DOI: http://dx.doi.org/10.26483/ijarcs.v9i1.5526

\% Volume 9, No. 1, January-February 2018
g International Journal of Advanced Research in Computer Science

HASHING BASED ENCRYPTION AND ANTI-DEBUGGER SUPPORT FOR
PACKING MULTIPLE FILES INTO SINGLE EXECUTABLE

Abhi Gupta
Department of Computer Science
Baba Farid Group of College
Bathinda,India

ISSN No. 0976-5697

Available Online at www.ijarcs.info

Dr Meenakshi S Arya
Department of Computer Science
Baba Farid Group of College
Bathinda,India

Abstract : During the recent times, Software in computers use an external layer of protection to provide an extra blanket of security against
crackers and reverse engineers. This is done using specialized software commonly termed as packers. Mostly all packers use the approach for
packing that is easily unpack-able by crackers; also many unpacking methods are available over the Internet to deal with approach . The paper
proposes a novel packer algorithm that uses encryption and an anti-debugging technique to keep away reverse engineers. The proposed
algorithm can pack multiple software at the same time. The experimental results demonstrate the effective packing ability of packer on the object

files.

Keywords: Information security; Multiple Packing; Hash key encryption; Process Writing; Reverse Engineering; Anti-debugging; Anti-reverse

1. INTRODUCTION

The final computation by any computer program is
performed using executables (.exe) files, which are capable
of achieving a specific goal as per the instructions specified
within them. Though the system software may immensely
depending upon the architecture however at lower level, all
software is a set of instructions only. Any alterations made
to the executable file can give a different result irrespective
of other factors. A potential attack on the system can read
sensitive data from the executables and change the same to
get access to or alter it’s functionality by replacing the
executable code with another code[1]. This in turn can allow
the attacker to access any file on the computer and send it on
to remote location through internet. The executables can be
altered in many ways [2]:

Program Analyzers: Programs analyze at file level.
Executables can be modified at binary level in secondary
storages. At binary level they are just hex values There exist
many programs and tools[3] (such as CFF_Explorer and
HEX-WORKSHOP) which can convert these values into
meaningful information and even a novice cracker can
modify this information thereby causing potential harm to
the system software.

Debugging: If an application allows debugging, then
attackers can execute the application in debugging
environment, where they can put breakpoints and study the
application by executing it step by step. The changes can
also be made during the run time. Various debugging tools
are: windbg, ollydbg [4], IDA Pro.

Memory dumping: Using tools (Lord-PE, olly-dbg
memory dump plug-in) process memory contents can be
written into a file. Later these can be analyzed for
meaningful information.

Data directories analyze: By analyzing the data
directories study the behavior of an executable can be
studied and understood which is inclusive of the imported

©2015-19, IJARCS All Rights Reserved

functions and TLS. A lot of information can be found in
these directories.

To solve above problems there is a solution named
packer [5], it gives extra layer of security without affecting
the internal functionality of an application. Basically
security is achieved through encryption, but packer does
another job also that is optional, it names compression.
Before executing the first instruction related to an
application, decryption and decompression must to be done
at the execution time. However, as compression is just
related to size of executable so it can be treated as optional.
In this paper a technique of packing by using hash key based
encryption is proposed. The technique is able to pack
multiple applications at same time. In the proposed
algorithm, during the execution time, a separate process
space of different applications is created that result in
isolation between them. A flag variable is used to keep track
of the operation of whether the files are being packed or
unpacked. Once the file is packed, the flag variable is
changed to represent unpack. The paper is organized as
follows: Section II throws light on the background and the
related work done in the field, Section III describes the
overall process design and the algorithm, the system
evaluation and results have been performed in Section IV
whereas Section V summarizes the work and also presents
the future scope of the proposed technique.

2. BACKGROUND AND RELATED WORK

A. PE file format

Windows executable file particularly follows a format
which should satisfy many constraints, then only windows
loader is able to load it. An executable in windows
environment is not just stand alone application like plain
assembly instructions, there may be lot of information that
may be required by that executable. That information is
present in different section of that executable. A window NT

914

Abhi Gupta et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,914-920

based application has 9 sections. But some applications may
also have only two sections, and some may have more. But
the important thing is information in these sections [6].

