
��������	�
����	��
�����������

������
����
�������
��������
���������
������� ��������!�������

�"!"�� #�$�$"��

��
��
%���&������
��'''��(
��������

© 2010, IJARCS All Rights Reserved 197

ISSN No. 0976-5697

Application of a Modified Generalized Regression Neural Networks Algorithm in

Economics and Finance

Eleftherios Giovanis
Department of Economics

Royal Holloway University of London

Egham, United Kingdom

Eleftherios.Giovanis.2010@live.rhul.ac.uk

Abstract: In this paper we propose an alternative and modified Generalized Regression Neural Networks Autoregressive model (GRNN-AR) in

S&P 500 and FTSE 100 index returns, as also in Gross domestic product growth rate of Italy, USA and UK. We compare the forecasts with

Generalized Autoregressive conditional Heteroskedasticity (GARCH) and Autoregressive Integrated Moving Average (ARIMA) models. The

results indicate that GRNN outperform significant the conventional econometric models and can be an efficient alternative tool for forecasting.

The MATLAB algorithm we propose is provided in appendix for further applications, suggestions, modifications and improvements.

Keywords: Autoregressive Moving Average, Forecasting, GARCH, Generalized Regression Neural Networks, MATLAB, Stock Returns

I. INTRODUCTION

Empirical analysis in macroeconomics as well as in
financial economics is largely based on times series. The
existence of unexpected shocks or innovations to the economy
plus measurement errors, strongly suggest that economic
variables are stochastic. The last two decades new approaches
are applied in economics and finance. Most of them support
the artificial intelligence procedures Aryal and Yao-Wu [1]
applied a MLP network with 3 hidden layers to forecast the
Chinese construction industry and they compare the
forecasting performance of the MLP networks with that of
ARIMA and they found that the RMSE of the MLP estimation
is 49 percent lower than the ARIMA counterpart. Swanson
and White [2]-[3] applied neural networks to forecast nine
seasonally adjusted US macroeconomic time series and they
found generally neural networks outperform the linear models.
Keles et al. [4] developed Adaptive Neuro-Fuzzy Inference
System for the prediction of domestic debt presenting very
good results

II. METHODOLOGY

A. Autoregressive (AR) model

We consider a series y1, y2, . . . , yn. An autoregressive

model of order p denoted AR(p), states that yt is the linear

function of the previous p values of the series plus an error

term:

tptpttt yyyy εφφφφ +++++= −−−22110 (1)

, where �1, �2 . . . ,�p are weights that we have to define or

determine, and �t denotes the residuals which are normally

distributed with zero mean and variance �2 [5]. Conditioned on

the full set of information available up to time i and on

forecasts of the exogenous variables, the one-period-ahead

forecast of yt would be

ttptptttttt
yyyy

|1

^

1

^

12

^

1

^

|1

^

0|1

^

....
+

+++++= +−−++ εφφφφ (2)

B. Moving Average (MA)

We consider the q order moving average MA(q)

specification [5]:

qq2211 −−− −−−−+= tttttR εθεθεθεµ (3)

, where the �1, ..., �q are the parameters of the model, � is

the constant and �1, ..., �q are again the white noise error terms.

The forecasts are given by Eq. (4)

1q

^

12

^

1

^^^

.... +−−+ −−−−= qtttjtR εθεθεθµ (4)

C. Autoregressive Moving Average (ARMA) models

From the previous two sections we combine

Autoregressive (AR) Moving Average (MA) Models and the

Autoregressive Moving Average (ARMA) which encompasses

(1) and (3) is defined as:

pttt

tptpttt RRRR

−−−

−−−

−−−−

+++++=

εθεθεθ

εφφφµ

q2211

2211

....

....
 (5)

ARMA(p, q) process has p autoregressive, lagged

dependent-variable, terms and q lagged moving-average terms.

