
DOI: http://dx.doi.org/10.26483/ijarcs.v9i2.5767

Volume 9, No. 2, March-April 2018

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 414

ISSN No. 0976-5697

REVIEW ON COMPUTE AUGMENTATION TECHNIQUES IN MOBILE CLOUD
COMPUTING

V. Suganya

Ph.D. Research Scholar,
Dept. of Computer Science and Applications,

SCSVMV, Kanchipuram – 631 561,
Tamilnadu, India

Dr. M. Kannan
Asst. Professor,

Dept. of Computer Science and Applications,
SCSVMV, Kanchipuram – 631 561,

Tamilnadu, India

Abstract

1. INTRODUCTION

In recent years, every people in each corner of the world
are using mobile devices such as smartphones,
smartwatches, tablets, and notebooks etc., In earlier days
mobile devices are used only for voice communication but
nowadays, mobile devices are advanced in terms of
processing speed, sharper screen and more sensors to run
content rich or computation-intensive applications such as
augmented reality, face recognition, interactive games,
online video streaming, object tracking, web surfing, speech
and object recognition. Though the mobile has been steadily
improving, it is not capable to execute the compute-
intensive applications for the following reasons: a) Shorter
battery lifetime, b) Limited Processing speed and c) Low
Memory capacity. To increase the response time and reduce
energy consumption an alternative solution is needed.

 Cloud computing is getting popular due to its features
such as elasticity, scalability, low cost and so on. The
response time of applications executed in the mobile devices
can be increased by utilizing the unbounded compute
resources of the cloud servers can be purchased on demand
in any quantity at any time. E.g. Amazon EC2 compute.
Since the mobile devices have only limited storage, the
provisioning of data centers by cloud servers can extend the
memory capacity of the mobile devices. E.g. Amazon S3
storage. Features like scalability, dynamic resource
allocation, and quick provisioning make cloud the best
partner for mobile computing.

The key contribution of this paper is to analyze the
techniques, works used on computation offloading in mobile
computing. Various papers are received to find the research
gap in existing computation offloading techniques which
will be useful for upcoming researchers to find novel
solutions for the same.

The rest of the paper is organized into following sections.
Section 2 discusses the definition, architecture and
applications of MCC. Section 3 describes the offloading
process and its types. Section 4 presents the requirements
for the offloading process. Section 5 highlights the
challenging impediments in offloading. Section 6 describes
and analyses various offloading works. Section 7 concludes
the paper. Section 8 suggests the future research directions.

2. MOBILE CLOUD COMPUTING (MCC)

: Nowadays, Smartphones has become one of the gadgets of all peoples due to its technological advancements which led to fast
development of resource-intensive applications for watching videos, web surfing, interactive gaming, augmented reality and location tracking
etc., Since the resource-poor mobile devices have only limited CPU, RAM, and battery, it is not capable to execute the resource-hungry
applications. To overcome this impediment, the Computation/ Code offloading method of Mobile Cloud Computing (MCC) can be used. MCC
is an infrastructure where the cloud server resources can be augmented by mobile devices. In Computation offloading, the compute-intensive
part of the application is offloaded to the resource-rich cloud servers and returns the result back to the smartphone. This paper analyzes and
surveys the types of offloading processes, application partitioning, different kinds of frameworks and challenges in offloading the computation
part from mobile to cloud.

Keywords: Mobile Cloud Computing, Computation Offloading, Application Partitioning, Augmentation techniques, Offloading Frameworks

A. MCC Architecture
Mobile Cloud Computing (MCC) combines the strength

of Cloud computing with Mobile terminals. So that the
resources hosted by cloud servers can be augmented by
mobile devices. It's an infrastructure where both data storage
and processing happen outside of mobile devices. Mobile
users can access the application, data, and cloud services
from anywhere at any time through the internet. Mobile
cloud computing can be done in three ways. First, a group of
mobile devices can form a cloud by sharing their storage
and processors. Second, the mobile user makes use of
resource-rich cloud resources such as virtual instances,
server, storage, load balancing, network resources, and
databases. Third, mobile devices in the local vicinity
connected to the servers with limited computation and
storage in the hotspot and referred to as cloudlets.

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 415

Figure 1. Mobile Cloud Computing Architecture [1]

The MCC architecture consists of three tiers of which tier
1 is Master cloud, tier 2 is the Local cloud or Cloudlet and
tier 3 is Mobile device cloud. Master cloud is the cloud
server with large resource pool and high computation power
which can be availed to the user at any time. Users located
far away from the master cloud connect to the local cloud or
cloudlet via a wireless access point to decrease latency and
lower battery consumption. A cloudlet is a trusted cluster of
resource-rich computers which is available to the nearby
mobile device via WLAN hotspot. The third tier is the
mobile device cloud, which is formed by the mobile devices
in the nearby proximity via Bluetooth by sharing its storage
and computation power. It is used when an internet
connection is not available.

B. MCC Benefits

The Mobile Cloud Computing has the following
benefits: Extended battery life by means of mobile
computational offloading, Data storage from unlimited
virtual cloud, Increased processing power by allowing
resource-intensive applications to run on the cloud servers,
Dynamic provisioning of resources without advanced
reservation, Scalability to meet all unpredicted requirements
of a mobile user, Reliability since data stored in cloud are
secure and Ease of integration because cloud providers
could integrate multiple services into one.

C. MCC Applications

The Mobile Cloud Computing applications include
Mobile Commerce, Mobile Sensing, Multimedia sharing,
Mobile Learning, Mobile Healthcare, Mobile Gaming,
Mobile Social Networking, Crowdsourcing, Collective
sensing, Location-based mobile cloud service and
augmented reality. [2]

3. COMPUTATION OFFLOADING

A. Offloading

In MCC, Computation offloading from mobile devices to
the cloud is a method to reduce execution time and extend
the battery life of mobile devices by transferring and
executing the mobile application outside of it.

Figure 2. Offloading to Cloud

In the above figure, both the computation and data of the
mobile device are offloaded to the resource-rich cloud
server for execution and storage which returns the result
back to the mobile device. Thus, the resource-poor mobile
device executes the task with high response time and lower
battery
consumption.

Figure 3. Computation Offloading in Translator

Application [3]
In the above code snippet when the translate method

encounters, the execution of the mobile end stops and
transfers the data and control to the cloud server for
processing. The cloud server processes it and returns the
result back to the mobile device. After receiving the result,
the mobile device starts resuming the execution with further
lines of code in the translate application.

Types of Offloading

Offloading the computation of an application to the cloud
can be done in two ways. They are:

i) Virtual Machine based cloning

 In VM based cloning, the entire phone image is
cloned in the virtual machine of the cloud server. The cloud
server then loads that appropriate virtual machine and
executes the computation. This approach requires a lot of
data transfer for Synchronization in the VM thereby reduces
the performance.

Figure 4. Clone Cloud Framework [4]

ii) Task Partitioning
Here the application code is partitioned and the

offloadable component is outsourced to resource-rich cloud
servers. There is no need for synchronization in task
partitioning approach thereby provides high response time
with reduced battery consumption. The example framework
for this approach is MAUI:

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 416

Figure 5. Application Partitioning

4. OFFLOADING REQUIREMENTS

A. Profiling

To make correct offloading decisions with low overhead,
information about the device (energy consumption, screen,
and CPU utilization), application (execution time, required
resources) and network characteristics (bandwidth, latency
and packet loss) should be collected and such process is
called as profiling. After profiling, the solver makes use of
this profiling metrics and takes the decision to whether
offload or not.

i) Device Profiler

There are two ways to measure the energy consumption,
(1) Software and (2) Hardware monitor. Software called
Power Tutor is used to measure the power consumption of
the application and device. A hardware called Monsoon
Power Monitor is attached to the smartphone battery by
supplying power to measure the power consumption when
the computation is transmitted from mobile to the resource-
rich cloud server. However, comparatively the hardware
monitor is better than the software monitor in measurement.

ii) Application Profiler

It collects the application characteristics such as
parameter data size (send size, receive size, and transfer
size), offloaded code execution time, CPU utilization time,
the number of instructions executed, the number of calls, the
dependency between the calls and memory allocation size
either statically or dynamically.

iii) Network Profiler

It collects information about network environment or
connection statuses such as Wi-Fi/3G/4G/Wi-Max
connectivity, available bandwidth, Round Trip Time (RTT)
by sending and receiving packets to the VMs on the cloud
and to measure the number of packets transmitted and
received per second, Uplink and Downlink data rate and
Signal strength.

