DOI: http://dx.doi.org/10.26483/ijarcs.v9i2.5901

Volume 9, No. 2, March-April 2018

ISSN No. 0976-5697

@ International Journal of Advanced Research in Computer Science
, - Available Online at www.ijarcs.info
IMPLEMENTATION OF MAP-REDUCE PARADIGM IN MONGODB AND
COUCHDB

Subita Kumari
CSE Deptt., UIET
Maharshi Dayanand University
Rohtak, India

Abstract: The most famous NoSQL document-oriented databases namely CouchDB and MongoDB have been discussed in this paper. CAP
theorem is being discussed for MongoDB and CouchDB. Map-Reduce is a parallel and distributive programming paradigm for processing bulk
amount of heterogeneous and unstructured data on clusters of computers. Map-Reduce operation has been implemented in MongoDB and
CouchDB. MongoDB uses map-reduce to perform aggregation. CouchDB uses map-reduce for querying and implementing views. The paper
also presents major differences and use cases of both the databases. It is found that MongoDB is better-suited document-oriented database for

today's web applications than CouchDB.

Keywords: NoSQL, Document-Oriented Databases, MongoDB, CouchDB, Map-Reduce

l. INTRODUCTION

NoSQL is the term used to express data stores that do
not follow the relational model and do not use SQL
(Structured Query Language) as the data query language.
These databases scale horizontally and dynamically to
support a large number of users and a big amount of data
[8]. They are mainly categorized into 4 classes namely -
graph store, document store, key-value databases and
column-oriented databases. In a document-oriented
database a “document” is analogous to “row” of a relational
database. These databases use a flexible data model. They
use the documents which represent some real life entities
and are very similar to constructs of object-oriented
languages [1]. These databases allow use of values of keys
via its content. Documents of these databases may be in
BSON, XML or JSON formats. The documents are made
up of complex elements such as scalar values, maps and
collections. A document’s keys are not of fixed types and
values are not of fixed sizes. In a dynamic schema model,
adding or removing fields as needed becomes easier [1].
Each document is made up of fields and contains a unique
ID which is used for retrieving and indexing the database.
Generally, documents oriented-databases have more rich
query language than other contemporary NoSQL databases.
So they are able to make use of the structure of the objects
they store. These databases follow CAP (Consistency,
Availability and Partition Tolerance) theorem while
relational databases follow ACID (Atomicity, Consistency,
Isolation and Durability) properties [9]. The CAP theorem
states that little bit inconsistencies are tolerable by
distributed databases where partitions are allowed [2]. Most
NoSQL databases follow any two of CAP properties out of
three properties. The CAP theorem is shown in Fig 1. The
main databases that fall in the category of document
oriented databases are CouchDB and MongoDB.

© 2015-19, IJARCS All Rights Reserved

Il. MAP-REDUCE IN MONGODB

MongoDB is open-source document-oriented database
developed by 10gen. It has the ability to scale out along with
other features such as aggregations, geospatial indexes,
secondary indexes, sorting and range queries [1].

RDEMS

Consistency (C)

CouchD MongeDB

Partition
Tolerance (F)

Figure 1. CAP Theorem

MongoDB databases are made up of collections. A collection
contains many documents as shown in data model of Fig 2.
Each document contains data in the form of key-value pair.
Collections can be indexed, which improves lookup and
sorting performance.

724

Subita Kumari, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,724-729

Database

Collections \,_lw/\

Dacuments

Figure 2. Data Model of MongoDB

MongoDB use map-reduce concept to carry out aggregation
operation. Map-reduce concept involves two stages:
amap phase processes each document of collection one by
one and emits one or more objects as intermediate output.
The reduce phase then aggregates the intermediate output of
the map stage. An optional finalize stage may be used to
make some changes to the final result. MongoDB provides
the mapReduce database command to carry out aggregation
operations over a collection [5]. Custom Java Script
functions are used by MongoDB "mapReduce™ command to
perform the map, reduce and finalize operations. These
functions provide immense flexibility but they are very
complex. The syntax of this command is shown as below -

db.collection_name.mapReduce(

map: <fiunction>,
reduce: <funetion>,
finalize: <function>,
out: <output=,
query: <document=,
sort: <document=,
limit: <number=,
scope: <document>,
verbose: <boolean=
)

The description of various mandatory and optional
parameters used by mapReduce command is shown in tablel.