The series Rt is said to be integrated of order one, denoted I

(1), because taking a first difference produces a stationary

process. A nonstationary series is integrated of order d,

denoted I (d), if it becomes stationary after being first

differenced d times autoregressive integrated moving-average

model, or ARIMA (p, d, q) and will be [5]:

Eleftherios Giovanis , International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,197-202

© 2010, IJARCS All Rights Reserved 198

qtttt

ptpttt RRRR

−−−

−−−

−−−−

+∆++∆+∆+=∆

εθεθεθε

φφφµ

q2211

d

2

d

21

d

1

d

....

....
 (6)

The forecasts for ARMA (p, q) model is given by Eq. (7)

1q

^

12

^

1

^

1

^

12

^

1

^^^

....

....

+−−

+−−+

+++

+++++=

qttt

ptpttjt RRRR

εθεθεθ

φφφµ
(7)

In all case we choose the lag order based on Akaike

criterion.

D. Generalized Autoregressive conditional Heteroskedasticity
(GARCH)

We estimate with symmetric GARCH (1,1) model [6]. The

general GARCH (p,q) model is

��
=

−

=

− ++=
p

j

jtj

q

i

itit uaa
1

2

1

2

0

2
σβσ

 (8)

We do not bother to examine other GARCH models as the

asymmetric, because the forecasts are not significant.

E. Generalized regression Neural Networks

The GRNN [7] is defined as:

 �

�
∞

∞−

∞

∞−=
dyyxg

dyyxyg
xyE

),(

),(
]|[

 (9)

,where E[y | x] is the expected value of y given x and g(x,y) is
the Parzen probability density estimator . If the value of g(x,y)
is unknown , then it can be estimated from a sample of
observations of x and y. The predicted output obtained by
GRNN is:

 �

�

−
−

−
−

=
n

i

i

n

i

i

i

xx

xx
y

xy

2

i

2

2

i

2

^

2

||||
exp(

2

||||
exp(

)(

σ

σ

 (10)

Usually the GRNN consists of four layers. The first layer,
which are the input data, the synaptic and the activation
functions are linear. In the second layer, the pattern layer, the
synaptic function is the radial and the activation function is the
negative exponential. The third layer, the summation layer, has
as the first layer, linear synaptic and activation functions. The
output layer has a synaptic function a division and linear
activation function. More specifically input layer receives the
input vector X and distributes the data to the pattern layer.
Each neuron in the pattern layer generates an output �, which
is:

)
2

||||
exp(

2

i

2

i
σ

θ ixx −
−= (11)

In this layer the numerator and denominator neuron
compute the weighted and simple sums based on the values of
w and � , which is wij�j , the numerator is

�=
i

jijj wS θ (12)

and denominator is

 �=
i

jdS θ . (13)

In the output layer output y is computed as

 djj SSY /= (14)

We examine an GRNN Autoregressive models, which is

nothing else by taking as inputs the dependent or output
variable with lags.

III. DATA

For the gross domestic product we examine the period
1991-2009, where the period 1991-2006 is obtained as the in-
sample or training period and 2007-2009 is taken for testing or
for the out-of-sample forecasts. In the case of stock returns we
obtain the year 2009 and the last 20 trading days of December
are taken as testing period. It should be noticed that even if we
take much longer samples for GARCH and ARMA processes
the forecasting performance in the out-of-sample period is not
changed.

IV. EMPIRICAL RESULTS

A. Stock Indices

The training in GRNN differs from Feed-Forward Neural

Networks (FFNN), where in the last models the training
involves the learning and momentum rates with delta rule for
the computation of the optimum weights in input-hidden and
hidden-output layers. In the case of GRNN the training is
based on the sigma value in Eq. (10)-(11). Furthermore we
developed a MATLAB routine in appendix, where also the
GRNN training is based on weight initialization. In table I the
lag order for the Autoregressive and Moving average models
are reported. In tables II and III we present the correct
percentage sign as well as the Root Mean squared Error
(RMSE) and Mean Absolute Error (MAE). The estimations for
MA and ARMA in the case of FTSE 100 are not reported
because we found that the MA process is zero. Furthermore,
we have an ARMA process and not ARIMA as the stock
returns are always stationary. We confirmed b applying
Augmented Dickey-Fuller-ADF [8]-[9].

