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2.1.  Data source 

Data were taken from the NHIRD of Taiwan, The 
NHIRD encompasses all medical privileges data of almost 
23.72 million people, including over 99% of the Taiwan 
population [18]. This study used the LHIRD (Longitudinal 
Health Insurance Database) 2010, which covers the health 
insurance data of 2 million people in 6 year time period [19]. 

This paper chose recently determined patients to 
have compose type II diabetes patients (from 2000 to 2003 
who did not have a history of cancer (n = 65,871) [19]. A 
while later, this model utilizes encoded singular 
recognizable proof information to perform information 
linkage with the disease registry database to distinguish 
whether the patients had been determined to have liver 
growth(International Classification of Diseases, (ICD-O-3 = 
C22.0 and C22.1))between 2001 and 2009.In fig.1, it is 
found 515 diabetes patients who established liver cancer 
within 6 years after diabetes diagnosis. Those studies [20-
21] have reported that the ratio of the test group to the 
control group should not be more than 1:3 ratio; using other 
ratios it may lead to a biased comparison. 

 

             Fig.1 Research Flow 

2.2 Random Forest model 

The random forest algorithm, proposed by 
Dr.Breiman in 2001, has been to a great degree effective as 
a universally useful grouping and relapse technique. The 
approach, which joins separate randomized decision trees 
and aggregates their predictions by averaging which has 
shown excellent performance in settings where the quantity 
of factors is significantly bigger than the quantity of 
observations [22].. It is an algorithm based on statistical 
learning theory, which uses Bootstrap randomized re-
sampling way to extract multiple versions of the sample sets 
from the original training datasets, then building a decision 
tree model for each sample set, the final combined all the 
results of the decision trees to predict the results of 
classification by the established voting mechanism. The 
detailed process is shown in Fig.2. 

2.3 Data Pre-Processing 

 The data should be carefully collected, integrated 
and prepared for analysis. In this study, the model applied 

the techniques of data pre-processing to improve the quality 
of the mining results and the efficiency of the mining 
process. The raw dataset is provided by NHIRD of Taiwan. 
Which has 2060 cases The raw data was randomly 
categorized into two groups (training group and test group); 
the training group consist of 1442 cases (70% of dataset). 
The prediction model was developed based on training 
dataset. The remaining 30%cases is assigned as test group. 
The 70/30 percentage rule was applied on the basis of some 
studies such as by Antonio Mucherino [23] and CogNova 
Technologies [24], and each tester consists of 10  features 
including age group, gender, alcoholic cirrhosis, other 
cirrhosis, alcoholic hepatitis, viral hepatitis, etc . In this 
datasets, it is easy to judge whether or not the tester has liver 
cancer using sequential mining optimization algorithm, they 
have indicate that 70% of data is sufficient for developing 
random forest model and remaining data can be used for 
validation, if the dataset is small 90% is used as training set 
and remaining 10 fold validation is used. 
 This model is also tested the SVM,ANN(artificial 
neural network)and Logistic regression on our data in this 
study and employed WEKA to devise this models. The 
decision tree included sex, alcoholic cirrhosis, cirrhosis, 
viral hepatitis, chronic hepatitis, alcoholic fatty liver disease, 
hyperlipidaemia, and age as parameters, and the decision 
tree algorithm was used to construct random forest model. 
By contrast, to devise the ANN model, it is used in the 
sequential minimal optimization algorithm, and included as 
factors sex, alcoholic cirrhosis, cirrhosis, viral hepatitis, 
chronic hepatitis, alcoholic fatty liver disease, and other 
types of fatty liver disease, 

 
Fig. 2. Flow chart of the random forest algorithm 

 
Hyperlipidaemia, and age. Additionally, the random forest 
model have some features of missing values in different 
degrees, including alcoholic cirrhosis, non-alcoholic 
cirrhosis, alcoholic hepatitis, viral hepatitis, etc. . However, 
our study are mainly used some readily available indicators 
to predict the risk of liver cancer for diabetes, it can conduct 
dimensionality reduction first. The key advantage of 
dimensionality reduction is to enhance the execution of the 
calculation, because the dimensionality reduction can 
separate the unrelated features and reduce the noise [25].  As 
the statistical result are shown in TABLEI. 
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Table I: Statistics data –relationship between factors and 
liver cancer. 

 
Factors P-value 

Gender 0.869 
Age group 0.999 
Alcoholic liver cirrhosis 0.018* 
Liver cirrhosis <0.001* 
Alcoholic hepatitis 0.134 
Viral hepatitis <0.001* 
Chronic hepatitis <0.001* 
Alcoholic fatty liver 0.125 
Other fatty liver 0.248 
Hyperlipidaemia <0.001* 

 P-value < 0.05, it means the factor have significantכ
relationship with liver cancer. 
 