= or.exe
L IMAGE_DOS_HEADER

- MS-DOS Stub Program
= IMAGE_MNT_HEADERS
i Signature
-IMAGE_FILE_HEADER
----- IMASE COPTHONAL HEADER
- IMAGE_SECTION HEADER .text
- IMAGE__SECTION_HEADER .data
- IMAGE_SECTION_HEADER .rdata
L IMAGE. SECTION
- IMAGE_SECTION_HEADER .idata
- IMAGE SECTION HEADER
- IMAGE_SECTION_HEADER

HEADER bss

- IMAGE_ _SECTIOMN_HEADER
- IMAGE_SECTHOM
- IMAGE_SECTION_HEADER
- IMAGE _SECTION_ _HEADER
- IMAGE_SECTIOMN_HEADER
- IMAGE SECTIOMN HEADER
- SECTION text

- SECTIOM _data

-SECTION _rdata

- SECTION _idata

HEADER

- SECTHOM

Fig.1 PE file format[14]

Many files in windows environment follow this format
like: DLL, COM, SYS, and OCX.
B. Windows loader

The loading process just starts to begin when we double

click an executable. It has the following steps:

I. Read the first page table of memory that contains:
DOS headers, PE headers, and section headers.

II. Determine the memory requirements in address
space, if it is not available, then allocate another memory
reign of page.

III. Place all the sections required into the address
space as mentioned in the section headers.

IV. If the image is not loaded at its preferred base
address then relocate using relocation tables.

V. Walk through all the dlls required by executable. If
any dll is not loaded into the memory, loads that dll into
its share memory.

VI. Resolve all imports of import address table.

VII. After creating initial heap and stack create main
thread of process and start the process.

C. Packer

Packer is a tool which encrypts the executable and adds
extra code into it, and according to its needs it also modifies
the headers of executable file. It makes the arrangements
like first stub (packer code) is executed which decrypts all
the packed executable part, and then imports are fixed. After
that actual code related to that executable is executed. It just
does one side of encryption and put the code in executable
that do another side. This technique can easily evade any
static checking based on signature. So without
understanding no one can modify the content of executable.

D. PEB

Process environment block contain process related
information it can be found at 30h of the segment register
FS. PEB is allocated by operating system itself.

©2015-19, IJARCS All Rights Reserved

E. Related work

In [5] the details about internal structure of windows
based executable have been discussed. This paper provides a
lot of information required to develop the executable under
windows environment, and it also describes the things that
we have to tackle while altering an executable. It also
describes the kind of tasks that a window loader program
does on an executable before it begins the execution of the
same. It elaborates on the role of different sections and
various information fields of executable file. To create
packer we have to understand all these fields. And this paper
clearly describe every perspective of executable file under
windows environment.

Fanglu Guo & Peter Ferrie & Tzi-cker Chiueh [7]
presents just in time unpacking method. In the proposed
work, let the unpacking algorithm is let to work for itself.
The algorithm just checks the stack pointer and dirty page
execution. So with debugger’s attachment some selective
packed applications can unpack manually. Most viruses
come packed with their binary image. So due to this
signature based checking of any AV program can easily be
evaded. But to run any packed executable they must been
unpacked at memory or secondary memory then they can
fed to operating system. Once the unpacked algorithm does
that, the method keeps checking the memory written by
application once it detected that the unpacking is done. Then
it calls the AV routine for signature based scanning. At this
time it can work fine. The proposed algorithm just inserts
breakpoint at the end of unpacked code in application. Once
control reaches at that breakpoint it means the unpacked
algorithm has done its job. Then another common way is to
make store dump of memory that have the unpacked image
after some fix (imports, Address entry point, etc). The dump
file is able to run directly, so it shows a way how many
packers security can be evaded by using just in time
technique of unpacking.

Yu San-Chao & Li Yi Chao [8] presents an unpacking
technique which is remove code obfuscation from
executable. It is named AG-Un-packer. It decides when the
program decrypts itself in memory completely by tracing
long jump or intersectional jump. The algorithm is able to
find imports address table in packed executable. All this is
done by stack trace and forensic tracing. All calls to API’s
go through these import address tables. This technique can
deal with the known and unknown packers. The concept of
PUSHAD (push all general purpose registers in stack) and
POPAD (pop all general purposes register from stack) is
used. After the POPAD instruction there is JUMP
instruction. When all come in the PUSHAD, POPAD, and
jump sequence it means that is stub code. Breakpoint can be
inserted at that end of code before jump. The proposed
technique captures these intersectional jumps by using
exception handling and is capable of monitoring the end of
unpacked code in many packers. This is common for most
packers who use this approach. 81% of packers use this
technique for unpacking the packed executable.