Table I. AR, MA and ARMA processes for stock indices

Indices AR MA ARMA

S&P 500 5 3 5,3

FTSE 100 2 0 2,0

We take for example the S&P 500. In the initial phase we
estimate with the programming routine 1 in appendix and
spread=1 and weight=1 with a and b equal with -0.05 and 0.05
respectively. We present the following in-sample forecasts in
Fig. 1. The sigma value is found equal with 0.1556. Then we

Eleftherios Giovanis , International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,197-202

© 2010, IJARCS All Rights Reserved 199

change the weights and specifically a=-0.05 and b=0.05 to a=-
0.03 and b=0.03 and we present the actual versus the
forecasting values in Fig. 2.

0 50 100 150 200 250
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Periods

V
a

lu
e

s

Actual

forecasts

Figure 1. In-sample forecasts for S&P 500 with GRNN-AR(1),

a =-0.05, b=0.05

0 50 100 150 200 250
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Periods

V
a

lu
e
s

Actual

forecasts

Figure 2. In-sample forecasts for S&P 500 with GRNN-AR(1),

a =-0.03, b=0.03

We estimate GRNN-AR (1) which means that we have an

autoregressive model of one lag. Finally, for S&P we set up
sigma value at 0.4 and for the weights initialization we have
set up a and b at -0.03 and 0.03 respectively. Once again we
conclude that RMSE and MAE have no role in relation to
correct percentage sign. To be specific RMSE and MAE
values of GRNN, in the case of S&P 500, are significant
higher to conventional econometric models, but the
forecasting performance based on the correct sign is
significant higher. On the other hand GRNN presents the
lowest RMSE and MAE values in the case of FTSE 100 but
again has the highest correct percentage sign. This can be
easily explained by the fact that the movements of GRNN in
S&P 500 are closer to actual values, but there are cases where
there are extreme deviations. For example GRNN predicts the
correct sign in eighth or nineteenth observation in Fig. 3. But
there is a great deviation. For example the actual value in
eighth observation is 0.0069 and the forecasting is 0.0269. On
the other hand GARCH predicts the wrong sign, but its
forecasting value is -0.00017, which is closer to 0.0069.

Table II. Forecasting Performance for S&P 500 and FTSE 100

Indices AR MA ARMA

S&P 500

Correct Percentage Sign 40.00 55.00 55.00

RMSE 0.0063 0.0061 0.0065

MAE 0.0053 0.0052 0.0047

FTSE 100

Correct Percentage Sign 45.00

RMSE 0.0088

MAE 0.0072

Table III. Forecasting Performance for S&P 500 and FTSE 100

Indices GARCH GRNN-AR

S&P 500

Correct Percentage Sign 55.00 75.00

RMSE 0.0062 0.0122

MAE 0.0052 0.0095

FTSE 100

Correct Percentage Sign 55.00 75.00

RMSE 0.0088 0.0074

MAE 0.0072 0.0055

We observe also the same situation regarding linear

procedures. To be specific the RMSE and MAE values of AR
are lower than the respective values of ARIMA in the case of
S&P 500, but the correct percentage sign is significant lower.
This indicates that the studies supporting some models in stock
returns and exchange rates forecasting is not necessary, because
the correct sign plays the major role. The financial traders are
not interested in RMSE and MAE, as also they are not
interesting at all about the information criteria, Log-Likelihood,
autocorrelation, heteroskedasticity, residuals tests and many
others, but they are interesting about the signal. The simplicity
of neural networks and artificial intelligence procedures in
finance is that we do not bother for econometric
misspecification and residuals tests. Furthermore, a practitioner
or a financial trader tests the models and chooses this one based
on its forecasting performance and not on various residuals and
other tests, because it is a waste of time and there is no time on
this field. Also we observe that GARCH process is not superior
to ARIMA, concerning the S&P 500. This indicates that even
GARCH solves about autocorrelation, heteroskedasticity and
ARCH effects, does not present high forecasting performance.
But even if we try to forecast the volatility with GARCH
process the results will be again the same.

