
Volume 2, No. 2, May-June 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 554

ISSN No. 0976-5697

Techniques for Developing Testable Component-Based Software: Similarities,
Differences and Classification

Shyam S. Pandeya*
Department of Computer Engineering.

IT, BHU, Varanasi, India
pandeyashyam@gmail.com

Anil K. Tripathi
Department of Computer Engineering.

IT, BHU, Varanasi, India
anilkt@bhu.ac.in

Abstract: Works on testability of components or component-based software have proposed several techniques for increasing testability of
component-based software systems. This work aims at reviewing these techniques for understanding their similarities and differences. It
classifies the techniques in accordance with the nature of problems in component-based software testability. This helps in evaluating proposed
techniques as per their contribution in solving the concerned problems. Further, this makes their relative efficiency explicit, and, lets us have an
overview of major issues being taken up by previous works on component-based software testability. This has been used to arrive at current
research gaps and questions in component-based software testability.
Keywords: Component-based software, COTS component, Testing, Testability.

I. INTRODUCTION

Component-based software systems are increasingly
being used in almost all walks of human endeavour [7].
Failures of software systems in safety critical and mission
critical systems can lead to the unprecedented loss of
business, money and lives [2]. These problems require better
testing and quality assurance techniques. Testability of a
software system is an effective and viable technique of
reducing the testing cost, and, increasing testing
effectiveness [7]. Testability is not only the indicator of
testing effectiveness, but, also, a measurable indicator of
quality of a software development process [7]. Testing
involves test-case generation, test-case execution and test
evaluation. All the aspects of software development that
ease these activities directly or indirectly make a software
system more testable.

This work aims at reviewing testability techniques for
component-based software in order to understand their
similarities and differences. It classifies the techniques in
accordance with the nature of problems in CBS testability.
This makes their relative efficiency explicit and lets us have
an overview of major issues in component-based software
testability. This helps in arriving at current research gaps in
component-based software testability. Section 2 gives an
overview of component-based software testability
techniques. In section 3, we categorise the existing
testability techniques according to the theme of the
problems taken up in these works. Section 4 discusses the
studies so as to bring forth the newer research gaps. Next, in
section 5, we draw conclusions. Section 6 is for references.

II. TESTABILITY TECHNIQUES FOR CBS
SYSTEMS

Researchers have been concerned with testability in
order to make software testing more efficient. CBS
development aims at maximising reuse of COTS and in-
house components. Widespread use of COTS and in-house
components makes testability more crucial and relevant to
software development. Making components testable can
greatly increase the rate of successful reuse of COTS
components. This explains why most of the techniques
addressing CBS testability are concerned with component
testability. Software testability encompasses all the aspects

that ease software testing, from quality of its specification,
design, code, and tests, to availability of test support [3].
Freedman (1991) investigated the meaning of testability and
introduced the ideas of domain testability, observable
extension, and, controllable extensions [1]. He proposed a
metric model for measuring controllability and obsevability.

The study experimentally demonstrated that a
component with domain testable specification can be built
and tested in less time than that which is not having domain
testable specification. Study stresses that testable component
should not have the hidden inputs and outputs. Further, its
output range should be equal to the set of outputs obtained
by executing the inputs from domain of allowed inputs.
Martins etal. (2001) presented an approach for construction
and use of self-testable object-oriented components that are
unique class [3]. According to the study, a testable
component consists of the class under test, built-in-test
capability, and, a test specification. Tool supporting
implementation of assertions relative to class invariants and
class methods pre and post conditions, test driver
generation, test retrieval, and, test history creation and
maintenance was presented in the study. Gao etal. (2002)
introduced the concept of testable bean [21]. They showed a
technique of constructing testable component based on
testable architecture. Vincent and King (2002) was
concerned with built-in-test support required at runtime [4].