© 2015-19, IJARCS All Rights Reserved

Now, the example below shows the implementation of
mapReduce command in the MongoDB. Suppose we have a
test database "testdb” and collection “classes". We have
inserted 6 documents in this collection one by one. The code
below shows the insertion of one document in the collection
"classes".

db.classes.insert ({

class : "Computers 100",

startdate : new Date(2018, 1, 06),

students : [{fname : "Amit", Iname: "Gupta", age: 25}

{fname : "Veer", Iname: "Rai", age: 35}

{fname : "Samar", Iname: "Kashayap", age: 30}],

cost : 1400,

professor : "Pradeep Kumar"

D

Now, suppose we want to find out how many classes are
being taken by professor "Pradeep Kumar". The following
code of mapReduce command will provide the required
results. Firstly we need to write code for map and reduce
functions and then these functions are used in mapReduce
command.

var mapFunc = function() {

emit(this.professor, 1); }

var reduceFunc = function(professor, count) {

return Array.sum(count); }

db.classes.mapReduce(

mapFunc,

reduceFunc,

{ query : {professor : "Pradeep Kumar"},

out : "mapexample”

b

The result of the above mapReduce command is shown as
below —

{

"results” : "mapexample”,

"counts" : { "input": 3,

"emit" : 3,
"reduce" : 1,
"output" : 1
}
"ok": 1
}

725

Subita Kumari,

International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,724-729

Table 1: Description of Parameters of "mapReduce" command

Sr. No. Name of Parameter Optional/Mandatory Functionality

1 Map Mandatory A JavaScript function that associates or “maps” a value with a key and emits
the key and value pair.

2 Reduce Mandatory A JavaScript function that “reduces” to a single object all the values
associated with a particular key

3 Finalize Optional It follows the reduce method and modifies the output.

4 Out Mandatory It specifies where to output the result of the map-reduce operation. We can
either output to a collection or return the result inline.

5 Query Optional It specifies the selection criteria using query operators for determining the
documents input to the map function.

6 Sort Optional It sorts the input documents. It is useful for optimization.

7 Limit Optional It specifies a maximum number of documents for the input into the map
function.

8 Scope Optional It specifies global variables that are accessible in the map, reduce and finalize
functions.

9 Verhose Optional It specifies whether to include the timing information in the result
information.

The aggregated result is also available in collection

"mapexample" as shown below —

db.mapexample.find()

{"_id" : "Pradeep Kumar", "value" : 3}

The above example shows the use of map-reduce functions in
MongoDB to get aggregated results.

I1l. MAP-REDUCE IN COUCHDB

One word to describe CouchDB is "relax™ [3]. CouchDB is an
open source document-oriented database developed by Apache.

© 2015-19, IJARCS All Rights Reserved

It is written in Erlang language. Data in CouchDB is organized
in the form of documents. Documents consist of

fields as key-value pair, which are stored and accessed as JSON
objects. Various documents are grouped together in a database.
So we can say that databases in CouchDB are collection of
variable-schema documents as shown in data model of Fig 3.

726

Subita Kumari, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,724-729

Database

Documents “

Figure 3. Data Model of CouchDB

CouchDB's RESTful APIs make it easy to use database
because with the help of these APIs database can be accessed
through http requests [4]. CouchDB can be accessed via both
the interfaces i.e. GUI as well as CLI. The name of GUI utility
of CouchDB is Futon and name of CLI utility is Curl [6]. APIs
of CouchDB are run on the Curl. In CouchDB, views are used
to query the database and for implementing views, map-reduce
functions are used. These map-reduce functions provide great
flexibility because they are capable of dealing with alterations
in the structure of documents. These functions generate indexes
parallelly and automatically. Documents are passed to map
function as arguments one by one and whole database is
traversed this way. Documents with matching criteria are given
as output in the form of key/value pairs. CouchDB has two
types of views namely temporary and permanent. Permanent
views (static views) are formed with the help of unique
documents called design document. Design document contains
map function inside it and specify the criteria to get the view
[7]. A single design document may contain many views. A
JSON file named "design2.json™ as shown in Fig 4 has been
created. This file contains the id of the design document
“phd_course"” and map functions of two views namely
“supervisor_detail” and “marks_detail".

j designd son - Notepad

[

L

"d" ¢ "_desion/phd_course”,

"Views" : {

“supervisor_detail” : {

"map" @ "function(doc){ 1f(doc.name & doc.supervisor){enit(doc.name, doc. supervisor);i}’

h

"marks_tetail" : {

“map" : "function(doc) {
7ar subject, marks, key;

if (doc.name && doc.Marks) {
for (subject in doc.Marks) {
marks = doc.Marks [subject];
key = [doc. name, marks];
Er}m‘t(key, subject); 11

!
i

Figure 4. Design Document for Creating Views

Design document "phd_course” is created
"design2.json" with the help of below command.

using file

curl-X PUT
http://127.0.0.1:5984/university/_design/phd_course-d
@desktop/design2.json

Curl responds to the above command by showing following
JSON document.