B. Application partitioning

Application partitioning is the pre-processing step for
offloading the computation in mobile computation
offloading frameworks. Computation offloading makes use
of partitioning to segregate the compute intensive logic into
different partitions, so that it can be executed in a distributed
environment. Splitting the applications in to several parts
and also preserving the semantics of the application
genuineness. The application partitioning consists of various
levels of granularity for partitioning the compute intensive

tasks. They are module level, method level, object level,
thread level, class level, task level, component level (group
of classes), bundle level (groups of java class of
applications), allocation-site level (all objects in the specific
site as a unit) and hybrid level (partitions of different
granularity). The objective of partitioning is to (i) improve
and enhance the performance, (iii) to execute on multiple
remote servers, (iv) to solve the prolonged battery and
memory constraints on mobile devices, (v) to reduce the
network overhead and (vi) to reduce the burden of the
developers.[5]

C. Offloading Decision

Decision made at the right time and in the right way to
will leads to achieve greater benefits in offloading the
computation intensive tasks. The decision engine in the
computation offloading framework the following four
factors (What, Where, When and How).

i) What to Offload?

A resource hungry mobile application is decomposed into
set of fine-grained task components. But not all these
components will be offloaded to the resource rich cloud end
due to the occurrence of communication delay or the task
itself cannot offloaded since it may access local device
parameters such as sensors, user interface, camera etc.,
Therefore the components in the application should be
categorized in two ways (1) Offloadable and (2) Non-
offloadable using any optimal application partitioning
strategy it is necessary to determine which subset of tasks is
worth to be offloaded to resource powerful cloud server and
what has to be executed locally by estimating time and cost
incurred.

Figure 6. Application Partitioning Flowchart

ii) When to Offload?

It is necessary to determine when to offload a compute
intensive task to resource rich cloud end by estimating
whether the total execution time of the component in the
mobile device is greater than both the total execution time in
cloud server and transfer time of the component mobile to
cloud and vice versa. Offloading will be beneficial if all the
network metrics are favourable with less communication
cost.

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 417

iii) Where to Offload?

There are multiple offloading destinations available to
deploy the offloading application components such as local
mobile clouds via Bluetooth, cloudlets via Wi-Fi and high-
end cloud servers through cellular networks. The
determination of the destination is chosen by offloading
simple computational task to less resource computing targets
without any internet connection, heavy computation tasks
and large datasets to resource rich cloud servers with high
network bandwidth and in case of high response time, the
computation will be offloaded to nearby by cloudlets with
enough resources and WLAN hotspot. For these cases, code
offloading decision is made to find where to offload by
determining suitable cloud resources based on the wireless
network available.

iv) How to Offload?

Though an optimal decision has made using various
parameters, if the wireless channel link is weak, it leads to
high energy consumption and communication delay. So, to
run the offloading process optimally, it is necessary to
choose among different available wireless channels for
offloading the compute intensive tasks by estimating
parameters such as energy cost, link speed, availability, link
quality, monetary cost, and conjunction level of channel
using an effective strategy to achieve the optimal objective.

5. CHALLENGES IN OFFLOADING

Though mobile computation offloading has advantages
such as increased computing power, storage capacity, and
enhanced battery power, it has the following challenges:

A. Security and Privacy

Security and privacy are the main issues in mobile
computation offloading. The security issues must be
resolved in three scenarios: mobile device, cloud servers,
and data during transmission over the communication
interface. The security and privacy issues of mobile
computation offloading are divided into three levels: mobile
device, mobile network or wireless communication channel,
and the cloud infrastructure.

B. Mobile Device Security issues

The security issues in the mobile device are: information
stealing malware, spam, phishing, data loss from lost or
stolen devices, data leakage from the poorly written
application, vulnerabilities in hardware or OS, unsecured
Bluetooth or Wi-Fi. Eg: information stealing malware, fake
websites, digital wallet hacking, unwanted messages etc.,

To prevent the mobile device from the above said issues,
it is necessary to i) update the OS periodically, ii) third-party
application should not be installed, iii) should exchanging
data from strange mobiles, iv) suspicious and unexplained
links should not be tried, v) the Bluetooth, Wi-Fi interface
should be in off mode when not in use, vi) remote data
wiping technique should be used when the device is stolen
or lost.

C. Communication channels security issues

Issues related to wireless communication channel are
Access control attacks, Confidentiality attacks, Integrity

attacks, Authentication attacks and availability attacks. Eg:
MAC spoofing, WEP cracking, Man-In-The-Middle attack,
Denial of service, AP Phishing, VPN login cracking, Beacon
flood, Frame injection, Reply attacks etc., To mitigate these
communication channel security issues, the following
approach has to be followed: 1) The encrypted data should
be used while transmission, 2) secure transmission protocols
such as Https and SSL should be used for data transfer, 3) to
avoid MITM attacks, public key encryption technique is
better, 4) socket programming, strong password, and
biometric authentication will enhance the security of data
while transmission, 5) should avoid using public access
points, and c) the Wi-Fi and Bluetooth interface should be
switched off when the mobile is not in use.

D. Cloud infrastructure security issues

The security issues in the cloud platform are Integrity,
Digital rights management, Virtual machine attacks, and
platform level attacks. Eg: Data and application integrity,
pirated distribution of digital contents, side channel attacks,
SQL injection etc., To protect the data in the cloud from the
above said issues, the following techniques has to be used:
1) security technologies such as Virtual private network,
access control, encryption can be used, 2) automatic
recoverable of user’s data is preferable during data lost or
erased by an attacker, 3) secure key management technique
can be used, 4) to maintain the privacy and security of data,
the user should be provided with the location of the data
offloaded and 5) implicit authentication techniques will
reduce the risk of fraud.

To prevent the security breaches, the offloaded data must
ensure the following most generic criteria:

Authentication is a verification process. In Computation
offloading, it is a bi-directional verification. i.e., the user
who requests to access the resource on the cloud should be
an authenticated one to claim it and the cloud which is
servicing the request to the user should be an authenticated
cloud server to provide the service.

Authorizing an application to access user data without
releasing the user’s credential can save energy of mobile
devices and reduce data transportation overhead.

Data Integrity means data stored/offloaded code by the
user at remote storage in the cloud is not modified by the
cloud at any cost. To ensure this criterion, the cloud server
must secure and protect themselves from malicious attacks.

E. Platform diversity

Mobile devices use the different architecture and
operating systems when compared to cloud servers. Not all
the offloading framework is suitable for deployment on all
mobile platforms. So, it is necessary to develop a framework
which should support all mobile devices and deploy on the
cloud end regardless of the platform and hardware.

F. No continuous connectivity

Mobile users usually move from one location to other. On
the fly, the connection may be lost which leads loss in
packet transmission. To ensure the successful execution of
offloaded application component, the offloading approach
should be equipped with fault tolerance mechanism to
retransmit the lost packets and to minimize the power and
response time.

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 418

G. Low Scalability
Scalability is the process of allocating computing

resources to the available resource-rich virtual machines and
to maintain the overhead of the load when it exceeds the
availability. To ensure the user’s quality of experience, an
optimal resource allocation strategy is needed to allocate the
tasks to the server with minimum response time.

H. Bandwidth scarcity

One of the factors that affect offloaded task is bandwidth.
With the availability of low bandwidth, the offloaded
processing time will be delayed which leads to low latency.

I. Cloud Pricing

Cloud pricing is applied to cloud computing. When an
intensive task encounters in mobile, offload it to the cloud
servers for execution. But the cloud service providers will
provide the service for pricing in return. The more the
services, the more pricing will be.[6]

6. RELATED WORKS

Mobile computation offloading framework consists of
various Application programming interfaces, Partitioning
algorithms, Decision engine, Profiler, compilers, Security
mechanism etc., to offload the compute-intensive task to the
high-end cloud servers optimally. Each existing framework
will use the different approach to offload the intensive task
to the remote cloud servers. [6] In this section, some of the
prominent existing offloading works are discussed.

Chun et al., [4] proposed Clone Cloud framework which
offloads the unmodified mobile applications executable
without any developer intervention for execution from the
mobile device onto the virtual clones running in the
resource-rich cloud infrastructure. The Clone cloud's
application partitioner automatically finds out the partitions
through static analysis and dynamic profiling at a fine
granularity level to reduce the execution time and energy for
the specific computation and communication environment
without any source annotations and programmers
involvement, the optimization solver picks the appropriate
application methods to transfer the computation to the VM
clones and receives the result by minimizing the application
partitioning cost. Migration in Clone Cloud is effective in
terms of the following (a) per-process migrator thread which
suspends, package, resume and merge thread state for the
specific process (b) a per-node node manager is used for
node-node communication of thread package,
synchronization of clone images and (c) partition database
to identify the appropriate partition to offload. Clone Cloud
prototype delivers the execution of offloaded application
speed and energy reduction rate at 20x speed. The main
drawback of this approach is synchronization of clone image
which leads to performance overhead.

Cuervo et al., [7] proposes a MAUI system that enables
the fine-grained energy-aware computation offloading to
cloud infrastructure. MAUI framework offers semi-
automatic offloading of code i.e., there is no need for the
developer to code the logic for shipping the computation
instead the developer should annotate only the functions
which are to be offloaded and the optimization engine at
runtime will then decide which intensive annotations can be
offloaded by considering all profiling (device, program and

network) information with necessary state thereby reducing
the burden of the programmer. It uses 0-1 integer linear
programming for solving the optimization problem. MAUI
is based on .Net framework for method level code
offloading. MAUI does not support the cloud’s scalability
feature and the adaptability of mobile application for distinct
devices.