Nguyen etal. (2002) proposed a code based analysis
method of C or Ada components [5]. They measured
controllability and observability based on information loss
of modules. Based on above measures one can control and
observe a module by choosing the flow with greater
observability and controllability values. Collet etal. (2004)
identified tracks for built-in-test concept for components [8].
Study proposed the structure of built-in testable components
to be made of specification (contracts), component
implementation, and test cases. In this model, confrontation
of test-cases, contracts, and, specification increases
testability of components. Gao and Shih (2005) proposed a
qualitative model for component testability. It is comprised
of five factors and sub-factors affecting the testability of a
component. Study proposed a pentagram model for
measuring component testability. Gross etal. (2005)
proposed the use of models for generating built-in-test for
automation and effort reduction [20]. Beydeda (2006)
proposed an approach of self-testability which integrates

Shyam S. Pandeya et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,554-558

© 2010, IJARCS All Rights Reserved 555

STECC method and metamorphic testing [11]. It
encompasses test case generation and test evaluation.

Brenner etal. (2006) considered the need of run-time
testing [12]. He stressed that due to the evolutionary nature
of CBS systems built-in test support for accomplishing run-
time testing has to be a concern for reducing testing effort.
Liangli etal. (2006) identified the dependencies between
components of software systems [10][13]. These
dependencies can be supplied to users of component in form
of metadata for generating test-cases when integrating
components. Mao (2007) proposed the use of aspect-
oriented programming for incorporating invariants,
traceability and pre-condition for methods [14]. This way of
modulating testability concerns helps in efficient evolution
and maintenance of CBS systems. Liangli etal. (2007)
analysed the meaning and ways to increase component
testability [15]. Work proposed a way incorporating DU
table and observation points based monitoring mechanism
for generating test-Case and enhancing observability
respectively [15]. Mao etal. (2007) considered the problem
of regression testing of COTS component [19]. According to
the work vendor can let user know the affected methods due
to the changes made to the component. This information can
be used to test affected methods using built-in-test support.
Kanstern (2008) tried to find out the testability support
required at architectural level based on interviews of two
companies [16]. Aim was to understand the techniques used
by companies for test automation, controllability and
observability at architecture level. Study considered test
implementation, control of messaging, simulation strategies
and test functionality to understand the testability and test
automation strategies being taken up. Gonzalez etal. (2009)
introduced the qualitative model of run-time testability. The
work introduced a technique for measurement of run-time
testability. Gill and Tomar (2011) proposed a process to
construct testable component [22].

III. PROBLEMS ADDRESSED BY CBS
TESTABILITY

In order the understand CBS testability, we will try to
concentrate on the problems of concern of various testability
techniques. This gives a ground for categorising the
proposed testability techniques. Further, this lets us
understand the contribution of different techniques more
explicitly. This helps in understanding the relative efficiency
of different techniques, and, further, the current research
gaps or questions.

What are the problems which are being considered
under the purview of CBS testability? Below, we classify
the testability techniques as per nature of the addressed
problems. This would let us evaluate testability techniques
in a realistic manner. Classification is not disjoint; rather, it
has to do with major problems that have been considered by
researchers. Following are the major problems that have
been considered under purview of CBS testability.

A. Modelling Component testability

These studies considered the aspects related to the form
of a testable component and the way testability can be
analysed and measured. Freedman (1991) showed that it is
essential to recognise hidden inputs and outputs [1]. Further,
he stressed on the fact that we should specify output domain
so that it matches the set of outputs caused by input values.
This is because if we don’t know what are inputs and
outputs, then, it would be impossible to evaluate the result

of test case execution. It may not be possible to specify
outputs according to exact set of outputs obtained by
executing the set of inputs in every case. We should be able
to analyse the testability on the basis of its code and internal
structure. This is important because certain decision
regarding testability can be made only after the analysis of
its structure or code. A work entitled “Testability Analysis
for Software Components” aims at testability analysis of C
or Ada component to recognise those control flows which
can be used to test a part of code more easily [5]. A
qualitative model incorporating the factors that affect
component testability was proposed by Gao and Shih (2005)
in a work entitled “A Component Testability Model for
Verification and Measurement” [9]. This work collected the
intuitive factors which affect testability of a component.