Sungwon Han & Keungi Lee & Sangjin Lee [9] present
signature based detection method of forensics in PE files.
The approach uses signature based technique to find the type
of packer or encryption method, as to detect signature of
malware there is need to detect the signature of packer. The
algorithm implements both ways of detection (signature
based detection and entropy based detection). There are

915

Abhi Gupta et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,914-920

some limitations in signature based detection as it can’t
detect new encryption methods or change in existing
encryption methods. And entropy based detection have there
own problems. But in this paper detection with entropy
statistic of entry point is provided. Many third party PE
identifiers are based on this technique.

Lee Ling Chuan & Chan Lee Yee [10] presents the
technique to detect computer worm. At each stage the worm
changes its code and makes it difficult to detect using static
analyze as each time the signature of the executable will be
different from the earlier. But at execution time it again
comes with its original form. It unpacked itself first to
achieve its goal. The technique is used to compare code of
worm with different stages and when it performs its
execution before it goes through its unpacking algorithm
following the extraction of malicious worm. The algorithm
also puts breakpoint analyzes the code for its signature.

Tao Ban & Ryoichi Lsawa & Shanqging Guo [11] present
technique to identify the packer on malware. They use p-
spectrum induced linear support vector machine to
implement automated packer identification with good
accuracy and scalability. This method helps to improve the
scanning efficiency of anti-virus program by using the same
approach of unpacking the executable into an empty section,
fix their imports and then jump to original address of entry
point. Finally the signature of unpacked code are matched
with the signatures provide in the database for known
packers. By identifying the signatures, they provide a lot of
information regarding the packed executable like compiler
version, compression ratio, imports names, etc.

Ang Li & Yue Zhang [12] proposed a technique to pack
an executable based on tokens. This retains the
confidentiality of protected PE file with the security token.
They introduced new techniques of anti debugging and anti
dumping of memory segment. These things are essential to
unpack the executable using its algorithm. But the results
show that the algorithm has a higher time complexity as
compared to traditional methods.

Xabier Ugarte-Pedrero & David Balzarotti & Igor Santos
[13] presented information about how runtime packers
work. They are mostly used by malware writers to obfuscate
their code. It creates a main hurdle to anti-virus static
analyze, and any signature based detection can easily be
evaded by introducing packing algorithm in executable. In
their study they also show different ways to unpack a
packed binary image of executable. In the run time they
used a virtual environment for execution of an executable.
All the control lies with the other process which is able to
monitor the executable and give support for executing
(debugger, emulator). The paper also throws light on
different types of complexities faced normally while
designing a simple packer.

3.O0VERALL DESIGN

The proposed algorithm can inject multiple executable
files into itself. Operating system does not allow editing the
file that is mapped with process, and it only allows share
read operation on that file. So to achieve this, a child process
is introduced that does the job for main process. Some
arguments need to pass from main process to child process.
This is achieved through memory level writing. But to write
memory of another process first we must create memory in

©2015-19, IJARCS All Rights Reserved

that process which is not shared by any other operation. To
do that both main and child processes must use same
signature for reaching at the same memory location. Child
process is created in suspended mode where EAX register in
its context always has address of its entry point; by this we
can reach the image base of child process. Once main
process is done, then it just resumes the main thread of child
process and gets terminated, and frees the mapped file. Then
the child process begins its execution. All object files are
either present in any of section of main file (depend on
either padding space can hold file or not) or they are placed
at the end of main file. Each file just follows an offset value,
which points at the end of the injected file.

Anti-debugger process and
communication pipe initialize, current

system time stamp passed to anti-
debugger process.

unpack /\ pack @

status,

/focate encrypted files\

in main executable, calculate the file based locate
calculated hash key for| location of status variables
decryption in dynamic variable, calculate hash written by
memory, create key based for individual main process
separate processes of file, and after encrypt into its
all executables and each file add them into memory, wait
make link list data temporary file, update for main
structure to keep me status variable_ into file process to
states check of still based version of erminate,copy

process, create child
process, and pass
variables to child
process by process
memory written, resume
child process.