Kosta et al., [8] presented Think Air framework which
migrates the application to the cloud exploiting the
smartphone virtualization concept in cloud with method-
level code offloading. Its goal is to enhance the battery
power of smartphone. It overcomes the lack of MAUI’s
scalability by parallelizing the execution of method in
multiple VM images when needed. It supports on-demand
resource allocation to adjust dynamically and to ensure the
allocation of resources is up to user satisfaction. It exploits
parallelism for reducing the execution time and energy
consumption of the applications. The VM manager and
parallel processing module in cloud manages the
smartphone VM and splits and distribute the task
automatically to multiple VMs. The future directions of this
framework are (1) to improve the efficiency of data transfer
for remote code execution by combining static code analysis
and data caching (2) to extend the compiler to support
automatic properties which reduce the burden of application
development and (3) to improve application parallelization.

Kemp et al., [9] proposes Cuckoo framework is named
after cuckoo bird, which offloads its egg brooding to other
birds. Likewise, the cuckoo framework offloads its
computation intensive part to remote commercial or private
mini cloud servers. Cuckoo is purely targeted at Android
platform, and includes a runtime system, a resource manager
application deployed in user smartphone to discover the
registered available resources, a programming model which
is integrated in eclipse build system and android framework
developers to ease and automate large parts of the
development process. This model even works on
connectivity drops, performs local and remote execution and
bundles both local and remote executables in a single .apk
file. Instead running complete clone of the smartphone in
the remote cloud, it runs a temporary clone having only the
service used by the application. As a future direction, the
context information of the remote cloud such as processor
speed, available memory in addition to the QR code address
will be augmented. Additional context information such as
mobile devices location, network status is also included. To
ensure the secure communication between the smartphone
and remote cloud resources, security measure needs to be
taken.

H. Flores et al., [10] makes use of the advantageous
dynamic variable of cloud computing like performance
metrics, task parallelization, and elasticity, the EMCO
framework is proposed. It provides a strategy as a solution
to overcome the problems such as adaptive partitioning of
application, offloading decision-making and cloud-aware
dynamic allocation of resources. The EMCO framework
consists of (1) a decision engine implementing fuzzy logic
by considering both mobile and cloud variables (2) a mobile
virtualization infrastructure having virtual instances of
mobile devices for automating the process the fetching and
storing the code offloading traces into the cloud storage. The
code offloading traces has the following information: device
details e.g. bandwidth, information about mobile

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 419

applications and its components, components execution time
and the instance type of the execution of the components (3)
an evidence-based control system to analyze the code
offloading traces using machine learning strategies such as
clustering, Neuro-fuzzy etc., The analysis helps to find
offloading pattern so that the fuzzy rules can be Google
Cloud Messaging (GCM) service is used for sending the
push notification to update the fuzzy rule set of a specific
device. A partial prototype of the fuzzy logic is used in the
EMCO framework. The future directions of this paper are to
fully implement the current mobile cloud simulation, to
explore and compare the machine learning strategies for
parallel utilization of the rules to enrich the fuzzy logic
engine.

Gordon et al., [11] presented the code offloading in
COMET framework is concentrated on how to offload the
code rather on what and when to offload. COMET runtime
system let the unmodified multi-threaded mobile app to run
on multiple cloud servers. Based on the workload, the thread
migrates between these cloud servers. It is built on the top of
Dalvik virtual machine. It implements the distributed shared
memory (DSM) by making use of the runtime system’s
underlying memory model. Virtual machine synchronization
primitive is utilized by the COMET system for effective
migration. The design aim of the COMET system is to build
the framework executing the multithread program with
improved computation speed and resistance when network
or server failures.

In Borcea et al., [12] an avatar prototype has been built
and executed on Android devices and Android x86 virtual
machines to achieve the goals such as effective execution
with fast, scalable, reliable and energy efficient mobile
distributed computing on new cloud architecture. An avatar
is a software entity, one for each mobile device user
reducing workload, storage, and bandwidth. It is instantiated
as VMs in the cloud for isolating the resources and to
simplify the per-user management of resources. It runs
unmodified app components by running the same operating
system on both mobile devices and on VMs in the cloud
server. Even when mobile devices are offline, the avatars
will be available for use.

Heungsik Eorn et al., [13] proposed MALMOS
(Machine Learning-based Mobile Offloading Scheduler)
framework with online training. MALMOS can be applied
to any types of mobile offloading framework. In this work,
the MALMOS is applied to DPartner, a Java-based
offloading-capable code refactoring framework. Since the
mobile applications generated by Dpartner depends on static
input for deciding whether to execute the offloading
computation locally or remotely. It is combined with
MALMOS to take the dynamic offloading decision without
any user input. The MALMOS architecture consists of
following four modes: computation dispatcher, runtime
scheduler, machine learning classifier and the trainer for the
machine learning classifier. In the adaptive online training
mechanism, responsibility is to dispatch and forward the
offloading computation to either remote or local unit. The
scheduler job is to request the machine learning classifier for
offloading decision (remote or local) by sending the size of
the offloadable data and network bandwidth. The machine
learning classifier trainer updates the classifier at runtime by
feed backing the performance by comparing between the
offloaded and local processing. The comparison is evaluated

with three algorithms: instance-based learning, perceptron,
and naïve Bayes in terms of overhead in training and
classification time. Also, the adaptability of MALMOS to
various network conditions and computing power on the
remote resources is compared with the threshold and linear
equation-based scheduling policies. The result of the
evaluation shows that MALMOS is 10.9% to 40.5% highly
accurate than the two static scheduling policies.

Huijun Wu et al., [14] proposed a model which uses
many-to-many mobile cloud service composition which
consists of multiple surrogates (cloud service providers),
mobile devices and their services like computation
offloading and storage. Due to the involvement of mobile
devices, there occurs a problem when the mobile device
moves from one location to another and also its poor
resource constraints. This can be managed and appropriate
surrogates are considered by various service metrics for
allocating service through mobile cloud service topology
reconfiguration. Thus the research focuses on how to
manage the services that have been implemented on several
service provider. The service composition topology
reconfiguration process is modeled theoretically to deal with
a series of decision instead one-time decision. Three
algorithms are presented to solve the decision process on
three mobile cloud application scenarios: (a) finite horizon
process for executing certain time period application, (b)
infinite horizon process for no clear boundary execution
period of application, (c) large state situation for ad hoc,
many-to-many service mapping and parallel computing
application.

In Ragib Hasan et al., [15](Aura), Building cloud
infrastructure having data centers located nearer to the
clients are highly expensive and infeasible to operate. So
that, the Aura a lightweight system is proposed for
computation outsourcing by building the ad-hoc cloud with
low power IoT devices. Aura comprises the mobile device
with M-Agent (Android Application - WordCount), a
controller (a java application) and virtual IoT device
(running Contiki OS ported with MapReduce framework.
When an IoT device enters and joins the Aura network, it
has to multicast the entrance-advertisement (device-live-
time, pricing, CPU speed, RAM and Flash Drive) to the
controller. The given details are received and passed by the
controller whether to accept or discard the message. If the
IoT device is accepted, it is acknowledged by the controller
and get connected with it., After sometime Mobile device
with M-Agent enters building-1 with the job to be
outsourced. By joining the Aura network, it makes a job
advertisement upon receiving the advertisement, the
controller passes it to determine job details (job title,
completion time, interrupted computation) and consults with
the virtual IoT devices whether to take the job from the M-
Agent or not. On acceptance, the controller sends price
quotation for executing the task. Based on it the M-Agent
agrees on the quotation and submits the job. Then controller
splits the task into sub-task and assigns it to various IoT
devices based on its capability and pricing. Then the results
sent back to the M-Agent.

Pengfei Yuan et al., [16] presented a Uniport framework
which is a Uniform Programming support framework for
developing Mobile Cloud applications. The framework has
MVC pattern architecture to apply the various applications
on multiple platforms, a set of programming primitives and

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 420

runtime libraries for creating new mobile cloud applications.
It also transforms the existing application to mobile cloud
applications, a set of development tools such that code
generator to generate code skeleton for various mobile
platforms and a static analyzer for analyzing the existing
applications and to check any constraint violation against
Uniport architecture. A case study is performed for three
existing mobile application (kigomoku, Fivestones, and
GomokuPro) on ios, android, and windows phone to their
mobile cloud version only with few lines of code
modification (3% to 9%), results show that the transformed
mobile cloud applications improve performance times in 3-
7X and reduce energy consumption and execution time.