Eleftherios Giovanis , International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,197-202

© 2010, IJARCS All Rights Reserved 200

0 2 4 6 8 10 12 14 16 18 20
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Periods

V
a
lu

e
s

Actual

forecasts

Figure 3. Out-of-sample forecasts for S&P 500 with GRNN-AR,

a =-0.03, b=0.03 and sigma=0.4

0 2 4 6 8 10 12 14 16 18 20
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Periods

V
a
lu

e
s

Actual

forecasts

Figure 4. Out-of-sample forecasts for FTSE-100 with GRNN-AR,

a =-0.01, b=0.01 and sigma=0.05

-.016

-.012

-.008

-.004

.000

.004

.008

.012

482 484 486 488 490 492 494 496 498 500

Actual Forecasts

Figure 5. Out-of-sample forecasts for S&P 500 with GARCH process

In Fig. 5 we present the out-of-sample forecasts for S&P

500 with GARCH during period 2008-2009. The forecasts for
the in-sample period are similar. We do not bother of
presenting the forecasts of the other models, because the
situation is almost the same, indicating that the forecasting
performance of conventional econometric models is extremely
poor. Even if we get a longer sample to satisfy the statistical

properties, the forecasts are not changed at all. It should be
noticed that we estimated an autoregressive AR(1) for GRNN
as one input is enough to get satisfying results.

B. Gross Domestic Product

In the next example we examine the one-step ahead

forecasts for the gross domestic product of Italy, UK and USA.
The Autoregressive-AR process is found to be 1, 3 and 3
respectively for Italy, UK and USA, while the respective values
for Moving Average-MA process are 3, 5 and 5 respectively.

In tables IV and V the in-sample and out-of-sample one-
step ahead forecasts are reported. For GRNN we estimated the
same autoregressive process with the respective lag values we
mentioned previously for each country. The results among the
linear models are mixed. To be specific AR presents the lowest
RMSE and MAE values in Italy and UK, while ARIMA has
the highest forecasting performance in gross domestic product
growth rate of USA. In the case of Italy a and b have been set
up at – 2 and 2 respectively and the sigma value found equal
with 2.4321. In the case of UK we set up a=-4 and b=4 and the
sigma found equal with 2.0387. Finally, for USA we set up at -
1 and 1 for a and b respectively and the sigma found equal with
2.1203. We observe that in all cases GRNN outperforms the
linear models. Furthermore, if we think that we have not set up
at the optimum values for sigma and weights, then RMSE and
MAE values can be reduced further. In a few words, if we set
up different values for sigma and weights than we can get even
higher forecasting performance. This is the simplicity and
flexibility of neural networks and the algorithm that changing
the settings the forecasts can be significant improved.

Table IV. In-Sample Forecasting performance of AR and GRNN-AR model

 In sample period 1990-2006

 AR MA

 MAE RMSE MAE RMSE

Italy 2.3555 2.9334 2.8313 3.7331

UK 2.2230 2.8528 2.2825 2.8361

USA 2.0581 2.5179 2.1797 2.5440

Table V. Out-of-Sample Forecasting performance of AR

and GRNN-AR model

 Out-of sample period 2007-2009

 ARMA GRNN -AR

 MAE RMSE MAE RMSE

Italy 2.8679 3.4071 1.8485 2.1193

UK 2.4255 2.9177 1.8995 2.6360

USA 1.9961 2.2236 1.5694 1.9416

Finally, we examine again the gross domestic product, but

this time we apply a four-step ahead period forecast for GDP of
UK and USA. The estimating or training period is 1991-2008
and the year 2009 is left as the testing period or for out-of-
sample forecasts. In Fig. 6 and 7 we present the actual values
versus the best linear models. More specifically, in the case of
UK we take the AR and we take ARIMA for USA.