B. Facilitating User-Oriented Component Testing

Validating the COTS components as per an application
context is a key step in successfully developing the CBS
systems [18]. Many testability techniques are concerned
with this issue. Major problem is to let users test COTS
components as per their application context [11]. A work
entitled “Constructing Self-Testable Software Components”
[3] aims at providing built in test capability incorporating
generation of test cases, implementation of assertions
relative to class invariants and class methods pre and post
conditions, test driver generation, test retrieval, test history
creation and maintenance. Work entitled “Contract-based
Testing: from Objects to components” is another built-in
testability approach [8]. It proposes the structure of built-in
testable component to be made of specification (contracts),
component implementation, and test cases. It is assumed
that confrontation of test-cases, contracts, and, specification
increases the testability of a component. Work entitled
“Self-Metamorphic testing Components” presents an
approach to self-testability [11]. Unlike other approaches of
self-testability, which assume a test case set and assumes
means of test execution; this approach encompasses test
case generation and test evaluation. It integrates STECC
[11] method and metamorphic testing [11] to accomplish the
specified features. Next, a work tries to capture the
dependency between two components [10]. It devises a
method of providing dependency information in form of
metadata which can be used for generating test cases when
integrating components. Work entitled “Construct Metadata
Model on Coupling Information to Increase the Testability
of Component-based Software” aims at facilitating testing
by supplying user metadata for generating test cases based
on definition-use criteria [15]. It also aims at increasing
observability based observation points [15]. Work entitled
“AOP – based testability Improvement for Component-
based software” aims at providing technique for checking
invariants of components and collecting pre-condition of a
method execution [14]. Aspect oriented programming has
been devised for accomplishing above tasks. This helps in
modulating the separate concerns, and, facilitates
maintenance and evolution of software systems.

C. Test Support and Automation at Architecture Level

A work entitled “A study on Design for testability in
Component-Based Embedded Software” is concerned with
test support at architecture level [16]. It identified that
techniques for control of messaging, simulation of stubs and
deployment environment, testing support in form of built-in

Shyam S. Pandeya et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,554-558

© 2010, IJARCS All Rights Reserved 556

test, trace support and support for ad-hoc testing support are
required at architectural level.

D. Deployment and run-time test support

Run-time testing is a viable option for integrating
components that cannot be tested during traditional
integration time testing [12] [17]. Performing tests during
deployment or in-service time introduces interference
problems, such as undesired side effect in the state of a
system or the outside of the system. Major issue with run-
time testability is devising models for analysing
interference, and, come up with built-in test support and test
infrastructure support to deal with the interference [12][17].
A qualitative model was proposed by the work entitled “A
Model for the Measurement of the Runtime Testability of
Component-based Systems” [17].

IV. DISCUSSIONS

Testability techniques for software systems aim at
devising methods and guidelines, setting standards, and
analysing artefacts so as to make testing easy. Many
testability techniques have been proposed in connection with
issues that can make testing easier. We will discuss the
various challenges and problems falling in the categories
presented in previous section. Next, we will discuss the
problems in measuring component testability.

A. Challenges and Problems in Modelling Component
Testability

What is a testable component? Jerry Gao has identified
factors affecting component testability. According to him
component testability depends on understadability,
observability, component traceability and test support
capability of a component. He further represented these
attributes in terms of lower level factors. It is required to
define these attributes using operational definitions. By
operational, we mean in a way so that ambiguities of terms
are removed. For example, from term Document readability
[9], it is not clear, what are the symptoms of a readable
document? How one can decide what is readable? Does it
vary from document to document? Another challenge is to
provide well defined guide lines to incorporate the above
mentioned attributes. For example if one is interested in
incorporating controllability, then, what is required to be
done? What are steps that have to be followed? What
analysis technique is required? What activities can be
automated? Further, one needs to understand how exactly
these factors make a component testable? Current issues
concerning component testability is to provide the
operational definition of each of the factors affecting
testability. These operational underpinning of attributes not
only make the deeper understanding of relevant concepts but
also lets one define efficient metric models for the attributes
of concern. Further, one needs to find out guidelines,
analysis techniques and automation required to incorporate
these attributes in software components.

B. Challenges and Problems in Facilitating User-
Oriented Testing

User-oriented testing has to be accomplished without
access to source code. This means that user needs to stick to
some form of specification based testing. If user wants code-
based testing, then, vendor of component needs to supply

those test cases along with the component. Further,
component should facilitate test execution and evaluation.