Pelin Angin et al., [17] presented the design of a
prototype of a dynamic performance estimation model for
offloaded computation in order to provide optimal
performance (tracking and relocation) under different cloud
hosts. Instead of relying on the cloud platform for all the
computation process, it reduces the burden on the cloud by
partitioning the applications in the mobile platform itself.
The estimation model is integrated into autonomous agents
for enhancing the self-performance evaluation. In the
computation offloading process, a mobile application is
installed; the execution manager in the mobile device
communicates the cloud director service for available
offloading application modules in the cloud host. Then an
execution plan is created with offloading decision by the
execution manager. If the result of the decision is
offloading, then a bridge is formed between the mobile
application module and cloud host. Then the necessary input
parameters are migrated, processed and the output data are
returned to the mobile device. Experiments are done with
two applications (Face recognition and N-Queens). Results
show high performance and minimized execution time.

Zohreh sanaei et al., [18] proposed a hybrid mobile
cloud computing framework (HMCC) is proposed when the
capability of coarse-grained resources (giant clouds with
high scalability and low proximity), medium-grained
(cloudlets with medium scalability and proximity) and fine-
grained (smartphone with high proximity and low
scalability) are augmented and interconnected by the
wireless and wired network. It focuses on improving the
computation offloading energy efficiency and
responsiveness. Experiments are done on three prototyped
applications which are compared with following compute-
intensive tasks namely factorial, X power Y and prime
generator. Results show that 80% - 96% response time
(RTT) and 83% - 96% energy is saved when using HMCC
framework.

Suganya et al., [19] paper focuses on two problems (1)
whether the prevailing environment promotes computation
offloading to the cloud or not and (2) if offloaded, how it is
been partitioned and executed securely. The proposed
design framework has a dynamic unsupervised decision
maker based on Self Organizing Map for offloading the
compute-intensive part of the mobile application in the
dynamically changing environment by determining the
performance of the application with on-device and on-
server. In addition, it also augmented the security
mechanism for securely outsourcing the offloaded data
using steganography and encryption. During the offloading
process, when an application is encountered with method
calling instruction, the m/interceptor saves the current

method's information, intercepts all the input parameters and
serializes and sends it to the encoder. Meanwhile, the
fproctor profiles the system environment and resource
information. By analyzing all the information, the SOM
classifier makes the offloading decision. If data has to be
offloaded, it will undergo steganography and encryption
process before offloading and send it to the cloud server.
There, the cInterface receives and decrypts it. The relevant
processing takes place and results will send to the mobile
device.

Ra et al., [20] paper focuses on what compute-intensive
task to offload and how to perform the parallelism on
interactive perception application, to improve the throughput
and makespan of such applications. Since interactive e
perception applications are not quick in reacting to changes
in input complexity, device capability, or network condition,
cannot achieve both low makespan and high throughput, has
high computation and communication overhead, Odessa is
proposed. Odessa is a lightweight runtime which
automatically offloads the compute-intensive task with low
makespan and parallelized decision for interactive
perception application using incremental greedy strategy at
runtime. Results show that the performance of the proposed
runtime is more than 3x speed with varying execution
environments.

Sen Yang et al., [21] paper proposed and implanted
mobile application computation-offloading mechanism
based on the R-OSGi framework. During offloading, for
enhanced performance, it is necessary to minimize the total
execution time. Therefore, the paper focuses mainly on how
to transfer offloadable modules optimally. Two applications
are considered in terms of simple-chain and general. While
offloading, an application is represented into directed tree
graph with multiple modules. Then, a combinational
optimization problem is formulated and using two
algorithms, the solution to the problem how to offload the
modules is obtained. For performance evaluation, the
proposed algorithm was implemented and examined on R-
OSGi framework. Results show that, for compute-intensive
application with few inputs, the modules are offloaded to the
server whereas for the data-intensive application, if the
transmission delay of data is small, it is processed at server
otherwise it will be processed at the mobile device itself.

Ying Zhang et al., [22] presented a tool called DPartner
is proposed in the paper for automatically refactoring an
Android mobile application by implementing the on-demand
computation offloading design pattern to offload the
compute-intensive tasks to the server by importing
execution time and battery power consumption. In order to
overcome difficulties in offloading the applications such as
(1) to identify which parts cannot be offloaded, (2) to
determine which parts are worth offloading, (3) adaptation
of changes in user requirements and runtime environments
(eg. Remote server become unable, unstable network
connection etc.,). It has designed computation offloading
pattern which refactors or restructures the given code into
offloadable one with altered external functionality. The
steps of refactoring are: (a) detecting movable classes, (b)
classes are able to offload, (c) detecting classes which are
offloaded as a whole, and (d) parallelizing deployable files.
In other words, the DPartner transforms the analyzes
bytecode to discover the movable parts of an application
(offloadable), then rewrites it by applying the design pattern

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 421

and finally generates two deployable files onto the
smartphone (.apk) and the server(jar files). On the
evaluation of the three application such as Linpack,
Andgoida, and XRace, shows that the reduced execution
time with 46-97% and power consumption with 27-83%.

Mahbub E Khoda et al., [23] presented a design for an
intelligent code offloading decision-making system called
ExTrade. The ExTrade system will ensure improvement in
both response time and energy consumption of the mobile
application. Before offloading the clone of the mobile
application has to be launched in the cloud server and
necessary updates should be done simultaneously. The
offloadable threads are annotated by the developer. The
decision maker using Lagrange multiplier, a nonlinear
optimization solver is used to decide whether to offload the
code or not by analyzing whether it meets computation and
energy criteria. The profiler feeds the environment and
system information to the execution handler or decision
maker. The statistical regression-based model estimates the
execution time of the behavior of the environment and
application usage. Client handler in the cloud side is for
handling control request (to obtain connectivity information)
and task execution request (sending application id and
thread id to the cloud server). Two classes of application:
Heavy computation and less data transfer (N-Queens) and
Heavy computation and heavy data transfer (face detection)
are deployed to the device for analyzing the performance.
For measuring the power consumption of the applications,
power tutor application is used. The experimental result
shows that the system is improved performance in
processing the computation, accuracy prediction, and energy
consumption.

The objective of H. Flores et al., [24] is to focusing on
overcoming the challenges in practical usage of computation
offloading such as inaccurate code profiling, integration
complexity, dynamic configuration and scalability in
offloading. It offloads the code at method level using java
reflection. The code profiler information is based on JSON
schema by using the following details: candidate method’s
name, device latency and server type to be offloaded, code
execution plan (parallelize the code into n processes) and
additionally user location by gathering cache results based
on location. To execute multiple applications concurrently a
special compiler is based on the server. Auto-scaling
mechanism is implemented so that during multiple
offloading requests, the load of the subscriber is split
between other available servers. Results on pre-cached case
provide low response time and energy consumption.

Bowen Zhou et al., [25] presented a framework adapting
client-server communication model. It uses context-aware
offloading decision algorithm which selects suitable
wireless medium (cellular/WiFi using TOPSIS technique)
and cloud resources (MANET cloudlet and public clouds)
based on different context available on the mobile devices.
The framework consists of three core components: (a)
context monitor which has device profiler to collect the
hardware information and send it to the cost estimation
model, Network monitor to gather mobile device and
network context and pass it to cost estimation model,
program profiler to track the program execution at method
level and stored in mobile database which will be used by
cost model for prediction, (b) decision engine which has
cost estimation model to determine the execution cost of

offloaded task and it uses context-aware decision-making
algorithm to make decision of when, where and how to
offload the task, (c) communication manager to discover and
handle the communication between client mobile device and
in either device cloud/ remote cloud VMs. Experimental
results in calculator and face detection application show that
the prototype reduces the execution cost for heavy
computation up to 70%.

Yaser Jararweh et al., [26] aimed to reduce the power
consumption and network delay when offloading the mobile
application compute-intensive task to the cloud. It utilized
the cloudlet based mobile cloud computing system which
consists of a mobile device, set of cloudlets and an
enterprise remote cloud. The flow of execution is: whenever
a task to be offloaded from mobile device contacts the
cloudlet which forwards it to the Enterprise Cloud (EC)
server. This research has experimented with three mobility
scenarios by sending 226 kb file size to both cloudlet and
Enterprise cloud. (a) Mobile device access the EC through
clodlet1 until the job is completed on cloudlet1, (b) mobile
device access EC through cloudlet1 but before job
completion moves another location, there it accesses
Enterprise Cloud through cloudlet2. The data and remaining
process details in cloudlet1 are sent to cloudlet2 on request,
(c) here mobile device access EC through cloudlet2 and
moves to another location with no cloudlet coverage before
job completion. On such scenario, the mobile device makes
use of 3G/LTE connection to access the EC. The
management of remaining data or processes of incomplete
job are sent by two approaches: (1) Centralized approach
where EC is responsible for storing the tracking information
(current status, connection type, current services, current
files, recent cloudlets and incomplete jobs) and (2) De-
centralized approach where the mobile device is responsible
for managing the tracking data (Recent cloudlets,
incomplete job). The result shows that cloudlet
outperformed the EC in terms of power, access time and
throughput.