Eleftherios Giovanis , International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,197-202

© 2010, IJARCS All Rights Reserved 201

-6

-5

-4

-3

-2

2009Q1 2009Q2 2009Q3 2009Q4

ACTUAL AR GRNN-AR

Figure 6. Out-of-sample forecasts for GDP of UK

-4

-3

-2

-1

0

1

2009Q1 2009Q2 2009Q3 2009Q4

ACTUAL ARMA GRNN-AR

Figure 7. Out-of-sample forecasts for GDP of USA
From Fig. 6 and 7, we observe that the forecasting

performance of GRNN is very high, especially in UK. On the
other hand AR is a straight line. Also if we think that we might
have not found the optimum values for sigma or weights then
GRNN can be significant improved.

The problem with GRNN, as with any other kind of neural
network model, is that the process is not straightforward. To
be specific in the case of GRNN we have to set up the
appropriate sigma value. For example with even larger sigma
the predicted curve will get flatter more smooth as well. In
some cases this can be desirable. But the value of � depends
on the time-series we examine each time. For example in stock
returns we need a significant lower sigma value than we need
in GDP. Furthermore, even the times-series concern the same
field, for example the stock returns, the sigma value is varied
among the different stock returns we examine each time. The
last crisis is a proof that conventional econometric modeling,
in economic institutions and financial industry, has tragically
failed and there is a great need of adopting new approaches in
economic academic departments and institutions, as also the
introduction of new courses in the economic university
departments

V. CONCLUSIONS

We examined and presented a simple Generalized
Regression Neural Network Autoregressive (GRNN-AR)
Model and we compared its forecasting performance with the
respective of AR, MA, ARMA and GARCH models. Our
findings support GRNN approach because of its flexibility to
be adjusted in the actual values by changing the sigma value as
also the values for the weights initialization. Furthermore, we
propose additional GRNN models as GRNN Moving Average,
or Autoregressive Moving Average GRNN. Also we propose
genetic algorithms optimization in order to compute the
optimum sigma value

VI. REFERENCES

[1] R. D. Aryal R.D. and W. Yao-Wu, W. “Neural Network
Forecasting of the Production Level of Chinese
Construction Industry,” Journal of comparative
international management, vol. 29, pp. 319-33, 2003

[2] N.R. Swanson and H. White, “A model selection
approach to real time macroeconomic forecasting using
linear models and artificial neural networks”, Review of
Economics and Statistics, vol. 79, pp. 540-50, 1997

[3] N.R. Swanson and H. White, “Forecasting economic time
series using adaptive versus non-adaptive and linear
versus nonlinear econometric models”, International
Journal of Forecasting, vol. 13, pp. 439-61, 1997

[4] A. Keles, M. Kolcak and A. “The adaptive neuro-fuzzy model
for forecasting the domestic debt”, Knowledge-Based Systems,
vol. 21, no. 8, pp. 951-957, 2008

[5] W. H. Greene, Econometric Analysis. 6th ed.., Prentice
Hall, New Jersey, 2008

[6] Bollerslev, T. “Generalized Autoregressive Conditional
Heteroskedasticity”, Journal of Econometrics, vol. 31, pp.
307-327, 1986.