This is supported by self-testable component [3]. A
self-testable component requires Built-in-test capabilities,
test case set or some specification for creating test case set
and infrastructure supporting self-testability [3]. Problem
with this approach is that user can not choose test-criteria at
his discretion. It is prefixed by the vendor of a component.
An approach which integrates STECC method and
metamorphic testing allows user to choose control flow
based criteria. It uses BINTEST [6] approach for test-case
generation [11].

One problem with this approach is that test cases
generated in this context do not necessarily include expected
results [11]. Next, a limitation of this approach is that it
does not allow non-control flow based criteria. Further,
execution performed during test-case generation can be
computationally intensive, and, therefore, cannot be trivially
neglected in every case. Another point is that metamorphic
testing involves using metamorphic relation from domain
knowledge. It has its own challenges. How to collect and
specify these relations, and, inculcate in the code? Since
satisfying these relations doesn’t mean that a test result is
positive, it needs to be evaluated for its benefits. In another
work, addition of contracts based on specification of a
component has been devised as a way to increase the
observability [8]. This has some immediate challenges.

What are the guidelines to extract contracts from
specification? How to add contracts when a failure is
observed? How to partially activate contracts at run-time?
Some studies propose metadata based technique for
facilitating integration testing [10] [13] [15]. These
techniques have to be evaluated with respect to integration
testing techniques based on other form of specifications,
and, relative efficiencies have to be understood. This is
because they essentially demonstrate criteria based on
metadata. Maintenance and evolution are important
concerns of CBS systems. It is required to communicate the
modifications made by a vendor of a component to the users
of the component. Vendor also needs to provide built-in-test
support for conducting the testing of only some methods
based on the modifications. This is very similar to the
original problem of facilitating the testing of a component
based on test criteria chosen by a user at his discretion. In
this case, some extra support for identifying the test cases
for only some methods (which are supposed to be tested) are
required.

Aspect – oriented programming has been shown to be
applicable for checking invariants that a component should
obey, and, to collect pre-conditions of a method execution
[14]. What are the guidelines to use and collect aspects?
Which tools can be used for these tasks? How to inculcate
maintenance support in a systematic way? These questions
should be answered in order to apply the above mentioned
technique.

C. Challenges and Problems for Test and
Automation Support at Architecture Level

Testability is an important concern at architectural level
[16]. Test implementation, control of messaging, simulation
of stubs and execution environment and built-in test support
from components are challenges at architecture level [16].
What are effective ways to accomplish the above mentioned
tasks? How can we support the testing of non-functional
requirements at architectural level? It has been argued that

Shyam S. Pandeya et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,554-558

© 2010, IJARCS All Rights Reserved 557

COTS components must be verified early in the software
development life cycle for support of functional and non-
functional requirements [18]. Do we need to implement and
test a CBS system or any system in certain order? How can
we prioritise testing order of functionalities of CBS
systems? This can play a big role in reducing testing effort,
and, can make testing more effective. How can we analyse
the requirements of a system for prioritised implementation
and testing?

D. Challenges and Problems for Run-Time Testing

Challenges in this category comprised of understanding
and separating the requirements according to type of affect
they produce on a running system. Next, each of the
requirements has to be analysed for the possible test support
required. In order to meet these challenges, we need to
develop models and techniques to understand the way the
components interact with each other, and, the affect
functionalities to be tested have on functionalities of other
components. Once it is understood, it is required to provide
the test support to deal with the problem of interference
[17].

E. Challenges and problems in measuring
component testability

Since, testability may be related to almost all the
activities of the software development life cycle, a testability
technique needs to be evaluated in terms goodness of
solution of the practical problems it helps in solving so as to
make testing easier. This implies that we cannot compare
testability gain due to a specification standard with that of
testability gain resulting from coding standard. This is
because we do not have so much refined understanding of
testability gain obtained by following these two standards.
Both techniques help in making testing easier in different
ways. Though, gain due to one may be far more important
than that of other. It is more important to come up with
taxonomy of the issues and problems which exist in
component/CBS testing, and, refine and compare those
techniques which are local to an issue or problem.
Comparing techniques across issues might not be
meaningful, as, testability measure in one case might be
measuring very different attribute than in another case. Let
us understand it by an example. We can have a readable
document which will definitely make testing easier. But it
cannot be compared with a observability measure. Since,
observability measures the extent to which values and states
of a component or class can be observed. Both are
measuring completely different attributes. It is not
reasonable to compare these measures. Further, we cannot
come up with single measure of testability by combining
these two measures by multiplication, division or some other
combination of arithmetic operations. This can be done only
if it is know that readability and observability are affecting
testability in well understood way.