Abhirup Khanna et al., [27] proposed offloading model
offloads an application based execution pattern of its task.
The framework of the proposed research has following
components: a device profiler divides the application into
numerous tasks and annotates it (CPU/IO), an application
analyzer to calculate cost of local and remote execution, a
network profiler to determine the transmission cost, a
decision engine which receives information from application
analyzer, network profiler and performs mathematical
calculation to decide whether to offload or not. The
proposed decision algorithm is implemented in Cloudsim.
Two computing environments are used VM #0 (mobile
device), VM #10 (cloud). Two applications (cloudlet #0 and
cloudlet #1) are running on VM #0. On execution, the
following two cases happen (a) both applications execute on
locally and (b) either of the application run on the cloud.
Results show that with increased no. of tasks being
offloaded, there is a reduction in execution time to certain
value and decreased communication cost.

Queen Kaur et al., [28] focuses to overcome the existing
schemes drawbacks where the computation offloading
having high energy consumption and communication cost.
The proposed work is implemented on Cloudsim by creating
two VM nodes representing mobile and server. It checks for
the requirement, then selects the computation offloading

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 422

scheme algorithm, removes the repeated data using Buffer
Allocation Method, offloads the computation to the VM
which is closer to the current VM and generate the
performance analysis graphs in terms of execution time,
CPU workload and energy consumption. During offloading,
the Buffer Allocation Method inputs the packet sequences
process the packets, if it is valid packets it stores in the
buffer then transmit the packets from the buffer to the valid
path to the cloud, otherwise the packet will be discarded and
the transmission failed. By doing so, the offloading
compute-intensive task takes reduced execution time and
balanced load on the local device.

Chengke Wang et al., [29] provides a detailed analysis
of the cause of energy wastes while the phone is not used. It
measures the power consumption using power monitor
application, the WiFi traffic is monitored by using WinPcap
tool, when the smartphone sends/receiver a network
package. To collect the user traces, a lightweight tool is used
for monitoring the event traces and resource usage
information on smartphones by volunteers. The tool has an
event-driven collector to record event traces (occurrences,
timestamp), a polling collector to read the information on
resource usages such as CPU and network. The proposed
solution to optimize the standby energy is to optimize the
tail energy screening off all the session manually and and
saves 1.3% out of 2%, energy to turn off the unused network
connection or switch to another network (WiFi to 3G) which
saves 14.3% to 20%, delaying some packages to group
together for reducing tail time which is optimized as 66% of
energy savings, terminating the background applications
automatically by prediction or providing some warning
messages which 20.3% of energy. The result shows that
based on the user traces, the standby time is optimized
overall by 87%.

In Vikas Pandey et al., [30], offloading decision is made
at runtime by using depth-first search (topological sorting)
for dynamic profiling of each component is calculated at
runtime using call graph which consists of nodes and edges
where nodes represent the executing module and edges
represent the interaction between the two modules. The
weight of nodes and edges denotes the execution cost and
transmission cost respectively. The algorithm partitions the
call graph in to sub-graphs (method call sequence) using
DFS. Then to find the best beginning and ending offloading
point, linear search is applied on the call sequences. It also
considers network bandwidth, state transfer time and remote
and local execution time of method when partitioning the
application. The performance of the proposed algorithm is
better than 0-1 ILP approach, since it offloads all the
subsequent methods of the offloaded method. The algorithm
also reduces the execution time and power consumption of
the mobile phones. This dynamic algorithm’s time
complexity is Θ(E+V).

The aim of Shivani Sachdeva et al., [31] is to minimize
the consumption of energy by deploying the software
optimistically in mobile clouds using ACO (Ant Colony
Optimization) graph partitioning technique. It makes use of
the ACO technique to find the shortest path between the
user and remote cloud server and also partition the
application by initializing and optimistically deploying the
call graph G(V,E) and partition the graph by applying Ant
Colony Optimization. Then the pheromones are updated on

best energy solution obtained and is repeated until a
fulfilling solution is found.

Jianwei Niu et al., [32] improves the performance of
partitioning with fixed bandwidth assumption and to avoid
the dynamic partitioning overheads by finding periodically
the partition of the application online whenever a change in
bandwidth. Therefore, it combines both static analysis and
dynamic profiling and constructs the weighted object
relation graph of the application. Then considering
bandwidth as a variable it prepares optimization partitioning
model based on execution time and energy consumption. To
obtain optimal partitioning solution two bandwidth-adaptive
algorithms (Branch-and-Bound based Application
partitioning and Min-Cut based Greedy Application
partitioning) are proposed for partitioning small and large-
scale applications respectively. Eventually, based on the
partitioning results, the application components are executed
in distributed manner. Experimental results show that both
algorithms reduce the consumption of energy and time of
executing the mobile applications.

Ioana Giurgiu et al., [33] partitions the application by
taking dynamic decision on considering the parameters such
as network conditions, mobile device's CPU load, and size
of end-user input. This approach continuously profiles the
structure of the application's resource requirements and
constraints of the mobile devices. After profiling such
information, it is deployed dynamically by adjusting to the
changes in network conditions, mobile device CPU load and
end-user input. It also caches the deployment setting for
further execution of the application with different inputs. On
comparing various applications, the result of this
partitioning approach shows that it achieves 75 percent of
performance gain and 45 percent of reduction in power
consumption.

Salwa Adriana Saab et al., [34] presented an FSP (Free
Sequence Protocol) for dynamic execution and using min-
cut algorithm; the application was formulated as a flow
graph and partitioned. The algorithm is further extended to
augment the security measures (such as 128-bit AES
encryption) while offloading FSP-based android mobile
application. The main goal of the system is to formulate a
mathematical model to optimize the energy consumption
problem. The system consists of profiler for measuring the
hardware and software requirements and sends the
information to the cloud server; decision engine is based on
the minimum-cut maximum-flow algorithm. Results
revealed the engine minimizes the energy consumption with
high performance.

Lei Yang et al., [35] focuses on optimizing the
partitioning of data stream application such as QR code
recognition to achieve high throughput in processing the
stream of data. The framework supports dynamic
partitioning of application and provides better scalability.
The framework makes use of genetic algorithm for optimal
computation partitioning to increase the throughput of the
application. Based on the available bandwidths, the
partitioning of the algorithm will be executed in the cloud
server. Results revealed that the partitioned application’s
performance is two times better than the throughput of the
application without partitioning.

Mahir Kaya et al., [36] proposed a framework based on
the invention of control mechanism where the task of object
creation is delegated at the offloading factory which then

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 423

decides whether to create a proxy or object at the runtime.
The advantage of the framework is distribution transparency
of offloading. The framework consists of offloading factory
for creation and management of proxies of the requested
classes, a method call is made to the remote server and
appropriate objects are created by the offloading factory
using its unique ID, a profiling manager monitors each
method call and constructs a call graph with information
such as method’s execution time, call frequencies, input
parameters size and return value size, an optimal decision
manager which makes best offloading decision based on call
graph’s edges and vertices weights. It uses min-cut
algorithm with FM heuristic for partitioning the graph. By
using algorithm, first the offloadable classes are identified
and next vertex with best offloading gain is identified which
is then moved as another partition and the steps are repeated
until better partition is found. It has a deployment manager
for deploying and sending the server-side application to the
repository server and a discovery module for available cloud
service discovery which in turn initiates the offloading
process when the application is started. Result shows that
offloading optimal combination of components to the cloud
server reduces the processing time and consumption of
energy in mobile devices.

Luis D Pedrosa et al., [37] proposed a case for automatic
partitioning system which uses heuristic based input
complexity metrics to estimate the usage of resources with
automated learning procedures to a greedy partitioning
algorithm which optimizes the speech recognition library’s
execution, achieves accurate predictions in resource usage
by the application components using complexity metrics and
saves 21 percent on energy consumption.

Huin Suo et al., [38] focused on reviewing the security
and privacy issues in mobile cloud computing. It analyzes
the above said issues in the following three aspects: the
mobile terminal, mobile network, and mobile cloud. In the
mobile terminal, the security issues are: a) Malware
software, which is downloaded automatically unknown to
the user while installing any applications which leads to
access illegally the personal details or automatic pay without
user's knowledge, b) software vulnerabilities where installed
application software or operating system bugs will breach
the data, c) other causes such as lack of security awareness
and mis-operation by many end users. The current solution
for the mobile terminals are: a) Detecting and preventing the
malware eg: CloudAV which is installed on the cloud side
to avoid mobile terminal resource constraints, b) installing
the system patches periodically and checking the software
integrity, c) Regulating the user's behaviour by not clicking
the unexplained link, careful in receiving the data
transmission from unknown users, not installing
unauthorized /third party software and turning off the
Bluetooth or WiFi interfaces when not in usage. In the
mobile network, the issues are a) information leakage during
data transmission or b) malicious attacks like Denial-Of-
Service. The solutions of current approaches for the above
said issue are: transferring encrypted data over the mobile
network and using security protocols to reduce various
network attacks. In the mobile cloud, the issues are: a)
susceptible cloud platform, where attacks of stealing
valuable information can happen by outsiders, another cloud
user, or inside staff of the cloud computing operators and b)
Data and privacy protection where the ownership and

management of the data are separated and it is stored in
shared infrastructure in any place of the world. The solution
to the above said issue by current approaches are: a)
integrating the cloud with current security technology, b)
managing the keys and using encrypted data, c) During
transmission, authenticating the data and use access control
for protection mechanism.