Active processes. /

temporary file
to main file,
and remove

temporary file.

end @

Fig.2. Flow chart of overall design

Proposed algorithm consists of 3 parts an Anti-debugger,
un-packer and Packer. This algorithm will either run into
un-packer mode or packer mode which is decided by status
flag. But anti-debugger module will run in both situations.

(start)
- start)
[create B
| bBidirectional i -
| server pipe end create bidirectional
h client pipe end

(create anti-debugger
process in suspended

mode., | By main process and
respond accoarding to
| there values.

T

If; exit)

[read timestamps = em:i}

create thread for
racive responce

| pipe. and resume
| antidebugger main

time stamp written intoJ
. thread

pack and
unpachk
modules

_exit)

Fig. 3. Flow chart of anti-debugging module

916

Abhi Gupta et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,914-920

Main process creates child process in anti-debugger
module which always checks the presence of any known or
unknown debugger or any cracker presence by the current
status arguments passed by main process to it. At any stage
child process can halt the execution of main process. It also
provide an efficient solution for PUSHAD signature
scanning at debugging time.After that the main process
applies the encryption algorithm on object files and puts all
result into a temporary file. As running processes mapped
file cannot be edited, to do so we must wait until the main
process is terminated and releases its mapped file. Before
terminating itself the main file creates a child process and
writes information about main process handler, source
name, and destination name in it. It resumes the main thread
of the child process which was created in suspended mode.
After that child process starts its work. The flow chart of
main process is shown as in fig.4.

app.exe (start 3

- NULL

@ .
- no file

packed

file add

ves

copy app.exe to appl.exe. locate
memory variable status adress

in app.exe increase it in appl._exe

calculate 8 bit hash and encrypt
the file using it.and add file to the

end of appl.exe

create child process of file data.exe
in suspended mode and change

acess specifier of child process

B duplicate this process handler into)
child process write source and dest
file names and handler of this process
in child process memory ,

resume the main thread of child
pProcess.

Cexed

Fig.4. Flow chart of packing

The main objective of the main process is to find the file
based location of a memory variable STATUS, and to make
a copy of itself by reading its mapped file in secondary
storage, opening object files locations according to files
sizes, determining their location in the main file’s copy,
encrypting using hash key that is calculated based on file
size and is unique for each file and finally putting these files
into their appropriate locations. After that main process
creates child process which is also pre compiled code. After
creating executable environment the main thread of child
process is resumed. In fig.5 Flow chart of child process
shown. This is responsible of deleting main file after copy it
from temporary file.

© 2015-19, IJARCS All Rights Reserved

i= “wwrittern the rmaim

Tocate memory that
process by

writtern by main process

[_ read data that that i=s "_]
INto its Mermory

weait for
sigrnal object

to destination

[COoOPY —E'Q{rrc'e—ﬂte
file

Fig.5. Flow chart of child process

Child process initially calculates the memory region
where main process writes the arguments that are required
for its operation. After finding that memory it reads the
contents written and initializes its variables accordant to
arguments. Then semaphore or wait for signal object can
use. That API blocked that process until it receives the
information regarding main process dethatched, which
means main processes mapped file is free now for write
operation. Then it just performs the copy operation between
source to destination. After that it just removes the source
application. Fig.6 shows how main file looks after all this.
More file will be added to main file it increase space in main
file.

Main file
image
Offset

Packed
file image

. Offset —— o0

Fig.6. File representation

_ , fileend at

All files in the main file are encrypted using hash key
value. So at this point all information regarding object files
are secure. Here offset is the offset value that points the end
of file that is going to begin at next 4 bytes. Each time that
offset is used to calculate the size of file, and when offset is
zero that means end of file. In fig.7 there is the flow chart of
unpacking. If the status variable contains value then that
indicate at un-packer algorithm. This algorithm just
unpacked the files just by doing reverse operation. First it
creates its global variable writable which is only readable by
default. This gives an access to write n numbers of file
names for creating processes for them. Then process of
finding packed files is beginning. This is done via analyze
each

917

Abhi Gupta et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,914-920

Ilocate Mmarrmory thhat
is writtermn the rmaim
roceaess by

readcd data that that is
werittern by rmaim process
IiNmto its rMmMerriory.

wwallt For
sigrmnal object

Fig.7. Flowchart of unpacking and executing module

Section table of main file, and if there is no file signature
in any section then it must be at the end of main file. Using
file offset we reach at the end of file where first file ends.
Then in loop statement the followings steps are done:

1. Use offset value to calculate size of file. Allocate

memory in dynamic allocator according to file size.

