighted Composite Complexity Measure has
been used which takes into account different aspects of
complexity: size, control structures, their nesting and
inheritance level of statements in classes. The research
paper shows that the effect of these structures on complexity
is quite significant. It is a robust method because it
encompasses all major parameters and attributes that are
required to find out complexity.

XXIV. REFERENCES

[1] R. Caves, Multinational Enterprise and Economic Analysis,
Cambridge University Press, Cambridge, 1982.

[2] M. Clerc, “The Swarm and the Queen: Towards a
Deterministic and Adaptive Particle Swarm Optimization,”
In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), pp. 1951-1957, 1999.

[3] H.H. Crokell,
Competitiveness,” in Managing the Multinational Subsidiary,
H. Etemad and L. S, Sulude (eds.), Croom-Helm, London,
1986.

[4] K. Deb, S. Agrawal, A. Pratab, T. Meyarivan, “A Fast Elitist
Non-dominated Sorting Genetic ~ Algorithms for
Multiobjective Optimization: NSGA 1I,” KanGAL report
200001, Indian Institute of Technology, Kanpur, India, 2000.

[5] J. Geralds, "Sega Ends
vnunet.com, para. 2, Jan. 31, 2001.The Mythical man Month:

“Specialization and International

Production of Dreamcast,"

Essays on Software Engineering. Addison. Wesley, 2012.

© 2010, IJARCS All Rights Reserved

[6]

[7]

(9]

[10]

[11]

[12]

[13]

[15]

[17]

[18]

[19]

IEEE Std. 1061-1998 —IEEE Computer Society: Standard for
Software Quality Metrics Methodology, 1998.

Basili, V.: Qualitative Software Complexity Models:A
summary, In tutorial on Models and Methods for Software
Management and Engineering. IEEE Computer Society
Press. Los Alamitos, CA 1980.

Zuse, H. : Software Complexity Measures and Methods, W.
de Gruyter, New York. 1991.

Curtis, B.: Measurement and Experimentation in Software
Engineering. Proc IEEE conference, 68.9. 1144-1157,

September 1980.

Sellers, B. H.: Object Oriented Metrics: Measures of
Complexity, Prentice Hall, New Jersey, 1996.

McCabe. T.H.(1976),A complexity measure. IEEE
Transactions Software Engineering, (SE-2,6):308-320.
Halstead. M.H.(1997), Elements of software science,

Elsevier North-Holland,New York

Oviedo, E.I. (1980). Control flow, data and program
complexity. Proc. IEEE COMPSAC, Chicago, IL, pages 146-
152.

Basili. V.R.,(1980), Qualitative software complexity models:
A summary in tutorial on models and methods for software
management and engineering. IEEE Computer Society Press,
Los Alamitos,CA.

Wang. Y. and Shao J. (2003). A new measure of software
complexity based on cognitive weights, Can.J.Elect. Comput.
Eng.,28,2,69-74.

Woodward, M. R., Hennel. M. A., David. H.,(1979) A
measure of control flow complexity in program text. IEEE
Transaction on Software Engineering, SE-5, Vol. 1, pages
45-50.

Baker, A.L., and Zweben, S.H. (1980), A comparison of
Measures of control flow Complexity, IEEE Transaction on
Software Engineering, 6, 506-511.

Weyuker. E.J.,(1988), Evaluating software complexity
measure. I[EEE Transaction on Software Complexity
Measure, 14(9): 1357-1365.

Misra S. and Misra. A. K.(2004), Evaluating Cognitive
with properties.
Proceedings of third IEEE International Conference on

Complexity =~ Measure Weyuker’s

Cognitive Informatics, 103-108.

62