[7] D. F. Specht “A Generalized Regression Neural
Network”, IEEE Transactions on Neural Networks, vol. 2,
pp. 568-576, 1991

[8] D. A. Dickey and W. A. Fuller “Distribution of the
Estimators for Autoregressive Time Series with a Unit
Root”, Journal of the American Statistical Association, vol. 74,
pp. 427–431, 1979

[9] D. Kwiatkowski, P .C. B. Phillips, P. Schmidt and Y. Shin
“Testing the Null Hypothesis of Stationarity against the
Alternative of a Unit Root”, Journal of Econometrics, vol. 54,
pp. 159-178, 1992

Appendix

MATLAB script file

clear all;

 load file.mat

nforecast=12

spread=1 % set up the sigma value. 1 for computing 2 for

setting up manually

weights=1; % Set the weight initialization. 1 and 2 for

random and 3 for random

 %and Nguyen - Widrow initialization

 default_sigma=2; %The default spread-sigma value

u=1; % Set the AR process for autoregresive models

for jj=nforecast:-1:1

y=data(1:end-jj,:)

d=length(y)

Eleftherios Giovanis , International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,197-202

© 2010, IJARCS All Rights Reserved 202

t=length(y)

clear x

for p=1:u

x(:,p)=lagmatrix(y,p)

end

i1 = find(isnan(x));

i2 = find(isnan(diff([x ; zeros(1,size(x,2))]) .* x));

if (length(i1) ~= length(i2)) || any(i1 - i2)

 error('Series cannot contain NaN).')

end

if any(sum(isnan(x)) == size(x,1))

 error('A realization of ''x'' is completely missing (all NaN''s).')

end

first_Row = max(sum(isnan(x))) + 1;

x = x(first_Row:end , :);

y=y(first_Row:end,:)

[nh,nj]=size(y);

[nk,ni]=size(x);

t=length(y)

center_matrix=x - ones(nk,1)*mean(x);

% Compute sigma

if spread==1;

maxmin= [max(center_matrix),min(center_matrix)]

distance=abs(2*max(maxmin))

sigma=distance/(sqrt(2*ni))

elseif spread==2;

 sigma =default_sigma

end

% Set up the weight matrix

if weights==1;

 rand('state',0)

a=-1

b=1

W=a + (b-a) *rand(nk,ni);

elseif weights==2;

gamma = 0.7*nj^(1/ni);

a=-0.01

b=0.01

%rand('state',sum(100*clock)) % Resets it to a different

state each time.

rand('state',0) % Resets the generator to its initial

state.

W=a + (b-a) *rand(nk,ni);

W = gamma*W/sqrt(sum(sum(W.^2)));

end

%--%

%------------------ Training-----------------%

 % compute summation neuron output

s=0

 for ii=1:ni

 for kkk=1:nk

 norm_Input = x(kkk,ii) - center_matrix(ii,:);

 norm_Res= (sqrt(norm_Input*norm_Input'))

 exp_Par = (-norm_Res / sigma^2)

 exp_Res(ii) = -exp(exp_Par)

 s=-s+exp_Res(ii)

 end

 end

 sum_Neuron = -exp_Res* W';

 yf = sum_Neuron'/s;

%---%

%--------------------Testing------------------------%

 p_test=y(end,:)

 for ii=1:ni

 norm_Input_test = p_test - center_matrix(end,:);

 norm_Res_test=

(sqrt(norm_Input_test*norm_Input_test'))

 exp_Par_test = (-norm_Res_test / sigma^2)

 exp_Res_test(ii) = -exp(exp_Par_test)

 s_test(ii)=-s+exp_Res_test(ii)

 end

 sum_Neuron_test = exp_Res_test* W(end-u+1:end,:);

 yhat(jj,:) = sum_Neuron_test/s_test;

end

test_y=data(end-nforecast+1:end,:)

for iii=1:nforecast

yfore(iii,:)=yhat(end-iii+1,:)

iii=iii+1

end

figure, plot(y,'r-'); hold on;plot(yf,'b-');

xlabel('Periods')

ylabel('Values')

h1 = legend('Actual','forecasts',1);

%title('In_sample forecasts')

figure, plot(test_y,'-r'); hold on; plot(yfore,'-b');

xlabel('Periods')

ylabel('Values')

h1 = legend('Actual','forecasts',1);

%title('Out_of_sample forecasts')