Solanke Vikas et al., [39] reviewed the security
problems in mobile cloud computing. The threats are
categorized into five types: (1) Physical threats, (2)
Application based threats, (3) Network-based mobile
security threats, (4) Web-based threats and (5) Other active
threats. In physical the issues are: a) Device possession
where privacy information will be revealed if employees use
company devices for personal activities and if employee's
personal devices are used for business function, b) theft or
lost devices by unknown person hands who makes use of
that devices for dangerous interactions by revealing bank
accounts, social network, contact list etc., In application
based threats, the issues are malware, spyware, vulnerable
and unlicensed application which targets the mobile device
for gathering decision history, text messages, user location,
browser history, contact list, email, photos and use this
information to change the bill without user knowledge,
stopping some important services and transferring malicious
applications to the device without user's knowledge. In
network-based mobile security threats, the issues such as
WiFi sniffing, Denial of service, Session hijacking, Insider
attack will take place. In web-based threats, phishing scams,
Drive-by downloads, and Browser exploitation issues will
happen. Eventually, in other attacks, the issues are: Internet
protocol vulnerabilities, information recovery vulnerability,
and unauthorized access will take place.

Pelin Angin et al., [40] presented a dynamic computation
offloading model based on autonomous agent-based
application modules. The agent-based model is augmented
with the dynamic self-protecting tamper-resistance approach
for dynamic detection and reporting of code tampering in
computation offloading. Here, the application modules are
treated as the mobile agent which is nothing but the chunk
of application code package which will be executable on
cloud virtual machine when a mobile application is
installed; the execution manager checks the cloud directory
service for the list of cloud hosts in Amazon EC2 for
execution. If founded, the execution plan with offloading
decision will be generated by execution manager. During
offloading, a bridge is formed between the calling mobile
agent mobile and selected cloud host by execution manager
for migrating the offloaded module between mobile and
cloud host.

Kilinc et al., [41] proposed an application-specific
firewall for android application with some additional
functions such as VPN technology (Point to Point
Tunnelling Protocol) and cloud-to-device messaging
(C2DM) framework to determine the malicious application.
In the framework, the cloud monitors the application
continuously with its reputation (Good, Bad and Unknown)
and compares the traffic with the known susceptible
malicious servers. If the application is an unknown one, the
internet connection is fetched from the VPN service of the
VPN server. Then the VPN monitors the traffic of the data
to determine whether it is a malicious one. If it is malicious,
the traffic will be blocked.

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 424

Xu et al., [42] presented a secure web referral service.
Here a Secure Search Engine (SSE) ensure the mobile
websites against phishing and Man-In-The-Middle attack.
Each user is provided with a VM as personal sec-proxy on
cloud-based virtual computing. In each VM, SSE uses the
web crawler program to check the valid IP address and
certificates. The SSE has the following components: URL
services, SSL verifier, Phishing filters, SSE crawler, SSE
services, DNS services, and storage services. To counter the
web-based MITM attack, SSL verifier is used and to counter
the phishing attacks, phishing filter is used with optimized
processing time. The result shows that the secure engine is
secured without any intrusion. It also saves power
consumption than the existing web-based anti-phishing
solutions.

Popa et al., [43] proposed a secure framework for
transmitting the data between the same mobile cloud
application's components. It assumes the applications
integrity during the mobile installation process and during
updating process between mobile and the cloud. This
framework includes five managers for providing secure
transmission: mobile manager, the mobile and cloud
security manager, the optimization manager, the application
manager and the policy manager. Here, the mobile manager
collect data events on the mobile and send it to the
appropriate manager. The mobile and cloud security manger
take care of the composition on both sides. The optimization
manager sends the information from network and energy
sensors to the mobile manager. The application manager
verifies the application integrity at setup process (checking
whether the application exists in the stores such as Google
store, Apple, Amazon etc.,). The policy manager decides
which security components are required for a specific
security level of certain data. Thus the framework provides a
secured scheme with low energy consumption and
component-based security by extending the security
properties for preferred data using Https.

R. Chow et al., [44] presented an authentication scheme
doesn't require any password, username or biometric data
for authentication purpose. Instead, it uses TrustCube
mechanism for authentication by generating an
authentication score based on user's behavior. It is then
compared with a generic threshold value to check whether
the client is authentic or not. The authentication score varies
for the different application. The authentication scheme
consists of four modules: client devices, authentication
consumer, authentication engine, and data aggregation. The
data generated (browsing history, call records, location
details, MMS, SMS, Phone contacts etc.,) by the client
device are stored in the local cache and after it will be
collected by data aggregator. These context information and
authentication policies from authentication consumer are
then extracted by authentication engine to respond the client
with the authentication results.

Grzonkowski et al., [45] proposed an enhanced
authentication scheme using Zero Knowledge Proof
technique is presented in their papers to protect from
phishing attack and to protect the user’s password to the
visiting websites. It also ensures that the users are not
redirected to another web page after login to the
corresponding one. This authentication scheme is called
SediCi 2.0 and consists of three modules: Client (C),
Services (S), and the Authentication services (AS). Here the

client in the client application creates an account in AS with
his password to generate the public key. After that, the client
registers to the service which in turn verifies and records the
client login details. Now, both the login details and public
key are sent to AS. To get authenticated the client has to
visit the service and should gain Auth_ID from the service.
Now the Auth_ID and URI are sent to AS for verification
whether the Auth_ID corresponds to the URI. Now if the
client sends the login to service, it verifies the client using
Auth_ID and if verification is successful, the authentication
of the client is completed.

Zhao et al., [46] focuses on biometric encryption
technology is incorporated in mobile cloud platform for
secured authentication since biometric data are difficult to
forget, forge, share or lose. Here user first registers his
biometric records in the cloud database. Upon login, the
identification phases match the given biometric feature with
the stored one.

Itani et al., [47] aimed to provide integrity of mobile
device the proposed system consists of three entities: Mobile
client, Cloud Service Provider (CSP), and trusted third party
(TTP). The work of CSP is to manage, operate and
allocation of cloud resources. TTP has coprocessor on the
remote cloud which distributes the secret key KS to the
mobile client and generates Message Authentication Code
(MAC).The system has three phases namely: initialization
phase, Data updating phase, and Integrity verification phase.
In the incremental phase, for every file block in the mobile
device, an incremental MACFX is created using KS and
sends it to the mobile client. If both MAC’s are equal, the
integrity is verified successfully.

S.C. Hsueh et al., [48] provided a scheme for both
integrity of mobile device data and authentication of the
mobile user. In order to provide security when the data is
offloaded to the cloud, the following techniques are used:
encryption algorithm, hash function, digital signature,
random number and secret value. The framework has
following four modules: the mobile device (MD), Cloud
service provider (CSP), telecommunication module (TM),
and certification authority (A). The role of the mobile user is
to upload, download, share and synchronize the data
between cloud and mobile user. The certificate authority
will authenticate the source. The role of telecommunication
is to generate cloud password and to store user information
action. The responsibility of the cloud is to store the mobile
user personal data. Three keys namely, secret key (SK),
public key (PK), and session key (SK) are distributed among
the mobile devices, telecommunication mode, and certificate
authority securely. To access the cloud resources, the mobile
has to register with the cloud via certificate authority which
redirects it to the telecommunication module. The TM
generates a password for mobile users to utilize the cloud
resources. Thus using this privilege and techniques the
mobile user uploads and downloads the data from the cloud
securely. Eventually, this scheme is less energy efficient and
scalable.

Debashis De et al., [50] The objective of this paper is to
reduce energy and processing time by offering service
through heterogeneous wireless networks. The profiling
information are mobile battery power, wireless state and
requirements of the application. The offloading decision
engine makes use of fuzzy logic and hand off decision

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 425

algorithm. Results show that improved execution time and
reduced energy consumption.

Amani et al., [51] The aim of this paper is to minimize
the energy consumption. The profiling information is
fetched from the logger module and application profiler.
Genetic algorithm is used for making the offloading
decision. Results show that optimum energy and resource
utilization but cannot large amount of data.

Benkhelifa et al., [52] This paper alleviates the
management burden of offloaded code using autonomous
agent-based application partitions. Power tutor and static
application profiler are used as profiling techniques. The
application is partitioned with agent-based partition using
call-graph. For offloading decision execution manager is
used with cost model. Results show that improved
performance in offloading the task but no quality of service
on cloud resources.

Pelin Angin et al., [53] Using online supervised learning
algorithm as a decision model, this paper autonomously
optimizes the execution of service within the MCC
framework. The context data are used as profiling
information. The application is partitioned using service
selection optimization algorithm and service oriented
architecture. Results show that the decision module has
become more efficient assigning the task to either the
mobile device or cloud resources but no secure
communication.