2. Calculate 8 bit hash key. And unpacked the file into
dynamic memory.

3. File data is written to file by using string in global
memory, and after that string is increased. Then
current handler regarding file is closed.

4. Process data is initialized after that process is
created.

5. Allocator memory is deallocated for reuse.

4. SYSTEM EVALUATION AND RESULTS

Portable executable in windows environment are not
based on just one concept, which is not like just start
execution whatever feeds to loader. There are lots of things
to be done before the actual execution of portable
executable. And these things are not same for all
executables but there sequence is same implying that it just
depends on the nature of executable. Like: - .DLL files,
.COM files, .EXE files, etc. do not differ just in their
extensions but in a lot of other different ways as well. Some
executables export their functionality to other executable
while some import some code from other DLL. While some
executables are compiled with TLS set value, others need
specific resources (GUI Texture). Some need debugger
support and some use heavily use of operating system
exceptional handler to achieve its goal. The loader is
however capable of handling all these by itself. Windows
loader creates the environment for execution of particular
file and sets up all the prerequisites needed before the
execution of file. When the environment is fully ready, then
actual control is transferred to the first instruction of the
executable. Hence, when an executable is packed then it
needs to be either unpacked so as to facilitate the window
loader to setup environment accordingly else the entire job
of loading the application will have to be done by the
application itself before jumping to the actual code of

© 2015-19, IJARCS All Rights Reserved

executable file. When all things get resolved, then only the
executable can run.

this is
password

[=]2 [t

° DAstudyh\csem.tech\thesis\packi rothimitest samples\unsafestring.exe

please enter password hackishack

m s

Fig.8. Output of Unsafestring.exe without packing

B UU D\UURD PTR 55: [EBP-81,0FFSET 813C585: ASCIT "hackishack"
ol 3 EAIC RSCIT ER," please en”
o 860 RSCII "s"
i 5688 ASCIT @A, "congress p"
SE2H ASCIL BA, "passuard n”
i S350 UNICOOE " _native_startup_state == _initialized”
£01 UNTCADE "7
€913 UNICODE "F \dd\uctouls\crt\chSZ\dllstuFf\crtexe o
CECB UNICODE "user32
CECS UNTCADE "user3z, dll"
CEE4 RECIT ™ SDrlntFﬂ"
SF4B ASCIT "HData: <"
SFE4 REC] "ﬂl Locat ion"
5F8a RECIT B2
SF34 AL "ﬂddrass o
SFRS RECIT "Stack area around _alloca memory reserved by this funetion is corrupted”
) RECIT "istsriplsi dshdis™
010 ASCIT "> "
6020 RSCIT "Wskshsns"
SEFR ASCIT "Stack area around _alloca memory reserved by this function is corruptedd”
ASCIT "lnknown Runt ime Eheck Error)"
FSET stack_posthsg RECIT " was corrupted.”
FSET BL3CEE9R RECIT "Stack corrupted near unknown varisble”
T B13C5ECH RSCII "Z.2% "
FSET @130E06S UNICODE "Runt iwe Check Errorfd Unable o display RTC Meszage.”
T BL3CE0FR UNICODE "Run-Time Check Fallure 2d - Zs"
FSET BLACEESC RECIT "Unknown Filenane”
FSET BL3CEESH RECIT "Unknown Module Hane™
T BLICSEES RECIT "Run-Time Check Failure #id - Hs"
FSET wninit_postnsg RECIT ™ is being wsed without being initialized,”
FSET B13CER2C RECIL "A variable is being used without being initialized.”
F gé?g UNIEUDE "l anex\tbegm t= HULL & _onexitend #= MULL) 10 (_onexitbegin == HULL
6250 UNICODE "F \dd\ucmuls\crt\chSZ\dllstuFf\atune)Ht [
6280 RECIT "frddwetoolshertrortwd2adl Lstuf Fratones it.c”
62FD UNICOOE "f: \dd\uctouls\crt\chSZ\startuD\ISBS\FDB o
6364 UNIEUDE "_setdefaultprecision”
6338 UNT " controlfp_s(((void #18), 0400810800, B0BGSAGED)"
ordF i lenane UNICODE "HSUCRIZA0. d1 1"
6580 UNICODE "MSPOBL20"
6478 UNICOOE "AOVAPT32.DLL"™
6478 UNICUDE "AOUAPT3Z.OLL"
6438 RECIT "ReglpenkeyExll”
6403 RSCII ”REgﬂueryUaluaExN"
6480 "Reallosekey!
6400 UNICUDE "SUFTNRRE\HlcrusoFt\ULsualSWdlu\lZ BuSetupuc”
6540 UNICOOE "ProductDis”
6563 UNICODE "MSPOB120"
EEEC UNICODE "OLL"
) RECIL "POBOpen!al idateS”