V. CONCLUSIONS

Major issues in component and CBS testability are
modelling component testability, providing support for user-
oriented testing, test support and automation at architectural
level, run-time testing support and measurement of
testability. Modelling component testability rests on
providing operational definition of intuitive factors. This
helps in devising better methods and comparison of two or

more techniques proposed for same goal. Support for user
oriented testing mostly resides on the extent to which user is
able to choose testing criteria at his discretion. This problem
of facilitating code based testing is a prime concern for user-
oriented test support. Other concerns are incorporating
contracts, assertions, pre and post conditions, traceability
support and metamorphic relations to enhance the capability
of a component in detecting its own faults, and, facilitate
maintenance of CBS (and components). A systematic
method incorporating well defined guidelines and tool
support is required for these activities. Problem with these
solutions to partial oracle is that these may be required to be
activated as per needs of application as it might be
computationally intensive to check these at run-time. This
needs some form of analysis which can be used to activate
these checks partially as per needs. Another issue is
facilitating users to select test cases only for methods which
have been modified by vendors. This support for regression
testing is important as component can be changed often due
to the faults and performance reasons.

Test implementation, control of messaging, simulation
of stubs and execution environment and built-in test support
from components are challenges at architecture level. Well
defined guidelines for controlling and observing component
state and behaviour at different levels are required to
effectively test and locate faults. Run-time testability is
concerned with models and techniques to effectively
understand the interference points and provide test support
for them. Measurement of testability is important to better
understand the contribution of different factors. But, first we
need to provide operational definitions of different
attributes. Next, there effects on testability have to be
understood. We cannot compare the measures of two
attributes whose effects on testability are not well
understood.

VI. REFERENCES

[1] R. S. Freedman, “Testability of Software Components,”
IEEE Trans. Softw. Eng., vol. 17, June 1991, pp. 553-
564, doi=10.1109/32.87281.

[2] E. J. Weyuker, “Testing Component-Based Software:
A Cautionary Tale,” IEEE Softw., vol. 15, September
1998, pp. 54-59, doi=10.1109/52.714817

[3] E. Martins, C. M. Toyota, and R. L. Yanagawa, 2001.
“Constructing Self-Testable Software Components,”
Proc. 2001 International Conference Dependable
Systems and Networks (formerly: FTCS) (DSN '01),
IEEE Computer Society, 2001, pp. 151-160.

[4] J. Vincent, G. King, P. Lay, and J. Kinghorn,
“Principles of Built-In-Test for Run-Time-Testability in
Component-Based Software Systems,” Software
Quality Control, vol. 10, September 2002, 115-133,
doi=10.1023/A:1020571806877.

[5] T. B. Nguyen, M. Delaunay, and C. Robach,
“Testability Analysis for Software Components,” Proc.
International Conference Software Maintenance
(ICSM'02) (ICSM '02), IEEE Computer Society, 2002,
pp. 422-

[6] S. Beydeda and V. Gruhn, “BINTEST - Binary Search-
based Test Case Generation,” Proc. 27th Annual
International Conference Computer Software and
Applications (COMPSAC '03), IEEE Computer
Society, 2003, pp. 28-.

Shyam S. Pandeya et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,554-558

© 2010, IJARCS All Rights Reserved 558

[7] J. Z. Gao, J. Tsao, Y. Wu, and T. H.-S. Jacob. Testing
and Quality Assurance for Component-Based Software.
Artech House, Inc., Norwood, MA, USA, 2003.