Piotr Nawrocki et al., [54] The objective of this paper is
to reduce the makespan and energy using context
information. The profiling information are obtained from
program profiler, device profiler and network monitor. The
application is partitioned using java annotations and
reflections. The cost estimation model and context aware
decision making algorithm are used for making the
offloading decision. Fault tolerance using checkpoints are
used in the framework. Results show that the cost of
execution time and energy are low using the decision with
current context.

 Bowen Zhoun et al., [55] The objective of this paper is
to provide computation offloading as a service to mobile
devices. The application tracker, connectivity predictor and
execution predictor are used as profilers. Annotations and
java reflection are used for partitioning the application.
Greedy algorithm is used for decision making. It enables
effective computation offloading at low cost.

 Cong shi et al.,[56] This paper is based on the inversion
of control mechanism which delegates the object creation
task to the offloading factory. History based profiler are
used. Remote proxy classes, call graph model are used for
partitioning the application. Min-cut algorithms with FM
heuristics are used for making the decision. Secure socket
layer used for secure connection and single sign-in
authentication using OAuth mechanism are used. Results
show that the distribution transparency of offloading and the
program structure not being changed by the developer.

7. CONCLUSION

Different offloading techniques and application
partitioning methods show that there is no technique that
improves all the parameters i.e. Execution time, Energy
consumption and Communication cost. As a future scope
new technique should be designed that improves all the

parameters. Hence, an Efficient Code profiler, System
profiler, Reasoner, Optimal resource allocator and highly
securable mechanism for offloading Real-time mobile
applications in a dynamically changing environment by
estimating the application's on-device and on-server
performance to be introduced for better offloading mobile
applications to clouds. So those, even the resource-poor
mobile devices can execute resource-hungry applications
with limited features and resources.

8. FUTURE RESEARCH DIRECTIONS

To overcome the issues in existing research, a mobile
application offloading framework with following capability
has to be designed and implemented. A lightweight
framework with optimal offloading components such as
dynamic Code and System profilers, efficient Application
partitioning and reasoning methods that should improve all
the parameters in terms of execution time, energy
consumption and Communication cost. Additionally, an
auto Scaling mechanism has to be implemented for
allocating the resources and balancing the load on the cloud
server. So that the users’ Quality of Experience can be
enhanced.

An effective Transmission medium selecting mechanism
is required to determine suitable cloud resources based on
the network connectivity and bandwidth availability. So
that, extended battery life and high-performance gain can be
achieved even in heterogeneous wireless environs. The
highly securable technique to authenticate, authorize and
ensure data integrity of the offloaded computation part,
since all the offloaded components are accessed by public
cloud servers. Since only testbeds are availed for killer
MCC applications in Crowd sourcing, Location-based
mobile cloud services, Collective sensing, Augmented
Reality and Mobile gaming. An efficient implementation is
needed in these areas.

REFERENCES

[1] Wu, Huaming, “Analysis of Offloading Decision Making in

Mobile Cloud Computing”, Freie Universität Berlin, Diss.,
2015.

[2] Yating Wang, Ing-Ray Chen, Ding-Chau Wang, “A Survey
of Mobile Cloud Computing Applications: Perspectives and
Challenges”, Journal of Wireless Personal Communications,
Springer, pp. 1607-1623, 2015.

[3] Mohammed A. Hassan, Kshitiz Bhattarai, Qi Wei and
Songqing Chen, “POMAC: Properly Offloading Mobile
Applications to Clouds”, In Proc. HotCloud’14 USENIX
conference on Hot Topics in Cloud Computing, pp. 7-7,
2014.

[4] G. Chun, Sunghwan Ihm, Petros Maniatis, Mayar Nasik and,
Ashwin Patti, "Clonecloud: elastic execution between mobile
device and cloud", Proc. Sixth Conference on Computer
Systems, pp. 301-314, 2011.

[5] Jieyao Liu, Ejaz Ahmed, Muhammad Shiraz, Abdullah Gani,
Rajkumar Buyya, Ashan Qureshi, “Application partitioning
algorithms in mobile cloud computing: Taxonomy, review
and future directions”, Journal of Network and Computer
Applications, Science Direct, Pp. 99-117, 2015.

[6] Muhammad Baqer, Mollah, Md. Abdul Kalam Azad and,
Athanasios Vasilakos, “security and privacy challenges in
mobile cloud computing survey and way ahead”, Journal of
Network and Applications, Science Direct, pp. 38-54, 2017.

https://www.sciencedirect.com/science/journal/10848045�
https://www.sciencedirect.com/science/journal/10848045�
https://www.sciencedirect.com/science/journal/10848045�

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 426

[7] Cuervo Aruna Balasubramanian, Dae-ki cho, Alec Wolman,
Stefan Saroiu, Ranveer chandra, and Paramvir Bahl, “Maui:
Making Smartphones Last Longer with Code Offload”, Proc.
ACM MobiSys 2010, San Francisco, CA, June 15–18, 2010.

[8] S. Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and,
Xinwen Zhang, “Thinkair: Dynamic Resource Allocation and
Parallel Execution in the Cloud for Mobile Code
Offloading,” Proc. IEEE INFOCOM, Orlando, FL, pp. 25–
30, 2012.

[9] R. Kemp, N. Palmer, T. Kielmann, H. Bal, “Cuckoo: a
computation offloading framework for smartphones”, Mobile
Computing, Applications, and Services, Springer, pp. 59–79,
2010.

[10] Huber Flores and Satish Srirama, “Adaptive Code Offloading
for Mobile Cloud Applications: Exploiting Fuzzy Sets and
Evidence-based Learning”, Proc. MCS's13 of 4th workshop
on Mobile Cloud Computing and services, pp. 9-16, 2013.

[11] Mark S. Gordon, Anoushe Jamshidi, Scott Mahlke, Morley
Mao and, Xu Chen, “COMET: code offload by migrating
execution transparently”, Proc. 10th USENIX conference on
Operating Systems Design and Implementation, pp. 93-106,
2012.

[12] Cristian Borcea, Xiaoning Ding, Narain Gehani, Reza
Curtmola, Mohammad A Khan, Hillol Debnath, “Avatar:
Mobile Distributed Computing in the Cloud”, in Proc. 3rd
IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, San Francisco, CA, pp. 151-156,
2015.

[13] Heungsik Eom, Renato Figueiredo Huaqian Cai, Ying
Zhang, Gang Huang, “MALMOS: Machine Learning-based
Mobile Offloading Scheduler with Online Training”, in Proc.
3rd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering, San Francisco, CA,
pp. 51-60, 2015.

[14] Huijun Wu, Dijiang Huang, “MoSeC: Mobile-Cloud Service
Composition”, in Proc. 3rd IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering, San
Francisco, CA, pp. 177-182, 2015.

[15] Ragib Hasan, Md. Mahmud Hossain, and Rasib Khan,
“Aura: An IoT based Cloud Infrastructure for Localized
Mobile Computation Outsourcing”, 3rd IEEE International
Conference on Mobile Cloud Computing, Services, and
Engineering, San Francisco, CA, pp. 183-188, 2015.

[16] Pengfei Yuan, Yao Guo, Xiangqun Chen, “Uniport: A
Uniform Programming Support Framework for Mobile
Cloud Computing”, in Proc. 3rd IEEE International
Conference on Mobile Cloud Computing, Services, and
Engineering, San Francisco, CA, pp. 71-80, 2015.

[17] Pelin Angin, Bharat Bhargava, Zhongjun Jin, “A Self-
Cloning Agents Based Model for High Performance Mobile-
Cloud Computing”, in Proc. 8th IEEE International
Conference on Cloud Computing, New York City, NY, pp.
301-308, 2015.

[18] Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, Min Chen,
“HMCC : A Hybrid Mobile Cloud Computing Framework
Exploiting Heterogeneous Resources”, IEEE International
Conference on Mobile Cloud Computing, Services, and
Engineering, San Francisco, CA, pp. 157-162, 2015.

[19] V. Suganya, Dr. J.Dhillipan, D. B. Shanmugam, “Dynamic
Framework Design for Offloading Mobile Applications to
Cloud”, IOSR Journal of Mobile Computing & Application
(IOSR-JMCA), pp. 15-18, 2015.

[20] M.R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan, “Odessa: Enabling interactive perception
applications on mobile devices”, In Proc. of Mobisys, pp.
43–56. ACM, 2011.

[21] Sen Yang, Xiangshun Bei, Yongbing Zhang, Yusheng Ji,
“Application Offloading based on R-OSGi in Mobile Cloud
Computing”, 4th IEEE International Conference on Mobile

Cloud Computing, Services, and Engineering, pp. 46-52,
2016.

[22] Ying Zhang, Gang Huang, Xuanzhe Liu, Wei Zhang, Hong
Mei, Shunxiang Yang, "Refactoring Android Java Code for
On-Demand Computation Offloading", In Proc. ACM
International Conference on Object-oriented programming
systems languages and applications, pp. 233-248, 2012.

[23] Mahbub E Khoda, Md. Abdur Razzaque, Ahmad Almogren,
Mohammad Mehedi Hassan, Atif Alamri, Abdulhameed
Alelaiwi, “Efficient Computation Offloading Decision in
Mobile Cloud Computing over 5G Network”, Journal of
Mobile Networks and Applications, Springer, pp. 777-792,
2016.