 In order to improve the accuracy of the model, the 
continuous features are often needed to be discretized[26]. 
Discretization involves two tasks: First, to determine the 
number of classification that it need; Second, to determine 
how to map continuous features values to these 
classification values. For the first sub-tasks, it can handle 
like this: after the continuous features values are sorted, 
divide them into n intervals by specifying the n-1 points. As 
for the second subtasks, it will map all the values in an 
interval to the corresponding classification value. Therefore, 
the discretization is to choose the number of split points and 
determine the point location problem. In order to facilitate 
the processing of the data, it will divide each feature into 
three parts and using low, medium and high represent these 
feature values, respectively. The next step is to determine 
the split point; there are three kinds of methods to determine 
the split point, namely: width discretization, frequency 
discretization and k-means discretization. After the 
experimentation, the performance of k-means discretization 
is the best [27].According to the centre point of each feature 
obtained by k-means discretization, the features of 
discretization are shown in TABLE II 
 

Table II. Discretized features 
 
Name  Low  Medium  High 
Age 0 0.55~0.90 ≥ 1 
Liver 
cirrhosis 

0 0.001~0.015* ≥1 

Alcoholic 
hepatitis 

0 0.01~0.134 ≥1 

Alcoholic 
fatty liver 

0 0.001~0.134 ≥1 

 
III. EXPERIMENT DESIGN 

 
After the data pre-processing, the next goal is to dig out the 
relationships between the various features and extract some 
useful patterns. Now, the main idea is to develop a risk of 
liver cancer for type II diabetes model to predict whether a 
person will develop liver cancer. The construction steps of 
the random forest mainly include generating a training set, 
choosing the splitting point, repeating construct the 

classification and regression tree and the voting. Detailed 
procedure is as follows: 

Step1: using Bootstrap re-sampling techniques to 
generate k (In this paper, the k is 10) samples. Theoretically 
k samples cover 2/3 of the original datasets, and the rest of 
the data is called Out-Of-Bag (OOB), OOB can be used as 
test data [28]. 
Step2: using the k samples to generate k decision trees. At 
each node of each tree, that are randomly selected m 
features (m<M) in the M features, it is suggested starting 
with m = √ܯand then decreasing or increasing m until the 
minimum error for the OOB data set is obtained. Finally 
choose the best split according to the Gini criterion. 
Gini criterion and prediction class labels are shown in the 
Eq. (1) and Eq. (2). 
  Giniሺܣ௜ሻ ൌ 1 െ ෌ ௜݌

ଶ௡

௜ୀଵ
 

- Eq. (1) 
Where ݌௜represents the probability of the i-th class instance; 
n is the number of classes; ܣ௜ represents the i-th feature. 

஽ܥ ൌ ௖ݔܽ݉݃ݎܽ
ܫ
ܭ

෎  ܫ
݊௛೔

݊௛೔

௡

௞ୀ଴

, ሺܥሻ 

- Eq. (2) 
 
Where ܥ஽ represents prediction class labels; arg maxc 
represents a parameter to find the maximum score c; k 
represents the number of decision trees in a random forest; 
I(*) represents indicator function; ݊௛೔

,  represents the ,ܥ
classification results of the decision tree for the c class; n hi 
represents the number of leaf nodes in the decision tree ݄௜. 
Step3: according to the previous two steps to predict the test 
samples, and combined with the test results of each tree and 
determines the final result in accordance with majority rule 
voting mechanism. 
 
In order to validate the effectiveness of the proposed 
methods, it utilizes another three algorithm, namely ANN 
model, Logistic regression algorithm and AdaBoost 
algorithm. Additionally, in order to further demonstrate the 
effectiveness of the method used in this study. This model is 
designed in a different set of contrast experiments. First, the 
data set was divided into four subsets (20%, 40%, 60%, and 
80% )of the total data set, respectively), and each model was 
compared in each subset. The overall framework of model 
building is shown in Fig.3 
 

 
Fig.3 The framework of model building 
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Fig. 5. The line graph of comparison with different scale 

data 
. 

V. CONCLUSION 
 
The data mining technique has played a very important and 
decisive role in the medical industry. In this paper, it is to 
obtain some simple decision rules by establishing the 
random forest model, and which can make a simple 
prediction of whether having liver cancer or not for type II 
diabetes patients by these simple and readily available 
indicators. Additionally, these indicators are relatively easy 
to obtain and measured by physician, so they can greatly 
reduce the cost of diagnosis. By using these indicators to 
predict liver cancer for diabetes patients will have a certain 
practical significance. 

In this paper, just use some readily available 
indicators to predict the risk of liver cancer for type II 
diabetes and there is no further study the impact of other 
indicators of illness, also not taken into account the impact 
of the tester itself suffering from other diseases on the 
prediction of diabetes. Expand other indicators to predict the 
risk of disease and update the perspective of data mining are 
the future direction of the prediction of the risk of liver 
cancer for type II diabetes patients.  
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