Fig.9. String references in Unsafe String.exe without

packing[15]

Fig.8 depicts an application which just compares the
string with user input string implying that string is saved
somewhere in file itself. The saved string can be seen in
Fig.9.
===

B C\Windows\system32iemd.exe

Microsoft Windows [Version 6.1.76611
opyright (c) 2089 Microsoft Corporation. All rights reserved.

\Users\Bhguptared D:sstudyrsczen.tech\thesisypackingflgrothin
G:\Users\Bhgupta>d:

0D :\studyvcsem.technthesis\packingflgrothim>app.exe unsafestring.exe

fstatus— no File

e udy\cf‘em techsthesis\packingfilgrothin>@

Fig.10. Packing of unsafestring.exe

918

Abhi Gupta et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,914-920

B C\Windows\system32\cmd exe =B %

Microsoft Windous [Uersion 6.1.76011
Copyright {c) 2089 Microsoft Corporation. A1l rights reserved.

C:\Users\Bhgupta>d:
cd D:nstudycsem.tech\thesis\packingAlgrothin

tudyscsen.techsthesis\packingfilgrothin>app.exe unsafestring.exe uiS@i.exe ci
ackme .exe BASECALC.EXE Exception.exe

status— no file
neu file add-50
D:

tudyscsen.tech\thes is\packingAlgrothindapp.exe unsafestring.exe wiS8L.exe cil
ackme .exe BASECALC.EXE Exception.exe

status— no file
neu File add-5

D:\studyscsen.tech\thes is\packingflgrothin>@

Fig.11. String references in Unsafe String.exe after
packing[15]

All the contents of the file are changed as can be seen in
Fig.11. After applying the proposed packing, all strings
contents of file have changed. Now the executable can
easily bypass any kind of signature based detection and
crackers can’t understand that. They don’t represent any
useful information now.

CASCIL "Tenpchar™, @
OO BADE 1A ASCIT "arrayBute”
A £ 3

"stepTupe”
»stepType”

dat”
 secondry process not created”

content kdd
"oant change acess tpecifier of that memory pags”
"oant weite (n another process #d Ha Au”

D25

DWORD PR 55: [EBP-4181,0FFSET G067
H OFFSET BE057858
H DFFSET BB06785C
H OFFSET @EDE7370

o enp”
"fileoffsetl”
o

remps”

(alzlziatelatelziatetatlzinteiateeialeiateeielziatetallzinteiatereiaieiateeizielal sMElclaieizia]

templ”
rietions”

UNICODE "user3z.dll™
UNICODE "wser32.dLL™
OFFSET BB0E7ED4 RSCIT "wsprintFA"
OFFSET BO0E7FIS8 ASCIT "H0ata: <"
OFFSET BEDECFdd RSCIT BA,"Allocation™
OFFSET BR0E7F7E ASCID "Miize: "
OFFSET @80&7Fa4 AECIT BA,"Address: 8"

Fig.12. Multiple executable packing

Home Py
Ubsinl Pretened
Lot & Dec " Mex " Bn (" 0o
- [Check it
= b Ghs = bk P Sioned
-PC Lisherc 127,001 1:98%%
Satur Conticting sevees ot Hh M
N AND oR
NEG 0R [

| Y

“ alisliel 7 e oM
Fig.13. Execution of packed files

In another experiment 4 executable files are passed as
input to the algorithm, which converts all of them into one

© 2015-19, IJARCS All Rights Reserved

single executable file. When that single file is executed, then

all the files packed within are executed as depicted in
Fig.13.