[24] Huber flores, Pan Hui, Sasu Tarkoma, Yong Li, Satish
Srirama and Rajkumar Buyya, “Mobile Code Offloading:
from concept to practice and beyond”, IEEE
Communications Magazine, pp. 80 – 88, 2015.

[25] Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N Calheiros,
Satish Narayana Srirama, and Rajkumar Buyya, “A context
sensitive offloading scheme for mobile cloud computing
service”, IEEE 8th International Conference on Cloud
Computing (CLOUD), pp. 869–876, 2015.

[26] Yaser Jararweh, Loai Tawalbeh, Fadi Ababneh, Fahd Dosari,
“Resource Efficient Mobile Computing Using Cloudlet
Infrastructure”, IEEE International Conference on Mobile
Ad-hoc and Sensor Networks, pp. 373-377, 2013.

[27] Abhirup Khanna, Archana Kero, Devendra Kumar, “Mobile
Cloud Computing Architecture for Computation Offloading”,
2nd International Conference on Next Generation Computing
Technologies, pp. 639-643, 2016.

[28] Queen Kaur Gill and, Kiranbir Kaur, “A computation
offloading scheme for performance enhancement of smart
mobile devices for mobile cloud computing”, International
Conference on Next Generation Intelligent Systems
(ICNGIS), 2017.

[29] Chengke Wang, Yao Guo, Yunnan Xu, Peng Shen, Xiangqun
Chen, “Standby Energy Analysis and Optimization for
Smartphones”, 4th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering, pp. 11-20,
2016.

[30] Vikas Pandey, Shashank Singh, and Shashikala Tapaswi,
“Energy and time efficient algorithm for cloud offloading
using dynamic profiling”. Wireless Personal
Communications, pp. 1687–1701, 2015.

[31] Shivani Sachdeva and Kamaljit Kaur. "Aco based graph
partitioning algorithm for optimistic deployment of software
in MCC". In Innovations in Information, Embedded and
Communication Systems (ICIIECS), 2015 International
Conference on, pp. 1–5. IEEE, 2015.

[32] Jianwei Niu, Wenfang Song, and Mohammed Atiquzzaman,
“Bandwidth-adaptive partitioning for distributed execution
optimization of mobile applications”. Journal of Network and
Computer Applications, pp. 334–347, 2014.

[33] Ioana Giurgiu, Oriana Riva, and Gustavo Alonso, “Dynamic
software deployment from clouds to mobile devices”, In
Middleware 2012, pp. 394–414, Springer, 2012.

[34] Salwa Adriana Saab, Farah Saab, Ayman Kayssi, Ali
Chehab, and Imad H Elhajj. “Partial mobile application
offloading to the cloud for energy-efficiency with security
measures”. Sustainable Computing: Informatics and Systems,
pp. 38–46, 2015.

[35] Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, and
Alvin Chan, “A Framework for Partitioning and Execution of
Data Stream Applications in Mobile Cloud Computing”,
IEEE 5th International Conference on Cloud Computing
(CLOUD), 2012.

[36] Mahir Kaya, Altan Koc¸yigit, and P Erhan Eren. “An
adaptive mobile cloud computing framework using a call
graph based model”. Journal of Network and Computer
Applications, pp. 12–35, 2016.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35�
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Yaser+Jararweh�
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Loai+Tawalbeh�
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Fadi+Ababneh�
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Fahd+Dosari�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6253102�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6253102�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6253102�

V. Suganya et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018,414-427

© 2015-19, IJARCS All Rights Reserved 427

[37] Luis D Pedrosa, Nupur Kothari, Ramesh Govindan, Jeff
Vaughan, and Todd Millstein. “The case for complexity
prediction in automatic partitioning of cloud-enabled mobile
applications”. Small, pp. 20-25, 2012.

[38] Hui Suo, Zhuohua Liu, Jiafu Wan, Keliang Zhou, “Security
and Privacy in Mobile Cloud Computing”, Wireless
Communications and Mobile Computing Conference
(IWCMC), pp. 655-659, 2013.

[39] Solanke Vikas S., Kulkarni Gurudatt A., Katgaonkar Pawan,
Gupta Shyam, “Mobile Cloud Computing: Security Threats”,
IEEE International Conference on Electronics and
Communication Systems (lCECS -2014), 2014.

[40] Pelin Angin, Bharat Bhargava, Rohit Ranchal, “Tamper-
resistant autonomous agents-based mobile-cloud computing”,
IEEE Network Operations and Management Symposium
(NOMS), 2016.

[41] Kilinc, T. Booth, and K. Andersson, "WallDroid: Cloud
assisted virtualized application specific firewalls for the
Android OS", in IEEE 11th International Conference on
Trust, Security, and Privacy in Computing and
Communications, Liverpool, England, pp. 877–883, 2012.

[42] Xu, L. Li, V. Nagarajan, D. Huang, and W. T. Tsai, “Secure
web referral services for mobile cloud computing”, in IEEE
Seventh International Symposium on Service Oriented
System Engineering, Redwood City, CA, pp. 584–593, 2013.

[43] Popa, M. Cremene, M. Borda, and K. Boudaoud, “A security
framework for mobile cloud applications”, in 11th RoEduNet
International Conference, Sinaia, Romania, pp. 1–4, 2013.

[44] R. Chow, M. Jakobsson, R. Masuoka, J. Molina, Y. Niu, E.
Shi, and Z. Song, “Authentication in the clouds: A
framework and its application to mobile users”, in
Proceedings of the ACM Workshop on Cloud Computing
Security Workshop, New York, pp. 1–6, 2010.

[45] S. Grzonkowski, P. M. Corcoran, and T. Coughlin, “Security
analysis of authentication protocols for next-generation
mobile and CE cloud services”, in IEEE International
Conference on Consumer Electronics-Berlin, Berlin,
Germany, pp. 83–87, 2011.

[46] Zhao, H. Jin, D. Zou, G. Chen, and W. Dai, “Feasibility of
deploying biometric encryption in mobile cloud computing”,
in Eighth China Grid Annual Conference, Changchun, China,
pp. 28–33, 2013.

[47] W. Itani, A. Kayssi, and A. Chehab, “Energy-efficient
incremental integrity for securing storage in mobile cloud

computing”, in International Conference on Energy Aware
Computing, Cairo, Egypt, pp. 1–2, 2010.

[48] S. C. Hsueh, J. Y. Lin, and M. Y. Lin, “Secure cloud storage
for convenient data archive of smart phones”, in IEEE 15th
International Symposium on Consumer Electronics,
Singapore, pp. 156–161, 2011., Springer, 2012.

[49] Nawrocki, Bartlomiej Sniezynski ,“Adaptive Service
Management in Mobile Cloud Computing by Means of
Supervised and Reinforcement Learning”, Journal of
Network and systems management, Springer, 2017

[50] Debashis De, Deepsubhra Guha Roy, Anwesha Mukherjee,
Rajkumar Buyya, “Application-aware cloudlet selection for
computation offloading in multi -cloudlet environment”,
Journal of Supercomputing, Springer, 2016

[51] Amani S. Alnezari, Nasser-Eddine Rikli, “Achieving Mobile
Cloud Computing through Heterogeneous Wireless
Networks”, International Journal of Communications,
Network and System Sciences, pp. 107-128, 2017

[52] Benkhelifa, Thomas Welsh, Loai Tawalbeh, Abdallah
Khreishah, Yaser Jararweh, and Mahmoud Al-Ayyoub, “GA-
Based Resource Augmentation Negotiation for Energy-
Optimised Mobile Ad-Hoc Cloud”, 4th IEEE International
Conference on Mobile Cloud Computing, Services, and
Engineering, pp. 110-116, 2016

[53] Pelin Angin and Bharat Bhargava, “An Agent-based
Optimization Framework for Mobile-Cloud Computing”,
Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications, pp. 1-17, 2013

[54] Piotr Nawrocki and Bartlomiej Sniezynski, “Autonomous
Context-Based Service Optimization in Mobile Cloud
Computing”, Journal of Grid computing, pp. 343-356, 2017

[55] Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros,
Satish Narayana Srirama, and Rajkumar Buyya, “mCloud: A
Context-Aware Offloading Framework for Heterogeneous
Mobile Cloud”, IEEE Transactions on Services Computing,
pp. 797-810, 2016

[56] Cong Shi, Karim Habak, Pranesh Pandurangan, Mostafa
Ammar, Mayur Naik, Ellen Zegura “COSMOS: Computation
Offloading as a Service for Mobile Devices”, In Proc. ACM
international symposium on Mobile ad hoc networking and
computing pp. 287-296, 2014

[57] Mahir Kaya, Altan Koc¸yigit, and P Erhan Eren. “An
adaptive mobile cloud computing framework using a call
graph based model”. Journal of Network and Computer
Applications, pp. 12–35, 2016.