© 2015-19, IJARCS All Rights Reserved

{"ok":true,"id":"_design/phd_course","rev":"1ddde17668d269f
5cfeb2aa3259e26b1"}

In GUI interface "Futon™ our design document looks like as
shown in Fig 5 containing two views.

Vall

2 supenvisor detal

MAp “function(doc){ ifldoc.name & doc.zupervisor) {emit(doc.name, doc.superviser
2 marks detai

map

Figure 5. Design document in Futon

This result of the view is shown in Fig 6. The result shows the
every subject's marks of each student individually.

Key & Valle

.‘..:EE-;”, --;- H1Qrorroceasor

Figure 6. Result of Permanent View

IV. DIFFERENCES BETWEEN CoucHDB AND MONGODB

MongoDB is more suited for online web applications, while
CouchDB is better to use for applications that do not have
internet assured. CouchDB and MongoDB have a lot in
common, but also have a lot of differences. The major
difference between both databases have been explained below
and also depicted in table 2.

727

Subita Kumari, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,724-729

Table 2: Differences between MongoDB and CouchDB

Sr. No. Feature CouchDB MongoDB
1 Developer CouchDB is an Apache product. MongoDB is developed by 10gen.
2 Language in which It is written in Erlang. It is written in C++.
written

3 Data Format It follows the document-oriented model It follows the document-oriented model but data is
and data is presented in JSON format. presented in BSON format.

4 Interface CouchDB uses HTTP/REST-based MongoDB uses binary protocol and custom
interface. It is very intuitive and very well protocol over TCP/IP.
designed.

5 Data Model In CouchDB, database contains In MongoDB, database contains collections and
documents. collection contains documents.

6 Query Method CouchDB follows map-reduce query MongoDB follows map-reduce and object-based
method. query language.

7 Replication CouchDB supports master-master MongoDB supports master-slave replication.
replication with custom conflict resolution
functions.

8 Concurrency It follows MVCC (Multi Version It follows update-in-place.
Concurrency Control).

9 Preferences CouchDB favors availability. MongoDB favors consistency.

10 Performance CouchDB is safer than MongoDB. MongoDB is faster than CouchDB.

11 Consistency CouchDB is eventually consistent. MongoDB follows strong consistency.

12 Data Awareness It does not provide data awareness It provides data awareness inherently.
inherently but possible with the help of
GeoCouch.

13 Sharding It does not provide auto-sharding. It has auto-shading capabilities.
Sharding can be done with the help of
third-party software CouchDB Lounge.

V. CONCLUSION

reduce,

map-reduce. CouchDB does not support distributed map-
sharding and data awareness in its standard

MongoDB supports multiple collections, stores data in BSON
(faster access), does better querying, does aggregation through
map-reduce and is capable of executing millions of queries per
second. CouchDB stores data in JSON, querying through

© 2015-19, IJARCS All Rights Reserved

implementation. For these features, third-party software is
required, like Big Couch and Lounge. So, MongoDB s faster
and CouchDB is safer. Based on the above arguments we can

728

Subita Kumari,

realize that MongoDB is better-suited document-oriented
database for today's web applications than CouchDB.

[1]

[2]

(3]

[4]

VI. REFERENCES

Chodorow, K. (2013). MongoDB: The Definitive Guide:
Powerful and Scalable Data Storage. " O'Reilly Media, Inc.".

Frank, L., Pedersen, R. U., Frank, C. H., & Larsson, N. J. (2014,
January). The CAP theorem versus databases with

relaxed ACID properties. In Proceedings of the 8th International
Conference on Ubiquitous Information Management and
Communication (p. 78). ACM.

Anderson, J. C., Lehnardt, J., & Slater, N. (2010). CouchDB:
The Definitive Guide: Time to Relax. " O'Reilly Media, Inc.".

© 2015-19, IJARCS All Rights Reserved

[5]

6]

[71

(8]

[9]

International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,724-729

Henricsson, R., & Gustafsson, G. (2011). A comparison of
performance in MongoDB and CouchDB using a Python
interface. Bachelor thesis BTH.

Kumari, S., & Gupta, P. (2017a). Proposed Architecture of
MongoDB-Hive Integration. International Journal of Applied
Engineering Research, 12(15), 5000-5004.

Kumari, S., & Gupta, P. (2018). Implementation of
CouchDBViews. In Big Data Analytics (pp. 241-251). Springer,
Singapore.

Gulia, P. & Hemlata (2017). Novel Algorithm for PPDM of
Vertically Partitioned Data. International Journal of Applied
Engineering Research, 12(12), 3090-3096

Hemlata, Gulia, P. (2018). DCI3 Model for Privacy Preserving
in Big Data. InBig Data Analytics (pp. 351-362). Springer,
Singapore.

729