5. CONCLUSION AND FUTURE WORK

In this paper , a novel encryption algorithm based on
hash key is proposed. The algorithm has been implemented
on various window based x86 & x64 executables. It injects
the executable files into itself. Hashing has always been
used for verifying the data content but in the proposed
technique, it has been used for encryption as size of the
image is the only thing that is not changed in whole image.
The technique has been implemented on many window
based executables and experimental results show that this
technique is capable of packing up to 2 GB executable files.
The proposed technique assures packing of any kind of
executable file. The experimental results show the execution
of multiple packed files also. Proposed technique used
different process space for different executables by letting
the operating system create abstraction between all
executables which are packed. Future scope of the research
includes:

e Protection function for anti-debugger (timestamp
compare, checking of debugger process, ENDIAN
order for anti memory dump)

e Encryption with wider byte rage for generating key
like 128 bit.

e Direct process level writing of unpacked image.

e Multiple threads can used to improve speed of
execution.

e Multiple timestamps for anti-debugger.

e Extend the file capability more then 2 Gb by using
mapped files instead of heap

6. ACKNOWLEDGMENT

First and foremost, I would like to express my gratitude to
the Almighty God, for giving me the ability to think,
research, and investigate. As we say in Hindi that “it is the
teacher who brings you close to God” so a heartfelt thanks
to my advisor, Dr Meenakshi S Arya,for their valuable
supervision and support in every step taken in the
preparation of this research. It was indeed an honor to learn
under them, then I am grateful and obliged to all faculties of
Computer Science & engineering department for molding
me at correct time so that I can have a touch at fins
destination. Then I would like to thanks all my friends for
the moral support and encouragement, finally and most
importantly, I would like to thank my parents, for their
unconditional love, encouragement and support.

REFERENCES

[1] Philip O'Kane, Sakir Sezer, and Keiran McLaughlin.
"Obfuscation: The hidden malware.",JEEE Journal of Security
& Privacy,Vol.9.5,pp.41-47 sept-oct 2011.

[2]1 Li, Ang, et al. "A token strengthened encryption packer to
prevent reverse engineering PE files." Estimation, Detection
and Information Fusion (ICEDIF),International Conference
on. IEEE, jan 2015.

[3] Hexrays Software ”Hex-editor”’[online] Avaliable:

https://www.hexrays.com/products/ida/support/download.sht
ml.

919

Abhi Gupta et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,914-920

Oleh Yuschuk Software “Ollydbg”[online] Available:
http://www.dc214.org/notes/rev_eng/Docs/OllyDbg%20Short
cuts.pdf.

Microsoft Corporation, “Microsoft portable executable and
common object file format specification revision 6. 0”, 1999.
Pietrek, Matt. “Peering inside the PE: a tour of the win32 (R)
portable executable file format.” Microsoft Systems Journal-
US Edition, pp. 15-38, 1994.

Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. "A study of
the packer problem and its solutions." Springer Journal of
Recent Advances in Intrusion Detection,Vol. 5230, pp. 98-
115, 2008.

San-Chao Yu, Yi-Chao Li, "A unpacking and reconstruction
system-AGUnpacker" International Symposium on Computer
Network and Multimedia Technology, International
Conference on. IEEE,pp. 1-4, 2009.

S. Han, K. Lee and S. Lee,"Packed PE file detection for
malware forensics." IEEE Journal on Computer Science and
its Applications, pp. 1-7, 2009.

©2015-19, IJARCS All Rights Reserved

[10]

[11]

[12]

[13]

[14]

[15]

Lee Ling Chuan, Chan Lee Yee, Mahamod Ismail and
Kasmiran Jumari, "Automating uncompressing and static
analysis of Conficker worm." 9th Malaysia International
Conference on. IEEE, pp. 193-198, 2009.

T. Ban, R. Isawa, S. Guo, D. Inoue and K. Nakao, "Efficient
malware packer identification using support vector machines
with spectrum kernel."Eighth Asia Joint Conference on
Information Security,pp. 69-76, 2013.

Ang Li, Yue Zhang, Junxing Zhang and Gang Zhu, "A token
strengthened encryption packer to prevent reverse engineering
PE files", International Conference on Estimation, Detection
and Information Fusion, pp. 307-312, 2015.

X. Ugarte-Pedrero, D. Balzarotti, I. Santos and P. G.
Bringas,"SoK: Deep packer inspection: A longitudinal study
of the complexity of run-time packers", IEEE Symposium on
Security and Privacy, pp. 659-673, 2015.
Ntcore Software “Cft-Explore”[online]
http://www.ntcore.com/exsuite.php.

Wayne J. Radburn Software “Peview”[online] Available:
http://wjradburn.com/software/PEview.zip

Available:

920