[8] P. Collet, D. Deveaux, and R. Rousseau, "Contract-
based testing: from objects to components," Proc. First
International Workshop Testability Assessment, Nov.
2004, pp. 5-14, doi:10.1109/IWOTA.2004.1428408

[9] J. Gao and M.-C. Shih, “A component testability model
for verification and measurement,” Proc. 29th annual
international conference Computer software and
applications conference (COMPSAC-W'05). IEEE
Computer Society, 2005, pp. 211-218.

[10] L. Ma, H. Wang, and Y. Lu, “The Design of
Dependency Relationships Matrix to improve the
testability of Component-based Software,” Proc. Sixth
International Conference Quality Software (QSIC '06),
IEEE Computer Society, 2006, pp. 93-98,
doi=10.1109/QSIC.2006.64

[11] S. Beydeda, “Self-Metamorphic-Testing Components,”
Proc. 30th Annual International Conference Computer
Software and Applications (COMPSAC '06), IEEE
Computer Society, 2006, pp. 265-272,
doi=10.1109/COMPSAC.2006.161

[12] D. Brenner, C. Atkinson, R. Malaka, M. Merdes, B.
Paech, and D.Suliman, “Reducing verification effort in
component-based software engineering through built-in
testing,” Proc. 10th international IEEE conference
Enterprise Distributed Object Computing, July 2007,
pp. 151-162, DOI=10.1007/s10796-007-9029-4.

[13] M. Liangli, W. Houxiang, and L. Yongjie, 2006.
“Using Component Metadata based on Dependency
Relationships Matrix to improve the Testability of
Component-based Software,” Proc. 1st International
Conference Digital Information Management, 2006,
pp. 13-18.

[14] C. Mao, “AOP-based Testability Improvement for
Component-based Software,” Proc. 31st Annual
International Conference Computer Software and
Applications (COMPSAC '07), IEEE Computer
Society, 2007, pp. 547-552. DOI=10.1109/COMPSAC.
2007.76

[15] M. Liangli, W. Houxiang, and L. Yongjie, “Construct
Metadata Model based on Coupling Information to
Increase the Testability of Component-based Software,”
International Conference Computer Systems and
Applications, IEEE, 2007, pp. 24-31

[16] T. Kanstr\&\#233;n, “A Study on Design for Testability
in Component-Based Embedded Software,” Proc. Sixth
International Conference Software Engineering
Research, Management and Applications (SERA '08),
IEEE Computer Society, 2008, pp. 31-38,
DOI=10.1109/SERA.2008.11

[17] A. Gonz\&\#225;lez, \&\#201;. Piel, and H.-G. Gross.
2009. A Model for the Measurement of the Runtime
Testability of Component-Based Systems. Proc. IEEE
International Conference Software Testing,
Verification, and Validation Workshops (ICSTW '09).
IEEE Computer Society, 2009, pp. 19-28.
DOI=10.1109/ICSTW.2009.9.

[18] S. S. Pandeya and A. K. Tripathi, “Testing Componnt-
Based Software: What It has to do with Design and
Component Selection,” Journal of Software
Engineering and Applications, vol. 4, Jan. 2011, pp.
37-47, doi: 10.4236/jsea.2011.41005

[19] C. Mao, Y. Lu, and J. Zhang, “Regression testing for
component-based software via built-in test design,”
Proc. ACM symposium Applied computing (SAC '07),
ACM, 2007, pp. 1416-1421 doi=10.1145/1244002.
1244307

[20] H.-G. Gross, I. Schieferdecker, and George Din, 2005.
“Model-Based Built-In Tests,” Electron. Notes Theor.
Comput. Sci., vol. 111, January 2005, pp. 161-182.
doi=10.1016/j.entcs.2004.12.001

[21] J. Z. Gao, K. K. Gupta, S. Gupta, and S. S. Y. Shim.
2002. “On Building Testable Software Components,”
Proc. First International Conference COTS-Based
Software Systems (ICCBSS '02), Springer-Verlag,
London, UK, 2002, pp. 108-121.

[22] N. S. Gill and P. Tomar, “New and innovative process
to construct testable component with systematic
approach,” SIGSOFT Softw. Eng. Notes, vol. 36
January 2011, pp. 1-4. doi=10.1145/1921532.1921540

